五年级奥数.行程 .发车问题 (ABC级 ).教师版

合集下载

五年级奥数火车行程问题

五年级奥数火车行程问题

五年级奥数~ 火车过桥的问题火车过桥是指“全车通过”,即从车头上桥直到车尾离桥才算“过桥”。

过桥的路程=桥长+车长桥长=车速×过桥时间-车长车长=车速×过桥时间-桥长列车从车头上桥到车尾离开桥行驶的路程是:桥长+车长。

火车过桥问题会有很多的变式,找到突破口进行解答。

当火车连续通过两座桥时:速度=两次的路程差÷两次的时间差。

(1)一列火车行驶的速度是72千米每小时,阿派要测量这列火车的长度,在车头到达他身边时他按动秒表,到车尾离开他身边时按停秒表,测得19秒钟,这列火车长多少米?(2)一列火车全车从一个停在路旁避让的人的身旁驶过,行了14秒钟,已知这列火车每小时行90千米,这列火车长多少米?(3)一列火车长414米,它用23秒钟全车通过一个路旁避让的人的身旁,这列火车每小时行驶多少千米?(4)一列火车以72千米每小时的速度全车过一座长738米的桥,行了52秒钟,这列火车长多少米?(5)一列火车每小时行54千米,全车通过一条隧道行了38秒钟。

已知这列火车长239米,这条隧道长多少米?(6)一列火车全车过一座长1332米的桥行了1分25秒钟。

火车长368米,这列火车每小时行多少千米?(7)一列火车长700米,从路边的一棵大树旁边通过,用了1.75分钟。

以同样的速度通过一座大桥,从车头上桥到车尾离桥共用了4分钟,这座大桥长多少米?(8)一列火车长800米,从路边的一根电线杆旁边通过,用了2分钟。

以同样的速度通过一座桥,从车头上桥到车尾离开共用了5分钟,这座桥长多少米?(9)一个人站在铁路旁,听见行驶而来的火车汽笛声后,再过57秒钟火车驶过他面前。

已知火车响起汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度。

(得数保留整数)(10)(11)火车通过300米长的隧道用15秒,通过180米长的桥梁用12秒,列车的车身长是多少米?(12)一列火车以相同的速度通过两个隧道,第一个隧道长316米,第二个隧道长140米,全车通过第一个隧道行了25秒钟,全车通过第二个隧道行了14秒钟。

五年级奥数.行程 .接送问题 (ABC级) 教师版

五年级奥数.行程 .接送问题 (ABC级) 教师版

接送问题知识框架一、校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。

二、常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个三、标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

例题精讲【例 1】某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来做报告,往返需用1小时.这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达.问:汽车速度是劳模步行速度的几倍?【考点】行程问题之接送问题【难度】☆☆☆【题型】解答【解析】车下午2时从学校出发,如图,学校工厂PC BA在C点与劳模相遇,再返回B点,共用时40分钟,由此可知,在从B到C用了40220÷=分钟,也就是2时20分在C点与劳模相遇.此时劳模走了1小时20分,也就是80分钟.另一方面,汽车走两个AB需要1小时,也就是从B点走到A点需要30分钟,而前面说走完BC需要20分钟,所以走完AC要10分钟,也就是说2BC AC=.走完AC,劳模用了80分钟;走完BC,汽车用了20分钟.劳模用时是汽车的4倍,而汽车行驶距离是劳模的2倍,所以汽车的速度是劳模速度的428⨯=倍.【答案】8倍【巩固】张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前分钟到厂。

【强烈推荐】小学五年级奥数趣味学习——火车行程问题

【强烈推荐】小学五年级奥数趣味学习——火车行程问题

火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。

人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。

例1:一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。

例2:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。

例3:一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。

解:这列客车每秒行驶:(860-620)÷(45-35)=240÷10=24(米)这列客车的车身长:24×45-860=1080-860=220(米)答:这列客车每秒行驶24米,车身长220米。

例4:某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?解:队伍长:1×(528÷4-1)=131(米)队伍行进的路程:25×16=400(米)桥长:400-131=269(米)答:这座桥长269米。

五年级奥数.行程 .发车问题 (ABC级 ).教师版

五年级奥数.行程 .发车问题 (ABC级 ).教师版

发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

还要理解参照物的概念有助于解题。

接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。

一、 常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s 全程=v ×t -结合植树问题数数。

(3) 当出现多次相遇和追及问题——柳卡知识框架发车问题【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【考点】行程问题之发车间隔 【难度】☆☆ 【题型】解答【解析】 这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【答案】15艘【巩固】 甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

小学五年级奥数题行程问题

小学五年级奥数题行程问题

小学五年级奥数题行程问题1.小学五年级奥数题行程问题张工程师每天早上8点准时被司机从家接到厂里。

一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。

这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。

答案解析:第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。

这道题重要是要求出汽车速度与工程师的速度之比。

2.小学五年级奥数题行程问题1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?答案1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。

2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。

行程问题五年级奥数题及答案

行程问题五年级奥数题及答案

行程问题五年级奥数题
及答案
work Information Technology Company.2020YEAR
行程问题
甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
解:要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V 人),
所以,V车=l5V人。

②火车头遇到甲处与火车头遇到乙处之间的距离是:
(8+5×6O)×(V车+V人)=308×16V人=4928V人。

③求火车头遇到乙时甲、乙二人之间的距离。

火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。

④求甲、乙二人过几分钟相遇?。

五年级奥数题及答案-发车问题

五年级奥数题及答案-发车问题

五年级奥数题及答案-发车问题
A、B是公共汽车的两个车站,从A站到B站是上坡路.每天上午8点到11点从A,B两站每隔30分同时相向发出一辆公共汽车.已知从A站到B站单程需105分,从B站到A站单程需80分.问:
⑴8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?
⑵ 从A站发车的司机最少能看到几辆从B站开来的汽车?
解答:方法一:⑴从A站发车的司机看到的车辆包括两类,一类是他自己发车以前,已经从B站出发但还没到达A站的所有车辆,也就是发车前80分钟内B站所发的所有车辆、第二类是他发车以后到他抵达B站这段时间内从B站发出的所有车辆,即发车后105分钟内从B站开出的所有车辆.也就是说在A站车辆出发前80分钟到出发后105分钟之间185分钟时间区间,B站发出的车,该司机都能看到.实际上这185分钟中,只有发车前60分、发车前30分、发车当时、发车后30分、发车后60分、发车后90分,有车辆从B站开出,所以8:30从A站发车的司机能看到8:00到10:00从B站发出的5辆车,而9:00从A站发车的司机能看到8:00到10:30从B站发出的6辆车.
⑵11点从A发车的司机只能看到11点前从B站开出但尚未到达A站的车,即10:00、10:30、11:00从B站开出的3辆车。

方法二:
⑴ 我们画时间路线图,通过看图发现从8:30出发的车所走路线与从B站发车路线有5个交点,所以8:30从A站发车的司机能看到8:00到10:00从B站发出的5辆车,同理9:00从A站发车的司机能看到8:00到10:30从B站发出的6辆车.
⑵11点从A发车的司机只能看到11点前从B站开出但尚未到达A站的车,即10:00、10:30、11:00从B站开出的3辆车。

小结:时间路线图是解决发车问题常用的方法,也是最直观的方法。

五年级奥数行程问题中的电梯与发车问题

五年级奥数行程问题中的电梯与发车问题

第12讲行程问题中的电梯和发车问题【知识导引】电梯问题大体上可以分2类:1.人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,共同走过了扶梯的总级数:(V人+V梯)×时间=扶梯级数2.人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。

这种情况人走过的级数大于电梯的总级数,(V人—V梯)×时间=扶梯总级数发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

【例题解析】例1 商场的自动扶梯匀速由下往上运行,两个小孩在运行的扶梯上由上往下走,男孩每分钟走30级,需6分钟到达楼下;女孩每分钟走25级,需8分钟到达楼下。

问:当该扶梯静止时,自动扶梯能看到的部分共有多少级【分析与解答】【巩固练习】1. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从阶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级【解答】2.自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级【解答】【品味数学】例2 甲、乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。

那么,自动扶梯有多少级露在外面【分析与解答】【巩固练习】1.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。

问扶梯露在外面的部分有多少级【解答】2. 哥哥沿向上移动的自动扶梯从顶向下走,共走了100级;此时妹妹沿向上的自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍。

那么,当自动扶梯静止时,自动扶梯能看到的部分有多少级【解答】【品味数学】例3 在地铁车站中,从站台到地面有一架向上的自动扶梯。

应用题板块-行程问题之发车间隔(小学奥数五年级)

应用题板块-行程问题之发车间隔(小学奥数五年级)

应用题板块-行程问题之发车间隔(小学奥数五年级)行程问题中,有一类问题类似公交车的运行机制,汽车在固定地点以固定时间间隔发出,从行人的角度看就很有规律的超过自身或与之相遇。

这类问题涉及到多个对象,并且在不断的运动变化,学生很难抓住其中的要点去解答。

今天分享的发车间隔问题,就是要抓住其中的本质特征,能够快速掌握答题要领。

【一、题型要领】1.发车间隔【基本概念】发车间隔问题是有关一组汽车与行人的问题,行人在路边行走,汽车以固定地点,固定时间间隔不断发车,汽车的运动速度是固定的。

从行人的角度看,不断有汽车和自身相遇或超过自身,下面我们结合示意图说明这两种情况。

下图是汽车和行人同向而行的情况(行人是从左往右走,汽车也是从左往右走),绿色表示行人,蓝色表示汽车A,红色表示汽车B,紫色表示汽车C。

汽车ABC等以固定时间间隔在左侧更远的位置不断发车,T1,T2,T3分别表示各个时刻行人和每辆汽车所处的位置。

可以看到在T1时刻,汽车A追上行人;T2时刻,汽车B追上行人;T3时刻,汽车C追上行人。

下图是汽车和行人反向而行的情况(行人是从左往右走,汽车是从右往左走),绿色表示行人,蓝色表示汽车A,红色表示汽车B,紫色表示汽车C。

汽车ABC等以固定时间间隔在右侧更远的位置不断发车,T1,T2,T3分别表示各个时刻行人和每辆汽车所处的位置。

可以看到在T1时刻,汽车A与行人相遇;T2时刻,汽车B与行人相遇;T3时刻,汽车C与行人相遇。

从行人的角度看,当汽车和自身同向而行,都有固定时间间隔超过自身;当汽车和自身反向而行,都有固定时间间隔和自身相遇。

题目则要求求出两辆车的发车间隔时间的问题,就是发车间隔问题。

在该问题中主要涉及到这样几个量:行人速度、汽车速度、前后相邻汽车间距、汽车发车时间间隔和相遇或追及事件的间隔等。

【基本公式】结合两张示意图,找到汽车间距的计算公式(1)汽车和行人同向而行,汽车间距= (汽车速度- 行人速度)* 追及事件时间间隔(2)汽车和行人反向而行,汽车间距= (汽车速度+ 行人速度)* 相遇事件时间间隔(3)汽车间距= 汽车速度* 汽车发车时间间隔【二、重点例题】例题1【题目】甲、乙两站从上午6时开始每隔8分钟同时相向发出一辆公共汽车,汽车单程运行需45分钟。

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题

小学五年级奥数趣味学习——火车行程问题火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。

人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。

例1:一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。

例2:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。

例3:一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。

解:这列客车每秒行驶:(860-620)÷(45-35)=240÷10=24(米)这列客车的车身长:24×45-860=1080-860=220(米)答:这列客车每秒行驶24米,车身长220米。

例4:某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?解:队伍长:1×(528÷4-1)=131(米)队伍行进的路程:25×16=400(米)桥长:400-131=269(米)答:这座桥长269米。

五年级奥数第27讲火车行程问题(教师版)

五年级奥数第27讲火车行程问题(教师版)

五年级奥数第27讲火车行程问题〈教师版〉教学目标清楚理解火车行程问题中的等量关系;能够透过分析实际问题,提炼出等量关系;培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;知识梳理一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥〈隧道〉、两列火车车头相遇到车尾相离等问题,是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:⒈火车过桥〈或隧道〉所用的时间=[桥长〈隧道长〉+火车车长]÷火车的速度;⒉两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

典例分析考点一:求时间例⒈一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?【解析】列车过桥,就是从车头上桥到车尾离桥止。

车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。

火车长桥长火车所走的路程解:〈800+150〉÷19=50〈秒〉答:全车通过长800米的大桥,需要50秒。

例⒉一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?【解析】本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。

依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。

解:〈1〉火车与小华的速度和:15+2=17〈米/秒〉〈2〉相距距离就是一个火车车长:119米〈3〉经过时间:119÷17=7〈秒〉答:经过7秒钟后火车从小华身边通过。

考点二:求隧道长例⒈一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

五年级发车问题奥数拓展

五年级发车问题奥数拓展

发车问题(奥数拓展)(1)一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图--尽可能多的列3个好使公式--结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题知识点典型例题例1、每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【练习1】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇______次?【练习2】A、B两地位于同一条河上,B地在A地下游100 千米处.甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航.水速为2米/秒,且两船在静水中的速度相同.如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是多少米每秒?【练习3】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到()辆从乙站开往甲站的公共汽车?例2、列车每天18:00由上海站出发,驶往乌鲁木齐,经过50小时到达,每天10:00从乌鲁木齐站有一列火车返回上海,所用时间也为50小时,为保证在上海与乌鲁木齐乘车区间内每天各有一辆火车发往对方站,至少需要准备这种列车多少列?【练习4】甲、乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是多少千米每小时?【练习5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【练习6】甲城的车站总是以20分钟的时间间隔向乙城发车,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车速度的四分之一,那么这位学生骑车的学生在每隔几分钟遇到一辆汽车?例3、在原题的前提下,正常运行后,每天18:00从上海站开往乌鲁木齐的火车在途中,将会遇到几趟回程车从对面开来?在车速不变的前提下,为了实现有五列车完成这一区段的营运任务,每天两站互发车辆时间间隔至少需要相差多长时间?(假定乘客上下车及火车检修时间为一小时)【练习7】某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔是多少分钟.【练习8】从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上沿着同一方向行走.甲每隔10分钟遇上一辆迎面开来的电车;乙每隔15分钟遇上迎面开来的一辆电车.且甲的速度是乙的速度的3倍,那么电车总站每隔几分钟开出一辆电车?【练习9】某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过几分钟后,停车场就没有出租汽车了?例4、某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【练习10】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15 分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【练习11】在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

五年级奥数行程问题中的电梯与发车问题

五年级奥数行程问题中的电梯与发车问题

第12讲行程问题中的电梯和发车问题【知识导引】电梯问题大体上可以分2类:1.人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,共同走过了扶梯的总级数:(V人+V梯)×时间=扶梯级数2.人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。

这种情况人走过的级数大于电梯的总级数,(V人—V梯)×时间=扶梯总级数发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

【例题解析】例1商场的自动扶梯匀速由下往上运行,两个小孩在运行的扶梯上由上往下走,男孩每分钟走30级,需6分钟到达楼下;女孩每分钟走25级,需8分钟到达楼下。

问:当该扶梯静止时,自动扶梯能看到的部分共有多少级【分析与解答】1【巩固练习】1. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从阶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级【解答】2.自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级【解答】【品味数学】例2甲、乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。

那么,自动扶梯有多少级露在外面【分析与解答】【巩固练习】1.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。

问扶梯露在外面的部分有多少级【解答】2. 哥哥沿向上移动的自动扶梯从顶向下走,共走了100级;此时妹妹沿向上的自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍。

那么,当自动扶梯静止时,自动扶梯能看到的部分有多少级【解答】【品味数学】3例3 在地铁车站中,从站台到地面有一架向上的自动扶梯。

五年级奥数行程问题中的电梯与发车问题

五年级奥数行程问题中的电梯与发车问题

第12讲行程问题中的电梯和发车问题【知识导引】电梯问题大体上可以分2类:1.人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,共同走过了扶梯的总级数:(V人+V梯)×时间=扶梯级数2.人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。

这种情况人走过的级数大于电梯的总级数,(V人—V梯)×时间=扶梯总级数发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

【例题解析】例1商场的自动扶梯匀速由下往上运行,两个小孩在运行的扶梯上由上往下走,男孩每分钟走30级,需6分钟到达楼下;女孩每分钟走25级,需8分钟到达楼下。

问:当该扶梯静止时,自动扶梯能看到的部分共有多少级【分析与解答】【巩固练习】1. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从阶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级【解答】2.自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级【解答】【品味数学】例2甲、乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。

那么,自动扶梯有多少级露在外面【分析与解答】【巩固练习】1.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。

问扶梯露在外面的部分有多少级【解答】2. 哥哥沿向上移动的自动扶梯从顶向下走,共走了100级;此时妹妹沿向上的自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍。

那么,当自动扶梯静止时,自动扶梯能看到的部分有多少级【解答】【品味数学】例3 在地铁车站中,从站台到地面有一架向上的自动扶梯。

五年级奥数行程问题中的电梯与发车问题

五年级奥数行程问题中的电梯与发车问题

第12讲行程问题中的电梯和发车问题【知识导引】电梯问题大体上可以分2类:1.人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,共同走过了扶梯的总级数:(V人+V梯)×时间=扶梯级数2.人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。

这种情况人走过的级数大于电梯的总级数,(V人—V梯)×时间=扶梯总级数发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

【例题解析】例1商场的自动扶梯匀速由下往上运行,两个小孩在运行的扶梯上由上往下走,男孩每分钟走30级,需6分钟到达楼下;女孩每分钟走25级,需8分钟到达楼下。

问:当该扶梯静止时,自动扶梯能看到的部分共有多少级?【分析与解答】【巩固练习】1. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从阶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级?【解答】2.自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?【解答】【品味数学】例2甲、乙两人在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;当甲走了36级到达顶部,而乙则走了24级到顶部。

那么,自动扶梯有多少级露在外面?【分析与解答】【巩固练习】1.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。

问扶梯露在外面的部分有多少级?【解答】2. 哥哥沿向上移动的自动扶梯从顶向下走,共走了100级;此时妹妹沿向上的自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍。

小学数学5年级奥数学习教案-第27讲-火车行程问题(教)

小学数学5年级奥数学习教案-第27讲-火车行程问题(教)

学科教师辅导讲义知识梳理一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。

在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。

如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。

解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。

典例分析考点一:求时间例1、一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?【解析】列车过桥,就是从车头上桥到车尾离桥止。

车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。

火车长桥长火车所走的路程解:(800+150)÷19=50(秒)答:全车通过长800米的大桥,需要50秒。

例2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?【解析】本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。

依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。

解:(1)火车与小华的速度和:15+2=17(米/秒)(2)相距距离就是一个火车车长:119米(3)经过时间:119÷17=7(秒)答:经过7秒钟后火车从小华身边通过。

考点二:求隧道长例1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。

这条隧道长多少米?【解析】先求出车长与隧道长的和,然后求出隧道长。

火车从车头进洞到车尾离洞,共走车长+隧道长。

这段路程是以每秒8米的速度行了40秒。

小学奥数:对“发车问题”的化归与优化

小学奥数:对“发车问题”的化归与优化

小学奥数:对“发车问题”的化归与优化小学奥数:对“发车问题”的化归与优化导语:“发车”是一个有趣的数学问题。

解决“发车问题”需要一定的策略和技巧。

以下是小编为大家精心整理的小学奥数:对“发车问题”的化归与优化,欢迎大家参考!为便于叙述,现将“发车问题”进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车。

他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b 分钟就有一辆公交车驶来。

问:公交车站每隔多少时间发一辆车?(假如公交车的速度不变,而且中间站停车的时间也忽略不计。

)一、把“发车问题”化归为“和差问题”因为车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等。

这个相等的距离也是公交车在发车间隔时间内行驶的路程。

我们把这个相等的距离假设为“1”。

根据“同向追及”,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差。

根据“相向相遇”,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b,1/b就是公交车和行人的速度和。

这样,我们把“发车问题”化归成了“和差问题”。

根据“和差问题”的解法:大数=(和+差)÷2,小数=(和-差)÷2,可以很容易地求出公交车的速度是(1/a+1/b)÷2。

又因为公交车在这个“间隔相等的时间”内行驶的路程是1,所以再用“路程÷速度=时间”,我们可以求出问题的答案,即公交车站发车的间隔时间是1÷【(1/a+1/b)÷2】=2÷(1/a+1/b)。

二、把“发车问题”优化为“往返问题”如果这个行人在起点站停留m分钟,恰好发现车站发n辆车,那么我们就可以求出车站发车的间隔时间是m÷n分钟。

但是,如果行人在这段时间内做个“往返运动”也未尝不可,那么他的“往返”决不会影响答案的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发车问题知识框架发车问题要注意的是两车之间的距离是不变的。

可以用线等距离连一些小物体来体会进车队的等距离前进。

还要理解参照物的概念有助于解题。

接送问题关键注意每队行走的总时间和总路程,是寻找比例和解题的关键。

一、常见发车问题解题方法间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。

(一)、在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。

(二)、在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔(三)、三个公式并理解汽车间距=相对速度×时间间隔二、综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。

用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡例题精讲【例 1】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【考点】行程问题之发车间隔【难度】☆☆【题型】解答【解析】这就是著名的柳卡问题.下面介绍的法国数学家柳卡·斯图姆给出的一个非常直观巧妙的解法.他先画了如下一幅图:这是一张运行图.在平面上画两条平行线,以一条直线表示哈佛,另一条直线表示纽约.那么,从哈佛或纽约开出的轮船,就可用图中的两组平行线簇来表示.图中的每条线段分别表示每条船的运行情况.粗线表示从哈佛驶出的轮船在海上的航行,它与其他线段的交点即为与对方开来轮船相遇的情况.从图中可以看出,某天中午从哈佛开出的一条轮船(图中用实线表示)会与从纽约开出的15艘轮船相遇(图中用虚线表示).而且在这相遇的15艘船中,有1艘是在出发时遇到(从纽约刚到达哈佛),1艘是到达纽约时遇到(刚好从纽约开出),剩下13艘则在海上相遇;另外,还可从图中看到,轮船相遇的时间是每天中午和子夜.如果不仔细思考,可能认为仅遇到7艘轮船.这个错误,主要是只考虑以后开出的轮船而忽略了已在海上的轮船.【答案】15艘【巩固】甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。

有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?【考点】行程问题之发车间隔【难度】☆☆【题型】解答【解析】提示:这名乘客7点01分到达乙站时,乙站共开出8辆车。

【答案】8辆。

【例 2】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【考点】行程问题之发车间隔【难度】☆☆☆【题型】解答【解析】方法一:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出.骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5840⨯=(分钟).方法二:先让学生用分析间隔的方式来解答:骑车人一共看到12辆车,他出发时看到的是15分钟前发的车,此时第4辆车正从甲发出.骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是5840⨯=(分钟).再引导学生用柳丁的运行图的方式来分析:第一步:在平面上画两条平行线分别表示甲站与乙站.由于每隔5分钟有一辆电车从甲站出发,所以把表示甲站与乙站的直线等距离划分,每一小段表示5分钟.第二步:因为电车走完全程要15分钟,所以连接图中的1号点与P点(注意:这两点在水平方向上正好有3个间隔,这表示从甲站到乙站的电车走完全程要15分钟),然后再分别过等分点作一簇与它平行的平行线表示从甲站开往乙站的电车.第三步:从图中可以看出,要想使乙站出发的骑车人在途中遇到十辆迎面开来的电车,那么从P 点引出的粗线必须和10条平行线相交,这正好是图中从2号点至12号点引出的平行线.从图中可以看出,骑车人正好经历了从P点到Q点这段时间,因此自行车从乙站到甲站用了⨯=(分钟).对比前一种解法可以看出,采用运行图来分析要直观得多!5840【答案】40分钟【巩固】A、B是公共汽车的两个车站,从A站到B站是上坡路。

每天上午8点到11点从A,B两站每隔30分同时相向发出一辆公共汽车。

已知从A站到B站单程需105分,从B站到A站单程需80分。

问:(1)8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?(2)从A站发车的司机最少能看到几辆从B站开来的汽车?【考点】行程问题之发车间隔【难度】☆☆☆【题型】解答【解析】方法一:A站到B站单程需105分钟,这个时间里,从B发出多少班车,就能看到多少车共有4辆(同时发的,30分后,60分后,90分后发的).至外,A站发车时,从B站发出的还在路上的车也能看到.共有2辆(30分前发的,60分前发的.这时90分前发的车已到A站了).所以最多能看到6辆.最少的是最后一班车所能看到的60分前发的,30分前发的和与他同时发的车.共有3辆。

方法二:柳卡图解题,下面的运行图所示,实线段表示从A站开往B站的车,虚线段表示从B站开往A 站的车,交点表示相遇.从图中可以看出,最多的是9点和9点半发车的司机,分别遇到6辆;最少的是11点发车的司机,遇到3辆.【答案】(1)8:30从A站发车的司机能看到5辆从B站开来的汽车9:00从A站发车的司机能看到6辆从B站开来的汽车(2)从A站发车的司机最少能看到3辆从B站开来的汽车【例 3】甲城的车站总是以20分钟的时间间隔向乙城发车,,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车速度的四分之一,那么这位学生骑车的学生在每隔多少分钟遇到一辆汽车?【考点】行程问题之发车间隔 【难度】☆☆ 【题型】解答【解析】 汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车【答案】16分钟【巩固】 甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?【考点】行程问题之发车间隔 【难度】☆☆☆ 【题型】解答【解析】 先看平路上的情况,汽车每分钟行驶汽车平路上汽车间隔的1/20,那么每分钟自行车在平路上行驶汽车平路上间隔的1/80,所以在平路上自行车与汽车每分钟合走汽车平路上间隔的1/20+1/80=1/16,所以该学生每隔16分钟遇到一辆汽车,对于上坡、下坡的情况同样用这种方法考虑,三种情况中该学生都是每隔16分钟遇到一辆汽车.【答案】16分钟【例 4】某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?【考点】行程问题之发车间隔【难度】☆☆☆ 【题型】解答 【解析】 设电车的速度为每分钟x 米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程如下:()()757.27512x x +⨯=-⨯,解得300x =,即电车的速度为每分钟300米,相当于每小时18千米.相同方向的两辆电车之间的距离为:()30075122700-⨯=(米),所以电车之间的时间间隔为:27003009÷=(分钟).【答案】9分钟【巩固】某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?【考点】行程问题之发车间隔【难度】☆☆☆【题型】解答【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

是人与电车的相遇与追及问题,他们的路程和(差)即为相邻两车间距离,设两车之间相距S,根据公式得()10minS V V=+⨯人车,()15min S V V=-⨯人车,那么()10()15 V V V V+⨯=-⨯人人车车,解得5V V=人车,所以发车间隔T =1()10()1051212V VV V VSV V V V+⨯+⨯====车车人车车车车车车【答案】12【例 5】在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。

已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?【考点】行程问题之发车间隔【难度】☆☆☆【题型】解答【解析】解:设车速为a,小光的速度为b,则小明骑车的速度为3b。

根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍。

小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。

【答案】8分。

【巩固】从电车总站每隔一定时间开出一辆电车。

甲与乙两人在一条街上沿着同一方向步行。

甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

那么电车总站每隔多少分钟开出一辆电车?【考点】行程问题之发车间隔【难度】☆☆☆【题型】解答【解析】这类问题一般要求两个基本量:相邻两电车间距离、电车的速度。

甲与电车属于相遇问题,他们的路程和即为相邻两车间距离,根据公式得()10minS V V=+⨯乙甲,类似可得()10.25minS V V=+⨯乙甲,那么()10.25()10 V V V V+⨯=+⨯乙甲车车,即(60)10.25(82)10V V+⨯=+⨯车车,解得=820V车米/分,因此发车间隔为9020÷820=11分钟。

相关文档
最新文档