高速数字信号处理概述共34页文档
数字信号处理概述
数字压缩: 数据压缩在一定条件下把原始信号所含信息数据进行压缩,如语音、声音、图像 信号中含有许多冗余信息,通过数字信号压缩算法最大限度地去除这些信号中的 冗余度,使压缩后信号带宽减小,提高传输效率。作数据存储时可降低所需存储介 质的容量。例如直径为120mm的CD光盘,本来存储的只是一套70分钟的Hi Fi立体声音乐,现在可将70分钟电视信号和音乐信号都压缩到120mm的光盘上, 即VCD光盘。 图像处理: 数字信号处理技术成功应用的图像处理方法有: 数据压缩 图像复原 清晰化与增强 由于单个数字图像以1兆个采样值的量级表示,所以要求高性能的处理机、高 密度的数据存储器。即要求高速度硬件。 会议电视和可视电话: 采用DSP完成视频图像信号的压缩,制成可通过公用电话交换网(PSTN) 传输的会议电视或可视电话。
自20世纪60年代以来,数字信号处理的应用已成为一种明显的趋 势,这与它突出优点分不开的。 数字信号处理大致可分为: 信号分析 信号滤波
典型信号处理实例 • 远程通信(多路技术、压缩、回声抑制) • 图象处理(医学影像、影像产品、图像增强、恢复)
语音处理: 它是最早采用数字信号处理技术的领域之一。 本世纪50年代提出语音形成数学模型,经过十多年对语音的分析、综合,证 明是正确的。 在语音领域现存在着三种系统: 语音分析系统:自动语音识别系统,它能识别语音,辨认说话的人是谁,而 且破译后,能立即作出决断。 语音综合系统:盲人的自动阅读机,声音响应的计算机终端,会说话玩具, 家用电器(CD,VCD,DVD)。 语音分析综合系统:语音存储和检索系统。应用于语音编码、语音合成、语 音识别、语音增强、说话人确认、语音邮件、语音存储等。 语音压缩 在GSM手机中用DSP可将语音压缩,在卫星电话中用DSP将语音压缩 仍具有良好的清晰度。在语音信箱、留言电话方面也都采用语音压缩技术和 DSP。
数字信号处理 名词解释-概述说明以及解释
数字信号处理名词解释-概述说明以及解释1.引言1.1 概述数字信号处理(Digital Signal Processing,简称DSP)是一种广泛应用于信号处理领域的技术,它利用数字化的方式对连续时间信号进行处理和分析。
数字信号处理可以实现信号的滤波、频谱分析、模拟与数字信号的转换、信息编码解码等功能,是现代通信、音视频处理、生物医学领域等各个领域中不可或缺的技术手段。
通过数字信号处理技术,我们可以更加精确和高效地处理各种类型的信号,包括声音、图像、视频等。
数字信号处理可以使信号的处理过程更加稳定可靠,同时也可以方便地与计算机等数字系统进行集成,实现更多复杂功能。
在本篇文章中,我们将深入探讨数字信号处理的定义、应用领域以及基本原理,以期让读者对这一重要领域有更加全面的认识和理解。
1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。
在引言部分,我们将对数字信号处理进行简要的概述,并介绍文章的结构和目的。
正文部分将详细讨论数字信号处理的定义、应用领域和基本原理。
最后,在结论部分,我们将总结数字信号处理的重要性,探讨未来数字信号处理的发展趋势,并做出最终的结论。
通过这样的结构安排,读者能够清晰地了解数字信号处理的基本概念、应用以及未来发展方向。
1.3 目的:本文旨在介绍数字信号处理的概念、应用领域和基本原理,旨在帮助读者更深入了解数字信号处理的重要性和作用。
通过对数字信号处理的定义和应用领域的介绍,读者可以了解数字信号处理在各个领域中的广泛应用和重要性。
同时,通过对数字信号处理的基本原理的讲解,读者可以更好地理解数字信号处理的工作原理和技术特点。
通过本文的阐述,希望读者能够全面了解数字信号处理的基本概念和工作原理,进而认识到数字信号处理在现代科学技术中的重要性和必要性。
同时,本文也将展望未来数字信号处理的发展趋势,希望能够启发读者对数字信号处理领域的进一步研究和探索。
最终,通过本文的阐述,读者可以更加深入地理解数字信号处理这一重要的科学技术领域。
数字信号处理绪论
模拟高通滤波器与数字高通滤波器的比较
c
x(n)
y (n)
xa (t)
R ya (t)
延时
a
信号处理的实现方法
基本上分为两种方法,一种是软件实现方法,另一种是 硬件实现方法。软件实现方法指的是按照原理和算法,自己 编写程序或者采用现成的程序在通用计算机上实现。硬件实 现指的是按照具体的要求和算法,设计硬件结构图,用乘法 器、加法器、延时器、控制器、存储器以及输入输出接口部 件实现的一种方法。前者灵活,但速度慢,达不到实时处理 要求;后者速度快,但是不够灵活。
模拟 y(t)
转换器
信号
转换器 滤波器
处理器
(1)前置滤波器
将输入信号xa(t)中高于某一频率(称折叠频率,等 于抽样频率的一半)的分量加以滤除。
(2)A/D转换器
由模拟信号产生一个二进制流。在A/D变换器中 每隔T秒(抽样周期)取出一次xa(t)的幅度,抽样后的信 号称为离散信号。
(3)数字信号处理器(DSP)
▪ 直方图是这样一张二维的坐标系,其横轴代表的是 图像中的亮度,由左向右,从全黑逐渐过渡到全白; 纵轴代表的则是图像中处于这个亮度范围的像素的 相对数量。当直方图中的黑色色块偏向于左边时, 说明这张照片的整体色调偏暗,也可以理解为照片 欠曝。而当黑色色块集中在右边时,说明这张照片 整体色调偏亮,除非是特殊构图需要,否则我们可 以理解为照片过曝。
▪ 雷达系统主要信号处理功能包括: ▪ 信号产生、匹配滤波、门限比较、目标参数(如射程、
方位和速度)估计。
雷达
通信
▪ 整个通信领域几乎没有不受数字信号处理技术影响 的地方。(占60%)
▪ DSP主要应用于通信的热门产品中。如:蜂窝电话 (Cellular phone)、ADSL调制解调器、线缆调制解 调器(Cable modem)、蓝牙技术(bluetooth)产品, 数字电话应答机(digital telephone answering device)、全球定位系统(global positioning system,GPS),卫星电话(satellite phone)、电话 会议(conference speaker phone)、电视电话会议编 译码器(video conferencing code )、IP电话(voice over IP)、IP传真(fax over IP)、ATM电话(voice over ATM)、智能天线(smart antenna)、PCS用户端 (subscriber set)。
数字信号处理概述
• 高斯信号(钟形脉冲信号)
该信号在随机信号分析中有重要地位。正态分布的密度函
数就是一种高斯函数,我们在对语音信号处理的时候,会 大量接触这类信号。
f (t ) ke
t ( )2
系统的基本概念
• 系统是由若干个相互关联又相互作用的事物组合而成的, 具有某种或某些特定功能的整体。如通信系统、雷达系统 等。系统的概念不仅适用于自然科学的各个领域,而且还 适用于社会科学。如政治结构、经济组织等。 系统可以小到一个电阻或一个细胞,甚至基本粒子, 也可大或复杂到诸如人体、全球通信网,乃到整个宇宙, 它们可以是自然的系统,也可以是人为的系统。 • 但是,众多领域各不相同的系统也都有一个共同点,即所 有的系统总是对施加于它的信号(即系统的输入信号,也 可称激励)作出响应,产生出另外的信号(即系统的输出信 号,也可称响应)。系统的功能就体现在什么样的输入信 号产生怎样的输出信号。
模拟信号
数字信号处理系统的特点
• 优点: 与连续时间系统相比,离散系统的主要优点如下: 1.精度高 离散系统的精度尚,更确切地说是精度可控制。因为精度 取决于系统的字长,字长越长,精度越高:根据实际情况 适当改变字长,可以获得所要求的精度。 2.灵活 数字处理系统的性能主要由乘法器的各系数次定。只要改 变乘法器的系数,系统的性能就改变了,对一些自适应系 统尤为合适 3.稳定性及可靠性好 离散系统的基本运算是加、乘法,采用的是二进制所以工 作稳定,受环境影响小.抗干扰能力强,旦数据可以存储: 4.数字系统的集成化成度高,体积小、功耗低、功能强、 价格越来越便宜。
时间系统,也称数字系统。普通的电视机是典型的连续时 间系统 • 连续时间系统:系统输入与输出都是连续时间信号 • 离散时间系统:系统输入与输出都是离散时间信号 • 数字信号系统:系统输入与输出都是数字信号
数字信号处理_第一章_概述
第 26 页
1.序列
�离散时间信号又称作序列。 �离散时间信号的间隔为T,且均匀采样,可用x(nT) 表示在时刻nT的值。当T隐含时,可表示为x(n)。 �为了方便,通常用直接用x(n)表示序列{x(n)}。
x(0) x(-1) x(1) x(-2) x(2) -2 -1 0 1 2 n
:x ( n)
第 6 页
数字信号-镭射唱片
�数字信号是通过0和1的数字串所构成的数字流来 传输的,幅度变化是跳变的。 �离散+量化
镭射唱片,又名雷射唱片、压缩盘,简称CD。是一种用以储 存数码资料的光学盘片,在1982年面世,是商业录音的标准 储存格式。 声音镭射唱片包括一条或以上的立体声轨(在CD母盘感光材 料上照出了很多凹凸的位置,这样凸表示1,凹表示0,按照 2进读法读出来之后解码即可读到数据了),以16比特PCM编 码技术,采样率为44.1 kHz。标准镭射唱片的直径为120 毫 米或80 毫米,120 毫米镭射唱片可储存约80分钟的声音。 80 毫米的镭射唱片,可储存约20分钟的声音资料。 镭射唱片技术被用作储存资料,称为CD-ROM。可录式光盘随 后面世,包括只可录写一次的CD-R及可重复录写的CDRW,,成为个人电脑业界最为广泛采用的储存媒体之一。镭 射唱片及其衍生格式取得极大的成功,2004年,全球声音镭 射唱片、CD-ROM、CD-R等的合计总销量达到300亿只。
�关系
RN ( n )
0
1
n N-1
N −1
RN ( n ) = u ( n) − u ( n − N ) = ∑ δ ( n − m)
m =0
第 32 页
实指数序列
�定义为:
x(n) = a u (n)
n
数字信号处理概述
第1章数字信号处理概述本章概述了后续章节中将要进一步讲述的内容。
本章内容包括:¾区别模拟信号和数字信号¾给出模/数转换的基本步骤¾给出数/模转换的基本步骤¾介绍信号与其频谱的关系¾阐明滤波的基本概念¾讨论数字信号处理的应用1.1 信号与系统计算机所使用的是数字信号。
随着计算机应用的普及,对数字信号进行高效处理的需求日益迫切,并且,现代计算机的高速处理能力引起了数字信号的广泛应用,进一步促进了数字信号技术的发展。
数字信号处理(或简称DSP),对于许多应用来讲都是必需的,图1.1中列出了其中一些应用。
y按键电话y图像边缘检测y数字信号及图像滤波 y地震分析y文字识别y语言识别y磁共振成像(MRI)扫描y音乐合成y条形码阅读器y声纳处理y卫星图像分析y数字测绘y蜂窝电话y数字摄像机y麻醉剂及爆炸物检测 y语音合成y回波抵消y耳蜗移植y抗锁制动y信号及图像压缩y降噪y压扩y高清晰度电视 y数字音频y加密y马达控制y远程医疗监护 y智能设备y家庭保安y高速调制解调器图1.1 DSP的应用实例DSP内部存在着要进行处理的信号。
信号是将信息从一处携带到另一处的变化。
例如,外界具有人们可感受到的压力或光强度的变化,人们所听到的声音就是耳膜感觉到的压力变化,所看到的图像就是视网膜感受到的光强度(亮度)变化。
这些信号都是模拟信号(analog signal),它们在任意时刻都有值,且可取连续值范围内的任意值。
声音是一维模拟信号:压力变化的大小(或幅度)随时间改变;还有,北美地区电线上的输出电压在其最大值和最小值之间平滑变化,每秒60次。
图1.2给出了一些一维信号的例子。
图像是二维模拟信号:亮度在图像的水平方向和垂直方向上均发生变化。
图1.3给出了一幅黑白图像,图1.4给出了高速数字图像序列中的4帧。
要对信号进行处理,必须首先(主要通过传感器)获取信号。
例如,声音信号可通过麦克风将声信号转变为电信号。
数字信号处理讲义--绪论
第1章绪论[教学目的]1.介绍数字信号课程的应用、历史、发展趋势2.复习信号与系统中的相关知识点[教学重点与难点]重点:前沿领域的介绍。
难点:概述性的介绍和知识的回顾,无难点。
一、本课程简介数字信号处理(DSP )是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。
数字信号处理在理论上的发展推动了数字信号处理应用的发展。
反过来,数字信号处理的应用又促进了数字信号处理理论的提高。
而数字信号处理的实现则是理论和应用之间的桥梁。
数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。
例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。
近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。
数字信号处理(DSP)是一门正在生气勃勃迅速发展的学科。
随着超大规模集成电路(VLSI)的出现和迅猛发展,DSP在理论和应用方面不断地发展和完善,在越来越多的应用领域中迅速取代传统的模拟信号处理方法,并且还开辟出许多新的应用领域。
基于高速数字计算机和超大规模数字集成电路的新算法、新实现技术、高速器件、多维处理和新的应用成为DSP学科发展方向和研究热点。
由于DSP应用非常广泛(如,生物医学工程,声学,雷达,地震,通信等),各个领域都需要大量高素质的DSP研究开发人才,所以数字信号处理课程得到学术界和大专院校的高度重视,并达到高度发展和逐步完善的水平。
第一章 数字信号处理概述汇编
模拟信 号
从模拟信号到数字信号
取样
模拟信号
取样数据 信号
量化编码
数字信号
对连续信号每隔一定时间间隔取一 数值,则得到一个数据序列,得到的数 字信号在时间上是离散的,称为取样数 据信号;将取样数据信号量化编码,采 用二进制码表示,即得到时间上和数值 上都离散的数字信号
1.1.2 数字信号处理
1、 数字信号处理的概念:用数字或符号序列来
3、灵活性强
数字信号处理采用了专用或通用的数字系 统,其性能取决于运算程序和乘法器的各系数 ,这些均存储在数字系统中,只要改变运算程 序或系数,即可改变系统的特性参数,比改变 模拟系统方便得多。 还可以利用一套计算设备同时处理多路相 互独立的信号,即所谓“时分复用”。
表示信号及对这些序列进行处理的学科。
2、 数字信号处理的方法:既然是数列,其处理
当然是各种数学运算。
3、 数字信号处理的途径:软件处理,编程计算,
灵活方便。硬件处理,加法器、乘法器、延时器及它们的 组合,适时快捷。软硬结合,用数字处理芯片及存储器来 组成硬件电路,通过程序语言来实现所需运算
1.1.3 数字信号处理的主要优、缺 点
精度高 可靠性高(抗干扰性强) 灵活性强 便于大规模集成化 数字信号便于加模拟系统的电路中,元器件精度要达 到10-3以上已经不容易了,而数字系统 17 位字长可以达到 10-5 的精度,这是很 平常的。例如,基于离散傅里叶变换的 数字式频谱分析仪,其幅值精度和频率 分辨率均远远高于模拟频谱分析仪。
第1章 数字信号处理概述
Digital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSP 断地发展和扩大。
Digital Signal Processing—DSP 技术、信号特征的描述等。
Digital Signal Processing—DSP(6)信号滤波技术,各种数字滤波器的设计和实现。
Digital Signal Processing—DSPDigital Signal Processing—DSP 应用更广泛。
Digital Signal Processing—DSP技术的迅猛发展,进一步推动了数字信号处理技术的理论和应用领域的发展。
Digital Signal Processing—DSP者是狭义的理解,我们讨论的DSP中更多的是指广义的理解。
Digital Signal Processing—DSP 复杂的数字信号处理,如数字控制等)。
Digital Signal Processing—DSP 件资源,可用于复杂的数字信号处理算法)。
Digital Signal Processing—DSP 新的局面。
Digital Signal Processing—DSP TI公司推出的DSP产品主要包括三大系列:Digital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSPDigital Signal Processing—DSP 图1-1a 连续时间信号图1-1b 离散时间信号Digital Signal Processing—DSP图1-2 模拟信号Digital Signal Processing—DSPDigital Signal Processing—DSP图1-4 采样信号Digital Signal Processing—DSPDigital Signal Processing—DSP 入到人们的生活中了。
数字信号处理DiscreteTimeSignalProcessing
Device)
复杂可编程逻辑器件
4.Embedded Processor 嵌入式处理器
第34页/共36页
应用领域
数字信号处理是应用最快、成效最为显著的 新学科之一。在语音、雷达、声纳、地震、图像、 通信系统、系统控制、生物医学工程、机械振动、 遥感遥测、地质勘探、航空航天、电力系统、故障 检测、自动化仪器等众多领域都获得了极其广泛的 应用,它有效地推动了众多工程技术领域的技术改 造和学科发展。近年来,随着多媒体的发展, DSP芯片已在家电、电话、磁盘机等设备中广泛 应用。毫不夸张地说,只要你使用计算机(通用机、 专用机、单板机、单片机或一个简单的CPU)和数 据打交道,就必然要应用数字信号处理技术。
(1) 在通用微机上,用软件实现; (2) 用单片机实现; (3) 专用数字信号处理芯片DSP。
第21页/共36页
五. 数字信号处理系统的基本组成
1. 框图
xa (t) 前置预滤波器
A/D变换器 x(n) 数字信号处理器
y(n) D/A变换器 y(t) 模拟滤波器 ya (t)
' xa (t)
01 3 5 t
7. 便于二维与多维处理 用存储一帧或数帧图象信号,实现二、多维 处理。
8. 速度不够高,工作频率也不够高 几十MHz以下。
第28页/共36页
技术发展趋势 可用四个字“多快好省”来概括。 1.多,DSP的型号越来越多; 2.快,即运算的速度越来越快; 3.好,主要是指性能价格比; 4.省,功耗越来越低。
2. 要求基础强
网络理论、信号与系统是本课程的理论基础。
3. 与其它学科密切相连
与最优控制、通信理论、故障诊断、计算机、 微电子技术不可分,又是人工智能、模式识别、 神经网络等新兴学科的理论基础之一。
高速数字信号处理器
特点
高速实时信号处理是信号处理中的一个特殊分支。它的主要特点是高速处理和实时处理,被广泛应用在工业 和军事的关键领域,如对雷达信号的处理、对通信基站信号的处理等。高速实时信号处理技术除了核心的高速 DSP技术外,还包括很多外围技术,如ADC、DAC等外围器件技术、系统总线技术等。
DSP(Digital Signal Processor),即数字信号处理器,是一种专用于数字信号处理的可编程芯片。它 的主要特点是:
硬件设计
硬件设计
TMS320C2XX系统
以一个典型的TMS320C2XX系统为例,介绍C2XX系统的硬件设计。图1是该系统的功能框图:
图1系统的功能框图
TMS320C2XX用户系统中配置了一个高速TMS320C2XX芯片,64K字的程序存储器,64K字的数据存储器,256K 位EPROM;采用了一路14位A/D和14位D/A;系统还扩展了16根标准输入信号,用户可接按键输入信号,并可申请 INT3中断;扩展了16根标准输出信号,用户可用这些信号控制液晶显示。同时系统提供了3组可扩展的输入、输 出口。
谢谢观看
不同的DSP的应用场合也不同。早期的DSP都是定点的,它的成本比较低可以低可以胜任大部分数字信号处 理,但是住某些场合,如雷达一卢纳信号处理中,数据的动态范围很人,按定点处理会发生数据溢山或者下溢出, 严重时候处理无法进行。浮点DSP的出现解决了这个问题,它拓展了数据的动态范闱,32bit浮点数的动态范围为 1536dB,此外浮点DSP只备更大的访问空间,高级语言的编泽器也主要面向浮点DSP,如ADSP2106x的C编译器, 直接把C程序编译以后放到DSP上去运行,简化了编写程序的过程 。
简介
简介
高速数字信号处理技术研究
高速数字信号处理技术研究随着数字信息技术的发展,高速数字信号处理技术成为现代通信和信息处理领域中一个重要的研究方向。
高速数字信号处理技术是以计算机为基础,通过数字信号处理器(DSP)、高速AD/DA转换器等器件对信号进行采集、处理和重构的技术。
它的应用范围非常广泛,从通信、雷达、图像处理、音频处理到医学诊断等领域都有广泛的应用。
高速数字信号处理技术的出现,使人们将模拟信号处理转化为数字信号处理,大大提高了通信系统的容量、可靠性和安全性,成为推动数字化时代发展的重要引擎之一。
一、高速数字信号处理技术的发展历史数字信号处理技术最早可以追溯到20世纪60年代,当时计算机技术刚开始出现,但计算机处理速度比较慢,只能处理低速信号。
随着计算机性能的不断提高,数字信号处理技术得到了空前的发展,人们可以在计算机上处理也能处理高速信号。
20世纪90年代,数字信号处理技术开始成为一个独立的学科,DSP芯片和FPGA芯片得到了广泛的应用。
在这个时期,高速数字信号处理技术已经被用于通信、雷达、图像处理、音频处理和医学诊断等领域。
同时,高速数字信号处理的算法、理论也取得了很大的发展,如FFT、数字滤波器、自适应信号处理等方面的研究。
近年来,高速数字信号处理技术的研究重点逐渐从算法理论向硬件设计和器件制造方面转移,如高速AD/DA转换器的设计,数字信号处理器的设计和优化、FPGA的设计和应用等方面的研究。
二、高速数字信号处理技术的应用高速数字信号处理技术在通信、雷达、图像处理、音频处理和医学诊断等领域都有广泛的应用。
下面将针对这些领域的应用进行简要介绍。
1.通信领域在通信领域,高速数字信号处理技术被广泛应用于数字通信系统和卫星通信系统。
数字通信系统是一种基于数字信号传输的通信系统,通常使用FSK、ASK、PSK等数字调制和解调技术,DP&QAM调制等技术,以及信道编码、信道等化、信道估计和信道损耗补偿等技术。
高速数字信号处理技术可以对这些技术进行处理,从而提高通信系统的容量、可靠性和安全性。