高考数学一轮复习 第八章 立体几何 8.1.2 表面积 理

合集下载

届数学一轮复习第八章立体几何与空间向量第2节空间几何体的表面积和体积教学案含解析

届数学一轮复习第八章立体几何与空间向量第2节空间几何体的表面积和体积教学案含解析

第2节空间几何体的表面积和体积考试要求了解球、棱柱、棱锥、台的表面积和体积的计算公式。

知识梳理1。

多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和。

2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+V=S底h(棱柱和圆柱)2S底锥体(棱锥和圆锥)S表面积=S侧+S底V=错误!S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+错误!)h球S=4πR2V=错误!πR3[常用结论与微点提醒]1。

正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=错误!a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=错误!a。

2。

长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。

3。

正四面体的外接球与内切球的半径之比为3∶1。

诊断自测1。

判断下列结论正误(在括号内打“√”或“×")(1)锥体的体积等于底面面积与高之积。

()(2)两个球的体积之比等于它们的半径比的平方。

()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=错误!a。

()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2。

(新教材必修第二册P120T5改编)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A。

33 B.错误! C.错误!D。

错误!解析由S=4πR2=4π,得R=1,故2×1=3a,得a=错误!。

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积

2023年高考数学(理科)一轮复习课件——空间几何体的表面积和体积
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确.
索引
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径
为( B )
A.1 cm
B.2 cm
C.3 cm
3 D.2 cm
解析 设圆锥的底面圆的半径为r,母线长为l, 因为侧面展开图是一个半圆, 所以πl=2πr,即l=2r, 所以πr2+πrl=πr2+πr·2r=3πr2=12π,解得r=2.
得的截面是面积为8的正方形,则该圆柱的表面积为( B )
A.12 2π
B.12π
C.8 2π
D.10π
解析 由题意知,圆柱的轴截面是一个面积为 8 的正方形,则圆柱的高与底面 直径均为 2 2. 设圆柱的底面半径为 r,则 2r=2 2,得 r= 2. 所以圆柱的表面积 S 圆柱=2πr2+2πrh=2π( 2)2+2π× 2×2 2=4π+8π=12π.
索引
训练1 (1)(2020·新高考Ⅱ卷)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别
为棱BB1,AB的中点,则三棱锥A1-D1MN的体积为____1____.
解析 如图,由正方体棱长为2及M,N分别为BB1,AB 的中点, 得 S△A1MN=2×2-2×12×2×1-21×1×1=32, 又易知D1A1为三棱锥D1-A1MN的高,且D1A1=2, ∴VA1-D1MN=VD1-A1MN=13·S△A1MN·D1A1=31×32×2=1.
角度1 简单几何体的体积
例1 (1)祖暅是我国南北朝时代的伟大科学家,他提出 的“幂势既同,则积不容异”称为祖暅原理,利用
该原理可以得到柱体的体积公式V柱体=Sh,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图

高考数学(理)一轮总复习课件:第八章 立体几何 8-专题研究

高考数学(理)一轮总复习课件:第八章 立体几何 8-专题研究

【解析】 由题意作图,如图所示.由题知圆柱 1 的底面半径r= 2 ,球的半径R=1,设圆柱的高为h.则 由R= h 2 2 h 2 1 2 2 (2) +r 得1 =( 2 ) +( 2 ) ,解得h= 3 ,所
2
3π 以该圆柱的体积为V=πr h= .故选B. 4 【答案】 B
微专题2:锥体的外接球 (1)求棱长为1的正四面体外接球的体积为________.
(2)(2019· 长春模拟)已知三棱柱ABC- A1B1C1的底面是边长 为 6 的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表
面积为12π,则该三棱柱的体积为________.
【解析】 设球半径为R,上,下底面中心设为M,N,由题 意,外接球球心为MN的中点,设为O,则OA=R,由4πR2=12π, 得R=OA= 3 ,又易得AM= 2 ,由勾股定理可知,OM=1,所 3 以MN=2,即棱柱的高h=2,所以该三棱柱的体积为 4 ×( 6)2×2 =3 3. 【答案】 3 3
思考题2 (1)(2019· 山西八校联考一)已知一个球的表面 上有A, B,C三个点,且AB=AC=BC=2 ABC的距离为1,则该球的表面积为( A.20π C.10π ) 3 ,若球心到平面
B.15πD.2π
【解析】 设球心为O,△ABC的中心为O′,因为AB= AC 2 =BC=2 3 ,所以AO′= ×3=2,因为球心到平面ABC的距离 3 为1,所以OO′=1,所以 AO= 22+12 = 5 ,故该球的表面积S =4π×(OA)2=20π.故选A. 【答案】 A
2 6 a 6 6 2 2 2 +r=SE= 3 a,R -r =CE = 3 ,解得R= 4 a,r= 12 a.
专 题 讲 解
题型一

2023年高考数学总复习历年真题题型归纳与模拟预测8-1空间几何体的结构、表面积和体积带讲解

2023年高考数学总复习历年真题题型归纳与模拟预测8-1空间几何体的结构、表面积和体积带讲解

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第八章立体几何与空间向量8.1 空间几何体的结构、表面积和体积立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,保持“一小一大”或“两小一大”的格局.多以选择题或者填空题的形式考查空间内点线面的关系为主,空间几何体的体积或表面积的计算.题型一.空间几何体的结构与直观图1.(2019•新课标Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有26个面,其棱长为√2−1.【解答】解:该半正多面体共有8+8+8+2=26个面,设其棱长为x,则x+√22x+√22x=1,解得x=√2−1.故答案为:26,√2−1.2.(2021•全国模拟)如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CD B.CH∥BE C.DG⊥BH D.BG⊥DE【解答】解:还原正方体直观图如图,可知AE 与CD 为异面直线,故选项A 不正确; 由EH ∥=BC ,可得CH ∥BE ,故选项B 正确;正方形中易得DG ⊥平面BCH ,所以有DG ⊥BH ,故选项C 正确; 因为BG ∥AH ,且DE ⊥AH ,所以BG ⊥DE ,故选项D 正确. 故选:BCD .3.(2018•新课标Ⅱ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .3√34B .2√33C .3√24D .√32【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大, 此时正六边形的边长√22, α截此正方体所得截面最大值为:6×√34×(√22)2=3√34. 故选:A .4.(2020•新课标Ⅱ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14B .√5−12C .√5+14D .√5+12【解答】解:设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有:{ℎ2=12aℎ′ℎ2=ℎ′2−(a 2)2, 因此有h ′2﹣(a2)2=12ah ′⇒4(ℎ′a)2﹣2(ℎ′a)﹣1=0⇒ℎ′a=√5+14(负值−√5+14舍去); 故选:C .5.(2020•山东)已知直四棱柱ABCD ﹣A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为√2π2. 【解答】解:由题意直四棱柱ABCD ﹣A 1B 1C 1D 1的棱长均为2,∠BAD =60°.可知:D 1B 1=2,上下底面是菱形,建立如图所示的平面直角坐标系,设P (x ,y )为半径√5的球面上的点,过P 作PE 垂直B 1C 1的垂直,E 为垂足,则D 1E 2=D 1B 12+x 2﹣2•D 1B 1•x cos60°=x 2+4﹣2x . 由题意可知D 1P =√5. 可得:5=x 2+4﹣2x +(2﹣y )2. 即(x ﹣1)2+(y ﹣2)2=2,所以P 在侧面BCC 1B 1的轨迹是以B 1C 1的中点为圆心,半径为√2的圆弧.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为:14×2√2π=√2π2.故答案为:√2π2.题型二.空间几何体的表面积与体积1.(2018•新课标Ⅱ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .12√2πB .12πC .8√2πD .10π【解答】解:设圆柱的底面直径为2R ,则高为2R , 圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形, 可得:4R 2=8,解得R =√2,则该圆柱的表面积为:π⋅(√2)2×2+2√2π×2√2=12π. 故选:B .2.(2021•新高考Ⅱ)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A .2B .2√2C .4D .4√2【解答】解:由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2π⋅√2=π⋅l ,解得l =2√2, 所以该圆锥的母线长为2√2. 故选:B .3.(2018•新课标Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为5√15,则该圆锥的侧面积为 40√2π .【解答】解:圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin ∠ASB =√1−(78)2=√158.△SAB 的面积为5√15,可得12SA 2sin ∠ASB =5√15,即12SA 2×√158=5√15,即SA =4√5. SA 与圆锥底面所成角为45°,可得圆锥的底面半径为:√22×4√5=2√10.则该圆锥的侧面积:12×4√10π×4√5=40√2π.故答案为:40√2π.4.(2018•新课标Ⅱ)在长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A .8B .6√2C .8√2D .8√3【解答】解:长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2, AC 1与平面BB 1C 1C 所成的角为30°, 即∠AC 1B =30°,可得BC 1=ABtan30°=2√3.可得BB 1=√(2√3)2−22=2√2.所以该长方体的体积为:2×2×2√2=8√2. 故选:C .4.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A .20+12√3B .28√2C .563D .28√23【解答】解:如图ABCD ﹣A 1B 1C 1D 1为正四棱台,AB =2,A 1B 1=4,AA 1=2. 在等腰梯形A 1B 1BA 中,过A 作AE ⊥A 1B 1,可得A 1E =4−22=1, AE =√AA 12−A 1E 2=√4−1=√3. 连接AC ,A 1C 1,AC =√4+4=2√2,A 1C 1=√16+16=4√2, 过A 作AG ⊥A 1C 1,A 1G =4√2−2√22=√2, AG =√AA 12−A 1G 2=√4−2=√2, ∴正四棱台的体积为:V =S上+S 下+√S 上⋅S 下3×ℎ=22+42+√22×423×√2 =28√23.故选:D .5.(2019•天津)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 π4.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分, 由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于12;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v =sh =π(12)2×1=π4;故答案为:π47.(2019•新课标Ⅱ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ﹣A 1B 1C 1D 1挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm .3D 打印所用原料密度为0.9g /cm 3.不考虑打印损耗,制作该模型所需原料的质量为 118.8 g .【解答】解:该模型为长方体ABCD ﹣A 1B 1C 1D 1,挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm , ∴该模型体积为:V ABCD−A 1B 1C 1D 1−V O ﹣EFGH =6×6×4−13×(4×6−4×12×3×2)×3 =144﹣12=132(cm 3),∵3D 打印所用原料密度为0.9g /cm 3,不考虑打印损耗, ∴制作该模型所需原料的质量为:132×0.9=118.8(g ). 故答案为:118.8.8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S =2πr 2(1﹣cosα)(单位:km 2),则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【解答】解:由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则OP =36000+6400=424000,那么cosα=640042400=853; 卫星信号覆盖的地球表面面积S =2πr 2(1﹣cosα), 那么,S 占地球表面积的百分比为2πr 2(1−cosα)4πr 2=45106≈42%.故选:C .题型三.外接球与内切球1.(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为9π2.【解答】解:设正方体的棱长为a , ∵这个正方体的表面积为18, ∴6a 2=18,则a 2=3,即a =√3,∵一个正方体的所有顶点在一个球面上, ∴正方体的体对角线等于球的直径, 即√3a =2R , 即R =32,则球的体积V =43π•(32)3=9π2;故答案为:9π2.2.(2017•新课标Ⅱ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, ∴该圆柱底面圆周半径r =√12−(12)2=√32, ∴该圆柱的体积:V =Sh =π×(√32)2×1=3π4.故选:B .3.(2021•甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√34【解答】解:因为AC ⊥BC ,AC =BC =1, 所以底面ABC 为等腰直角三角形,所以△ABC 所在的截面圆的圆心O 1为斜边AB 的中点, 所以OO 1⊥平面ABC ,在Rt △ABC 中,AB =√AC 2+BC 2=√2,则AO 1=√22, 在Rt △AOO 1中,OO 1=√OA 2−AO 12=√22,故三棱锥O ﹣ABC 的体积为V =13⋅S △ABC ⋅OO 1=13×12×1×1×√22=√212. 故选:A .4.(2020•新课标Ⅱ)已知△ABC 是面积为9√34的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A .√3B .32C .1D .√32【解答】解:由题意可知图形如图:△ABC 是面积为9√34的等边三角形,可得√34AB 2=9√34, ∴AB =BC =AC =3,可得:AO 1=23×√32×3=√3, 球O 的表面积为16π,外接球的半径为:R ;所以4πR 2=16π,解得R =2,所以O 到平面ABC 的距离为:√4−3=1. 故选:C .5.(2015•新课标Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O ﹣ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC =V C ﹣AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π, 故选:C .6.(2017•新课标Ⅱ)已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 36π .【解答】解:三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ﹣ABC 的体积为9,可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得13×12×2r ×r ×r =9,解得r =3.球O 的表面积为:4πr 2=36π. 故答案为:36π.7.(2019•新课标Ⅱ)已知三棱锥P ﹣ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .8√6πB .4√6πC .2√6πD .√6π【解答】解:如图,由P A =PB =PC ,△ABC 是边长为2的正三角形,可知三棱锥P ﹣ABC 为正三棱锥, 则顶点P 在底面的射影O 1为底面三角形的中心,连接BO 1 并延长,交AC 于G , 则AC ⊥BG ,又PO 1⊥AC ,PO 1∩BG =O 1,可得AC ⊥平面PBG ,则PB ⊥AC , ∵E ,F 分别是P A ,AB 的中点,∴EF ∥PB ,又∠CEF =90°,即EF ⊥CE ,∴PB ⊥CE ,得PB ⊥平面P AC , ∴正三棱锥P ﹣ABC 的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D =√PA 2+PB 2+PC 2=√12(PA 2+PB 2+PB 2+PC 2+PA 2+PC 2) =√12(AB 2+BC 2+AC 2)=√12(22+22+22)=√6. 半径为√62,则球O 的体积为43π×(√62)3=√6π.故选:D .8.(2020•新课标Ⅱ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 √23π . 【解答】解:因为圆锥内半径最大的球应该为该圆锥的内切球, 如图,圆锥母线BS =3,底面半径BC =1, 则其高SC =√BS 2−BC 2=2√2, 不妨设该内切球与母线BS 切于点D , 令OD =OC =r ,由△SOD ∽△SBC ,则OD OS=BC BS,即2√2−r =13,解得r =√22,V =43πr 3=√23π,故答案为:√23π.题型四.空间几何体中的最值问题1.(2018•新课标Ⅱ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D ﹣ABC 体积的最大值为( ) A .12√3B .18√3C .24√3D .54√3【解答】解:△ABC 为等边三角形且面积为9√3,可得√34×AB 2=9√3,解得AB =6, 球心为O ,三角形ABC 的外心为O ′,显然D 在O ′O 的延长线与球的交点如图: O ′C =23×√32×6=2√3,OO ′=√42−(2√3)2=2, 则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:13×√34×63=18√3.故选:B .2.(2016•新课标Ⅱ)在封闭的直三棱柱ABC ﹣A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4πB .9π2C .6πD .32π3【解答】解:∵AB ⊥BC ,AB =6,BC =8, ∴AC =10.故三角形ABC 的内切圆半径r =6+8−102=2, 又由AA 1=3,故直三棱柱ABC ﹣A 1B 1C 1的内切球半径为32, 此时V 的最大值43π⋅(32)3=9π2,故选:B .3.(2017•新课标Ⅱ)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 4√15cm 3 .【解答】解法一:由题意,连接OD ,交BC 于点G ,由题意得OD ⊥BC ,OG =√36BC , 即OG 的长度与BC 的长度成正比, 设OG =x ,则BC =2√3x ,DG =5﹣x ,三棱锥的高h =√DG 2−OG 2=√25−10x +x 2−x 2=√25−10x , S △ABC =12×√32×(2√3x)2=3√3x 2, 则V =13S △ABC ×ℎ=√3x 2×√25−10x =√3⋅√25x 4−10x 5, 令f (x )=25x 4﹣10x 5,x ∈(0,52),f ′(x )=100x 3﹣50x 4,令f ′(x )≥0,即x 4﹣2x 3≤0,解得x ≤2, 则f (x )≤f (2)=80,∴V ≤√3×√80=4√15cm 3,∴体积最大值为4√15cm 3. 故答案为:4√15cm 3.解法二:连接OD ,交BC 于H ,如图,设BC =2x ,则0<2x <5√3,OH =x √3,DH =5x√3, ∴V =13×√34×(2x)2×√(5−x √3)2−(x √3)2=√33×x 2×√25−10x√3=√33×√x ⋅x ⋅x ⋅x 10√3(5√32−x) =√33⋅√x ⋅x ⋅x ⋅x ⋅52√3√3−4x) ≤√33⋅√52√3(10√35)5=4√15,当x =2√3时,取“=”. ∴体积最大值为4√15cm 3. 故答案为:4√15cm 3.一.单选题(共8小题)1.(2020•云南模拟)已知正△ABC 的顶点都在球O 的球面上,正△ABC 的边长为2√3.若球心O 到△ABC 所在平面的距离为√5,则球O 的表面积为( ) A .36πB .32πC .36√3πD .32√3π【解答】解;设正△ABC 的外接圆半径r ,由正弦定理可得,2√3sin60°=2r ,故r =2,由球的性质可知,R 2=r 2+d 2=4+5=9, 所以球的表面积S =4π×9=36π. 故选:A .2.(2020•全国一模)如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体A ﹣BEF 的体积为( )A .13B .23C .1D .43【解答】解:∵四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2, ∴以D 为原点,DA 为x 轴,DC 为y 轴,DE 为z 轴,建立空间直角坐标系, A (2,0,0),B (2,2,0),E (0,0,2),F (0,2,1), BA →=(0,﹣2,0),BF →=(﹣2,0,1),BE →=(﹣2,﹣2,2), BA →⋅BF →=0,∴S △ABF =12×|BA →|×|BF →|=12×2×√5=√5,设平面ABF 的法向量n →=(x ,y ,z ),则{n →⋅BA →=−2y =0n →⋅BF →=−2x +z =0,取x =1,得n →=(1,0,2), ∴E 到平面ABF 的距离d =|n →⋅BE →||n →|=2√5,∴四面体A ﹣BEF 的体积为: V A ﹣BEF =V E ﹣ABF =13×S △ABF ×d =13×√52√5=23. 故选:B .3.(2015•山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:12π⋅2−13×12π×1=5π3. 故选:C .4.(2021•泗县校级模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的体积为( )A .√2π3B .√3π3C .4π3D .2π【解答】解:设圆锥的底面半径为r ,高为h ,则2πr =2π3×3, ∴r =1,h =√32−1=2√2, 设内切球的半径为R ,则2√2−R=13,∴R =√22,V =43πR 3=43π(√22)3=√23π,故选:A .5.我国古代名著《张丘建算经》中记载:“今有方锥下方二丈,高三丈,欲斩末为方亭,令上方六尺,问:斩高几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底边长为六尺,则截去的正四棱锥的高是多少?如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是( )(注:1丈=10尺) A .1946立方尺 B .3892立方尺 C .7784立方尺D .11676立方尺【解答】解:如图所示,正四棱锥P ﹣ABCD 的下底边长为二丈,即AB =20尺, 高三丈,即PO =30尺;截去一段后,得正四棱台ABCD ﹣A ′B ′C ′D ′,且上底边长为A ′B ′=6尺, 则有PO′PO=PO′30=620,∴PO ′=9可得OO ′=21,所以该正四棱台的体积是V =13×21×(202+20×6+62)=3892(立方尺). 故选:B .6.(2019•濮阳一模)已知正△ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【解答】解:设正△ABC 的中心为O 1,连结O 1A ∵O 1是正△ABC 的中心,A 、B 、C 三点都在球面上,∴O 1O ⊥平面ABC ,∵球的半径R =2,球心O 到平面ABC 的距离为1,得O 1O =1, ∴Rt △O 1OA 中,O 1A =√OA 2−OO 12=√3.又∵E 为AB 的中点,△ABC 是等边三角形,∴AE =AO 1cos30°=32. ∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小, ∴当截面与OE 垂直时,截面圆的面积有最小值. 此时截面圆的半径r =32, 可得截面面积为S =πr 2=9π4. 故选:C .7.(2014•陈仓区校级一模)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,P A =PC =√2m ,若在这个四棱锥内放一个球,则此球的最大半径是 (1−√22)m .【解答】解:根据题意,球的最大半径是四棱锥P ﹣ABCD 的内切球半径,设这个半径为r ∵PD ⊥底面ABCD ,且PD =m ,底面ABCD 是边长为m 的正方形, ∴△P AD 和△PCD 都是直角边长为m 的等腰直角三角形, 可得S △P AD =S △PCD =12m 2∵Rt △P AB 中,P A =√2m ,AB =m ,∴S △P AB =12P A •AB =√22m 2,同理可得S △PBC =√22m 2 又∵S ABCD =m 2,∴四棱锥P ﹣ABCD 的表面积为S 表=S △P AD +S △PCD +S △P AB +S △PBC +S ABCD =(2+√2)m 2 因此,四棱锥P ﹣ABCD 的体积V =13×S 表×r =13(2+√2)m 2r ∵PD ⊥底面ABCD ,且PD =m ,底面ABCD 是边长为m 的正方形, ∴四棱锥P ﹣ABCD 的体积V =13×S ABCD ×PD =13m 3, 由此可得13(2+√2)m 2r =13m 3,解之得r =12+√2m =(1−√22)m 因此,在四棱锥P ﹣ABCD 内放一个球,该球的最大半径是(1−√22)m . 故答案为:(1−√22)m8.(2019秋•中原区校级月考)在长方体ABCD ﹣A 1B 1C 1D 1中,AD =DD 1=1,AB =√3,E ,F ,G 分别是AB ,BC ,CC 1的中点,P 是底面ABCD 内一个动点,若直线D 1P 与平面EFG 平行,则△BB 1P 面积的最小值为( )A .√34B .1C .√32D .12【解答】解:如图,补全截面EFG 为截面EFGHQR ,易知平面ACD 1∥平面EFGHQR ,设BR ⊥AC 于点R , ∵直线D 1P ∥平面EFG ,∴P ∈AC ,且当P 与R 重合时,BP =BR 最短,此时△PBB 1的面积最小, 由等积法:12BR ×AC =12BA ×BC 得BR =√32,又BB 1⊥平面ABCD ,∴BB 1⊥BP ,△PBB 1为直角三角形, 故S△BB 1P=12BB 1×BP =√34,故选:A .二.多选题(共4小题)9.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E 、F 分别是棱AA 1、CC 1的中点,过点E 、F 的平面分别与棱BB 1、DD 1交于点G 、H ,以下四个结论正确的是( )A .正方体外接球的表面积为3πB .平面EGFH 与平面ABCD 所成角的最大值π4C .四棱锥C 1﹣EGFH 的体积为定值D .点B 1到平面EGFH 的距离的最大值为√63【解答】解:对于A ,因为正方体ABCD ﹣A 1B 1C 1D 1的棱长为1, 所以正方体的体对角线为√1+1+1=√3, 故正方体外接球的直径2R =√3, 所以正方体外接球的表面积为4πR 2=3π, 故选项A 正确;对于B ,设平面EGFH 与平面ABCD 所成的角为θ, 由面面平行的性质定理可得,EG ∥FH ,EH ∥GF , 则四边形EGFH 为平行四边形,又直角梯形CBGF 和直角梯形ABGE 全等, 则EG =FG ,所以四边形EGFH 为菱形,且GH ⊥EF ,因为平面EGFH 在底面上的射影为四边形ABCD , 所以由面积射影公式可得cosθ=SABCD S EGFH=112×√2⋅GH=√2GH , 因为√2≤GH ≤√3, 所以√63≤cosθ≤1, 则平面EGFH 与平面ABCD 所成角的最大值不是π4, 故选项B 错误;对于C ,四棱锥C 1﹣EGFH 的体积为V =2V C 1−EFG =2V E−GFC 1=2×13×12×12=16, 故选项C 正确;对于D ,设BG =x ,x ∈[0,1],V B 1−EFG =V E−B 1FG =13×12×1×(1−x)×1, 设点B 1到平面EGFH 的距离为d ,则V B 1−EFG =13⋅d ×12×√2×1+(12−x)2−(√22)2, 故d =√2×√12+(12−x)2,令t =1﹣x ,则t ∈[0,1], 所以d =−t+34=1√2×√34⋅1t 2−1t+1,故当t =1,即x =0时,d 取得最大值√63, 所以点B 1到平面EGFH 的距离的最大值为√63, 故选项D 正确. 故选:ACD .10.棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别为棱AD 、DD 1的中点,G 为面对角线B 1C 上一个动点,则( )A .三棱锥A 1﹣EFG 的体积为定值B .线段B 1C 上存在点G ,使平面EFG ∥平面A 1BC 1C .当CG →=34CB 1→时,直线EG 与BC 1所成角的余弦值为√1313D .当G 为B 1C 的中点时,三棱锥A 1﹣EFG 的外接球半径为54 【解答】解:对于A ,由于△A 1EF 的面积为定值,G 到平面ADD 1A 1,即点D 到平面A 1EF 的距离为定值, 所以三棱锥A 1﹣EFG 的体积为定值,故选项A 正确;对于B ,以点D 为坐标原点,建立如图所示的空间直角坐系,则A 1(2,0,2),B (2,2,0),C 1(0,2,2),C (0,2,0),E (1,0,0),F (0,0,1),B 1(2,2,2),所以A 1B →=(0,2,−2),A 1C 1→=(−2,2,0),设平面A 1BC 1的法向量为n →=(x ,y ,z),故{n →⋅A 1B →=2y −2z =0n →⋅A 1C 1→=−2x +2y =0,令x =1,则y =z =1,故n →=(1,1,1),设CG →=tCB 1→=t(2,0,2)=(2t ,0,2t),0≤t ≤1,则DG →=DC →+CG →=(0,2,0)+(2t ,0,2t)=(2t ,2,2t ),所以EF →=(−1,0,1),EG →=(2t −1,2,2t),设平面EFG 的法向量为m →=(a ,b ,c),则{m →⋅EF →=−a +c =0m →⋅EG →=(2t −1)a +2b +2tc =0, 令a =1,则c =1,b =1−4t 2, 若平面EFG ∥平面A 1BC 1,则11=1−4t 21=11,4t =﹣1,故t 无解, 故选项B 错误;对于C ,当CG →=34CB 1→时,t =34,G(32,2,32),所以EG →=(12,2,32),BC 1→=(−2,0,2),设直线EG 与BC 1所成的角为θ,则cosθ=|cos <EG →,BC 1→>|=|EG →⋅BC 1→||EG →||BC 1→|=√264×2√2=√1313, 所以直线EG 与BC 1所成角的余弦值为√1313,故选项C 正确;对于D ,G 为B 1C 的中点时,A 1(2,0,2),E (1,0,0),F (0,0,1),G (1,2,1),设三棱锥A 1﹣EFG 的外接球的球心为O (x ,y ,z ),半径为r ,则{ r 2=(x −2)2+y 2+(z −2)2r 2=(x −1)2+y 2+z 2r 2=x 2+y 2+(z −1)2r 2=(x −1)2+(y −2)2+(z −1)2,解得r 2=116≠(54)2,故选项D 错误.故选:AC .11.在正方体ABCB ﹣A 1B 1C 1D 1中,P ,Q 分别为棱BC 和棱CC 1的中点,则下列说法正确的是()A .异面直线QP 与A 1C 1所成的角为45°B .A 1D ⊥平面AQPC .平面APQ 截正方体所得截面为等腰梯形D .点M 在线段BC 1上运动,则三棱锥A ﹣MPQ 的体积不变【解答】解:对于A ,连接A 1B 、BC 1,如图1所示:因为P ,Q 分别为棱BC 和棱CC 1的中点,所以PQ ∥BC 1,所以∠A 1C 1B 是异面直线QP 与A 1C 1所成的角,又A 1C 1=A 1B =BC 1,所以∠A 1C 1B =60°,即异面直线QP 与A 1C 1所成的角为60°,选项A 错误; 对于B ,建立空间直角坐标系,如图2所示:设正方体的棱长为1,则D (0,0,0),A (1,0,0),P (12,1,0),A 1(1,0,1), 所以DA 1→=(1,0,1),AP →=(−12,1,0),所以DA 1→•AP →=−12,所以DA 1→与AP →不垂直,即DA 1与AP 不垂直, 所以A 1D 与平面AQP 不垂直,选项B 错误;对于C ,连接AD 1、D 1Q ,则四边形APQD 1是平面APQ 截正方体所得的截面,如图3所示:连接BC 1,则BC 1∥AD 1,且BC 1=AD 1,又PQ ∥BC 1,且PQ =12BC 1,所以PQ ∥AD 1,且PQ =12AD 1,所以四边形APQD 1是梯形,又AP =D 1Q ,所以四边形APQD 1是等腰梯形,选项C 正确;对于D ,如图4所示,设正方体的棱长为a ,因为PQ ∥BC 1,所以点M 到PQ 的距离为√24a ,PQ =√22a ,点A 到平面MPQ 的距离为a ,所以三棱锥A ﹣MPQ 的体积为V =13×12×√22a ×√24a ×a =a 324,是定值,选项D 正确. 故选:CD .12.如图,正方形ABCD 与正方形DEFC 边长均为1,平面ABCD 与平面DEFC 互相垂直,P 是AE 上的一个动点,则( )A .CP 的最小值为√32B .当P 在直线AE 上运动时,三棱锥D ﹣BPF 的体积不变C .PD +PF 的最小值为√2−√2D .三棱锥A ﹣DCE 的外接球表面积为3π【解答】解:对于A ,连接DP ,CP ,易得CP =√DP 2+CD 2=√DP 2+1≥√12+1=√62,故A 错误;对于B ,P 在直线AE 上运动时,△PBF 的面积不变,D 到平面PBF 的距离也不变,故三棱锥D ﹣BPF 的体积不变,故B 正确;对于C ,如图,将△ADE 翻折到与平面ABFE 共面,则当D 、P 、F 三点共线时,PD +PF 取得最小值(√22)2+(√22+1)2=√2+√2,故C 错误;对于D ,将该几何体补成正方体,则外接球半径为√32,外接球表面积为3π,故D 正确. 故选:BD .。

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。

高三数学一轮复习 8.2 空间几何体的表面积与体积

高三数学一轮复习 8.2 空间几何体的表面积与体积

考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,

2021高三统考数学一轮学案:第8章第2讲空间几何体的表面积和体积含解析

2021高三统考数学一轮学案:第8章第2讲空间几何体的表面积和体积含解析

2021高三统考北师大版数学一轮学案:第8章第2讲空间几何体的表面积和体积含解析第2讲空间几何体的表面积和体积基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是01侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=错误!2πrlS圆锥侧=错误!πrlS圆台侧=错误!π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=错误!Sh锥体S表面积=S侧+S底V=错误!错误!Sh(棱锥和圆锥)台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+S上S下)h球S=错误!4πr2V=错误!错误!πr31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=错误!a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=错误!a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.(3)直棱柱的外接球半径可利用棱柱的上下底面平行,借助球的对称性,可知球心为上下底面外接圆圆心连线的中点,再根据勾股定理求球的半径.(4)设正四面体的棱长为a,则它的高为错误!a,内切球半径r=错误!a,外接球半径R=错误!a.正四面体的外接球与内切球的半径之比为3∶1。

1.(2019·福州二模)设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为() A.100π B.错误! C.错误! D.错误!答案D解析由题意知切面圆的半径r=4,球心到切面的距离d=3,所以球的半径R=r2+d2=错误!=5,故球的体积V=错误!πR3=错误!π×53=错误!,即该西瓜的体积为错误!。

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

2020届山东高三理科数学一轮复习课件第八章§8.1空间几何体的表面积和体积

2020届山东高三理科数学一轮复习课件第八章§8.1空间几何体的表面积和体积

×60=10.
评析 本题通过长方体考查体积之间的关系,通过体积公式,找出底面面积与高的关系,不需要 求出具体的底面面积和高是多少.
6.(2019天津文,12,5分)已知四棱锥的底面是边长为 2 的正方形,侧棱长均为 5 .若圆柱的一个
底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的
体积为
.
答案
4
解析 本题考查圆柱、正四棱锥的性质,通过计算圆柱的底面半径、高、体积考查学生的空
间想象能力,体现了直观想象的核心素养.
如图所示,圆柱的高|O1O|= 12 |PO|= 12 PA2

AO2
= 1 5
2
1
=1,圆柱的底面半径r= 1 |AO|= 1 ,所以圆
2
2
柱的体积V=πr2·|O1O|=π× 14 ×1= 4 .
则2R= 3 × 2 ,R= 6 ,∴球O的体积V= 4 πR3= 6 π.故选D.
2
3
解法二:令PA=PB=PC=2x(x>0),则EF=x,连接FC,由题意可得FC= 3 .在△PAC中,cos∠APC=
4x2 4x2 4 = 2x2 1 .
2 4x2
2x2
在△PEC中,EC2=PC2+PE2-2PC·PEcos∠EPC=4x2+x2-2×2x·x·2 x22x2 1 =x2+2,在△FEC中,∵∠CEF=
32
又制作该模型所需的原料密度为0.9 g/cm3, 故制作该模型所需原料的质量为0.9×132=118.8(g).
易错警示 计算被挖去的四棱锥底面面积时,容易误认为四边形HEFG为正方形,由勾股定理 求得HE= 22 32 = 13 ,错认为底面面积为13.

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解

专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。

2021届高考数学一轮总复习第8章立体几何第2节空间几何体的表面积与体积跟踪检测文含解析

2021届高考数学一轮总复习第8章立体几何第2节空间几何体的表面积与体积跟踪检测文含解析

第八章 立体几何第二节 空间几何体的表面积与体积A 级·基础过关|固根基|1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A .4π B .3π C .2πD .π解析:选C 由几何体的形成过程知,所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故选C.2.(2020届惠州市高三第二次调研)某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,则该几何体的体积为( )A.2π3+16 B.2π6+12 C.2π6+16D.2π3+12解析:选C 由三视图可知该几何体是一个半球上面有一个三棱锥,其体积V =13×12×1×1×1+12×4π3×⎝ ⎛⎭⎪⎫223=2π6+16,故选C. 3.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2解析:选C 由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其中AB =AA 1=2,BC =AC =2,∠ACB =90°,其直观图如图所示,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+42,故选C.4.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 设球的半径为R ,则由题意知,球被正方体上底面截得的圆的半径为4 cm ,球心到截面圆的距离为(R -2)cm ,则R 2=(R -2)2+42,解得R =5,所以球的体积为4π×533=500π3(cm 3).5.(2019届辽宁五校协作体联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A .36B .48C .64D .72解析:选B由几何体的三视图可得,几何体如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V D 1-EDF =V F -DD 1E =13×12×1=16.答案:167.(2019届福建市第一学期高三期末)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积为________.解析:如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.答案:16π8.已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC=π2,则过A ,B ,C ,D 四点的球的表面积为________.解析:连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD⊥AD,CD⊥AD,BD⊥CD,将折叠后的图形补成一个长、宽、高分别是 3,1,1的长方体,其体对角线长即为外接球的直径,2R =1+1+3=5,故该三棱锥外接球的半径是R =52,其表面积为4πR 2=5π. 答案:5π9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解:(1)交线围成的正方形EHGF 如图所示.(2)如图,作EM⊥AB,垂足为M ,则AM =A 1E =4,EB 1=16-4=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH = EH 2-EM 2=6,则AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. B 级·素养提升|练能力|11.已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .3π+6B .6π+6C .3π+12D .12解析:选A 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥, 则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA⊥平面ABC ,PA =2,∠ABC=120°,则球O 的体积的最小值为( )A.773π B.2873π C.19193π D.76193π 解析:选B 设AB =c ,BC =a ,AC =b ,由题可得,3=13×S △ABC ×2,解得S △ABC =332,因为∠ABC=120°,S △ABC =332=12acsin 120°,所以ac =6,由余弦定理可得,b 2=a 2+c 2-2accos 120°=a 2+c2+ac≥2ac+ac =3ac =18,当且仅当a =c 时取等号,此时b min =32,设△ABC 外接圆的半径为r ,则b sin 120°=2r(b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6,如图,设O 1为△ABC 外接圆的圆心,过O 作OD⊥PA,垂足为D ,R 为球O 的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,设OO 1=h ,在Rt △OO 1A 中,R 2=r 2+OO 21=r 2+h 2,在Rt △OPD 中,R 2=r 2+(2-h)2,联立得h =1.当r min =6时,R 2min =6+1=7,R min =7,故球O 体积的最小值为43πR 3min =43π×(7)3=287π3,故选B. 13.榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.解析:由三视图可知,榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案:24+54π54π+3614.(2020届合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1∥平面A1MC.(1)求证:AM=BM;(2)若△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,△A1MC的面积为42,求三棱柱ABC-A1B1C1的体积.解:(1)证明:如图,连接AC1交A1C于N,连接MN.∵BC1∥平面A1MC,BC1⊂平面ABC1,平面ABC1∩平面A1MC=MN,∴BC1∥MN.由三棱柱ABC-A1B1C1知,四边形ACC1A1为平行四边形,∴N为AC1的中点.∴M为AB的中点,即AM=BM.(2)连接A1B,∵△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,∴△ABC,△AA1B,△AA1C是全等的等边三角形,由(1)知,M为AB的中点,∴A1M⊥AB,CM⊥AB.∵A1M∩CM=M,∴AB⊥平面A1MC.设AB =2a ,则A 1M =CM =3a ,A 1C =2a ,∴△A 1MC 的面积为12·2a ·2a =2a 2=42,解得a =2,即AM =2,∴V 三棱锥A -A 1MC =13·S △A 1MC ·AM =823,从而V 三棱柱ABC -A 1B 1C 1=6·V 三棱锥A -A 1MC =16 2.。

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。

2021版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积教案文新人教A版

2021版高考数学一轮复习第八章立体几何第2讲空间几何体的表面积与体积教案文新人教A版

第2讲 空间几何体的表面积与体积一、知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h 台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 31.正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R ,(1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ;(3)若球与正方体的各棱相切,则2R=2a .2.长方体共顶点的三条棱长分别为a ,b,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 二、习题改编1.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为 cm.解析:由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm).答案:22.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为 .解析:设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23.答案:23一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区(1)锥体的高与底面不清楚致误; (2)不会分类讨论致误.1.如图,长方体ABCD ­A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E ­BCD 的体积是 .解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V E ­BCD=13×12ab ×12c =112abc =10. 答案:102.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是 .解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2020·湖南省五市十校联考)某四棱锥的三视图如图所示,其侧视图是等腰直角三角形,俯视图的轮廓是直角梯形,则该四棱锥的各侧面面积的最大值为( )A .8B .4 5C .8 2D .12 2【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个底面为直角梯形,高为4的四棱锥,如图,其中侧棱PA ⊥平面ABCD ,PA =4,AB =4,BC =4,CD =6,所以AD =25,PD =6,PB =42,连接AC ,则AC =42,所以PC =43,显然在各侧面面积中△PCD 的面积最大,又PD =CD =6,所以PC 边上的高为62-⎝ ⎛⎭⎪⎫4322=26,所以S △PCD =12×43×26=122,故该四棱锥的各侧面面积的最大值为122,故选D.【答案】 (1)B (2)D空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2020·江西七校第一次联考)一个半径为1的球对称削去了三部分,其俯视图如图所示,那么该立体图形的表面积为( )A .3πB .4πC .5πD .6π解析:选C.由题中俯视图可知该球被平均分成6部分,削去了3部分,剩余的3部分为该几何体,所以该立体图形的表面积为2×π×12+3×π×12=5π,故选C.2.(2020·辽宁丹东质量测试(一))一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为 .解析:设圆锥的底面圆半径为r ,因为圆锥的轴截面是面积为1的等腰直角三角形,所以等腰直角三角形的斜边长为2r ,斜边上的高为r ,所以12×2r ×r =1,解得r =1,圆锥的母线长l =12+12=2,圆锥的侧面积为πrl =2π. 答案:2π空间几何体的体积(多维探究) 角度一 求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A .8B .6C .4D .2(2)将一张边长为12 cm 的正方形纸片按如图(1)所示将阴影部分的四个全等的等腰三角形裁去,余下部分沿虚线折叠并拼成一个有底的正四棱锥,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A.3236 cm 3B.6436 cm 3C.3232 cm 3D .6432 cm 3【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B.(2)设折成的四棱锥的底面边长为a cm ,高为h cm ,则h =32a cm ,由题设可得四棱锥侧面的高等于四棱锥的底面边长,所以12a +a =12×22⇒a =42,所以四棱锥的体积V =13×(42)2×32×42=6463cm 3,故选B. 【答案】 (1)B (2)B简单几何体体积的求法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.角度二 求组合体的体积(2020·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4【解析】 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×(1×1-14×π×12)+2×(1×1)+14×2π×1×1=4.故选D.【答案】 D(1)处理体积问题的思路(2)求体积的常用方法 直接法 对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算 等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.(2019·高考北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .解析:如图,由三视图可知,该几何体为正方体ABCD ­A 1B 1C 1D 1去掉四棱柱B 1C 1GF ­A 1D 1HE 所得,其中正方体ABCD ­A 1B 1C 1D 1的体积为64,VB 1C 1GF ­A 1D 1HE =(4+2)×2×12×4=24,所以该几何体的体积为64-24=40.答案:402.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.解析:长方体ABCD ­A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O ­EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O ­EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(师生共研)(1)若直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,且AB =3,AC =4,AB⊥AC ,AA 1=12,则球O 的表面积为 .(2)(一题多解)(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解析】 (1)将直三棱柱补形为长方体ABEC ­A 1B 1E 1C 1,则球O 是长方体ABEC ­A 1B 1E 1C 1的外接球.所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.(2)法一:由题意得圆柱的高为四棱锥高的一半,底面圆的直径为以四棱锥侧棱的四个中点为顶点的正方形的对角线,易求得圆柱的底面圆的直径为1,高为1,所以该圆柱的体积V =π×⎝ ⎛⎭⎪⎫122×1=π4.法二:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以该圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 【答案】 (1)169π (2)π4处理球的“切”“接”问题的求解策略解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.正四棱锥P ­ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C.8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12 AB 2+BC 2=12(22)2+(22)2=2,所以PO =PA 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC ­A 1B 1C 1,则球O 的体积与正三棱柱ABC ­A 1B 1C 1的体积的比值为 .解析:设球O 半径为R ,正三棱柱ABC ­A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC ­A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC ­A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——数学文化与空间几何体(2020·甘肃、青海、宁夏3月联考)汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为( )A .32B .40 C.32103D .40103【解析】 将三视图还原成如图所示的几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积V =12π×22×4+13×12π×22×4=323π,因为圆周率的平方除以16等于58,即π216=58,所以π=10,所以V =32103.故选C.【答案】 C本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2020·安徽六安一中模拟(四))我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的半椭球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,短半轴长为1,长半轴长为3的椭球体的体积是 .解析:因为S 圆=S 环总成立,所以半椭球体的体积为πb 2a -13πb 2a =23πb 2a ,所以椭球体的体积V =43πb 2a .因为椭球体的短半轴长为1,长半轴长为3. 所以椭球体的体积V =43πb 2a =43π×12×3=4π.答案:4π[基础题组练]1.(2020·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.(2020·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝ ⎛⎭⎪⎫12×2×2×3= 2.故选B.3.(2020·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x ,3,1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.4.(2020·辽宁大连第一次(3月)双基测试)我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何 ”.羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47解析:选C.由三视图可知,该几何体的直观图如图所示,其中平面ABCD ⊥平面ABEF ,CD =2,AB =6,EF =4,等腰梯形ABEF 的高为3,等腰梯形ABCD 的高为4,等腰梯形FECD的高为9+16=5,三个梯形的面积之和为2+62×4+4+62×3+2+42×5=46,故选C.5.(2020·辽宁沈阳东北育才学校五模)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π解析:选B.将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆半径为R ,则有2πR =3×2π3,所以R =1.设圆锥的内切球半径为r ,圆锥的高为h ,内切球球心必在圆锥的高线上,因为圆锥的母线长为3,所以h =9-1=22,所以有rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B. 6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .解析:设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案:77.(2020·沈阳质量监测)某四棱锥的三视图如图所示,则该四棱锥的侧面积是 .解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ­ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.答案:4+4 28.(2020·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为 .解析:记所有棱长都是2的三棱锥为P ­ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ­ABC 的体积V =13S △ABC·OP =13×34×(2)2×233=13.答案:139.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面积=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. 10.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P ­A 1B 1C 1D 1,下部的形状是正四棱柱ABCD ­A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P ­A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD ­A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.[综合题组练]1.(2019·高考全国卷Ⅰ)已知三棱锥P­ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π解析:选D.因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P­ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P­ABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.2.如图,正方体ABCD­A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论不正确的是( )A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A­BEF的体积为定值D.四面体ACDF的体积为定值解析:选B.对于A,如图1,AB1∥DC1,易证AB1∥平面C1BD,同理AD1∥平面C1BD,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,A 正确;对于B ,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝ ⎛⎭⎪⎫3222=364,点C 到平面AEF的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A ­CEF=V C ­AEF=13×364×d =64d 为定值,所以B 错误;对于C ,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A ­BEF=13×32×d =12d 为定值,C 正确;对于D ,如图4,四面体ACDF 的体积为V A ­CDF=V F ­ACD=13×12×3×3×3=92为定值,D 正确.3.(2020·东北师大附中、重庆一中等校联合模拟)若侧面积为4π的圆柱有一外接球O ,当球O 的体积取得最小值时,圆柱的表面积为 .解析:设圆柱的底面圆半径为r ,高为h , 则球的半径R =r 2+⎝ ⎛⎭⎪⎫h 22.因为球的体积V =4π3R 3,故V 最小当且仅当R 最小.圆柱的侧面积为2πrh =4π,所以rh =2.所以h 2=1r,所以R =r 2+1r 2≥2,当且仅当r 2=1r2.即r =1时取等号,此时k 取最小值,所以r =1,h =2,圆柱的表面积为2π+4π=6π.答案:6π4.(2020·新疆第一次毕业诊断及模拟测试)如图,A 1B 1C 1D 1是以ABCD 为底面的长方体的一个斜截面,其中AB =4,BC =3,AA 1=5,BB 1=8,CC 1=12,求该几何体的体积.解:过A 1作A 1E ⊥BB 1于点E , 作A 1G ⊥DD 1于点G , 过E 作EF ⊥CC 1于点F ,过D 1作D 1H ⊥CC 1于点H ,连接EH ,GF , 因为平面ABB 1A 1∥平面DCC 1D 1, 所以A 1B 1∥D 1C 1.因为AA 1=BE =5,所以EB 1=8-5=3,C 1H =EB 1=3,GD 1=HF =12-5-3=4,则几何体被分割成一个长方体ABCD ­A 1EFG ,一个斜三棱柱A 1B 1E ­D 1C 1H 和一个直三棱柱A 1D 1G ­EHF .故该几何体的体积为V =3×4×5+12×3×4×4+12×3×4×3=102.。

高考数学复习第八章立体几何8.2空间几何体的表面积体积文市赛课公开课一等奖省优质课获奖PP

高考数学复习第八章立体几何8.2空间几何体的表面积体积文市赛课公开课一等奖省优质课获奖PP
解析:圆台的母线长为 2-12+12= 2,所以所求侧面积 S=π(1+2)× 2=3 2π.
8/44
[典题 1] (1)[2017·湖北七校联考] 如图,在正四棱柱 ABCD-A1B1C1D1 中,AB=1,AA1=2,点 P 是平面 A1B1C1D1 内的一个动点,则三棱锥 P-ABC 的正视图与俯视图的面积 之比的最大值为( B )
c.正四面体的外接球与内切球的半径之比为 3∶1.
33/44
[典题 4] (1)已知三棱锥 S-ABC 的所有顶点都在球 O 的
球面上,△ABC 是边长为 1 的正三角形,SC 为球 O 的直径, 且 SC=2,则此棱锥的体积为( A )
2 A. 6
3 B. 6
2 C. 3
2 D. 2
34/44
[ 解 析 ] 设 △ ABC 外 接 圆 的 圆 心 为 O1 , 则 |OO1| =
§8.2 空间几何体表面积、体积
1/44
考纲展示► 1.掌握与三视图相结合求解柱、锥、台、球的表面积和体积, 了解计算公式. 2.会处理棱柱、棱锥与球组合体的“接”“切”问题.
2/44
考点 1 几何体的表面积
3/44
1.柱、锥、台和球的侧面积和体积
面积
圆柱
S 侧=__2_π_r_h___
圆锥
S 侧=___π_rl____
6/44
侧面展开图:关注展开图的形状. (1)若圆锥的底面半径为 1,高为 3,则圆锥的侧面积等于 ___2_π____. 解析:圆锥的母线长为 32+12=2,故所求侧面积 S=12 ×2×π×2=2π.
7/44
(2)圆台的上下底面圆的半径分别为 1,2,高为 1,则圆台的 侧面积等于__3__2_π___.

2023年人教版高考数学总复习第一部分考点指导第八章立体几何第一节基本立体图形

2023年人教版高考数学总复习第一部分考点指导第八章立体几何第一节基本立体图形

3π 27
·x3,
V球 V圆锥
4 =
273π·x3
=75m.06
,解得 m=33.36 克.
33π·x3
5.(求几何体的体积)某校开展社会实践活动,学生到工厂制作一批景观
灯箱(如图,在直四棱柱上加工,所有顶点都在棱上),灯箱最上面是正
方形,与之相邻的四个面都是全等的正三角形,灯箱底部是边长为 a 的
【解析】选 D.如图,过 C′作 C′M′∥y′轴,交 x′轴于 M′,
在△C′M′B′中,因为 B′C′与 x′轴垂直且 B′C′=2 2 ,
∠C′M′B′=45°,所以 C′M′=siBn′C45′ ° =2
2 2
=4.由斜二测
2
画法知 CM=2C′M′=8,所以△ABC 的边 AB 上的高为 8.
棱柱、棱锥、棱台的侧面分别是平行四边形、三角形、梯形. 判断棱台的方法:侧棱延长后是否交于一点.
2.旋转体的结构特征
(1)圆柱:矩形绕其__任__一__边__所在的直线旋转一周形成的轨迹围成的几何体. (2)圆锥:直角三角形绕其_直__角__边__所在的直线旋转一周形成的轨迹围成的几何体. (3)圆台:直角梯形绕其_垂__直__于__底___边__的__腰__所在的直线旋转一周形成的轨迹围成的
表面积 S 表面积=S 侧+2S 底
锥体(棱锥和圆锥)
S 表面积=S 侧+S 底
台体(棱台和圆台) S 表面积=S 侧+S 上+S 下

S=_4_π_R_2_
体积
V=_S_h_ V=13 _S_h_
V=13 (S 上+S 下
+ S上S下 )h
4 R3
V=__3_______
1.必修二 P106T8

2023年《师说》高考数学一轮复习 课件第8章 立体几何与空间向量

2023年《师说》高考数学一轮复习 课件第8章 立体几何与空间向量
S表面积=S侧+S底
台体(棱台
和圆台)
S表面积=S侧+S上+S下

2
4πR
S=________
体积
S底·h
V=________
【微点拨】
(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与
平面几何知识来解决.
(2)求几何体的体积时,要注意利用分割、补形与等积法.
(3)柱体、锥体、台体体积之间的关系:
按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积
的关系:S直观图=
2
S原图形.
4
[巩固训练2]
如图是一个水平放置的直观图、它是一个底角为45;腰和上底均为1,
2+ 2
下底为 2+1的等腰梯形,那么原平面图形的面积为________.
解析:∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,
“对棱相等”模型是指三棱锥的相对的两条棱相等,应用数学建模
素养,构建长方体,将该三棱锥放入该长方体中,使三棱锥的顶点与
长方体的顶点重合,将该三棱锥的外接球转化为该长方体的外接球,
从而求出该外接球的半径,如图.
2

3
[典例2] 在平行四边形ABCD中,AB=2 2,BC=3,且cos A=
沿BD将△BDC折起,使点C到达点E处,且满足AE=AD,则三棱锥E
a
3.设正方体的棱长为a,则它的内切球半径r= ,外接球半径R=
2
3
a.
2
4.设长方体的长、宽、高分别为a,b,c,则它的外接球半径R=
a2 +b2 +c2
.
2
5.设正四面体的棱长为a,则它的高为
接球半径R=

2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件

2025届高考一轮复习《基本立体图形、简单几何体的表面积与体积》课件
可知 AC1⊥O1M,O1M=0.6,那么 tan∠CAC1=CACC1=OAO1M1 ,
高考一轮总复习•数学
第27页
即 12=A0O.61, 解得 AO1=0.6 2, 根据对称性可知圆柱的高为 3-2×0.6 2≈1.732-1.2×1.414=0.035 2>0.01, 所以能够被整体放入正方体内,故 D 符合题意. 故选 ABD.
高考一轮总复习•数学
第26页
设 OE∩AC=E,可知 AC= 2,CC1=1,AC1= 3,OA= 23,
那么
tan∠CAC1=CACC1=OAOE,即
1 =OE, 23
2
解得 OE= 46,且 462=38=294>295=0.62,
即 46>0.6,
所以以 AC1 为轴可能对称放置底面直径为 1.2 m 圆柱,若底面直径为 1.2 m 的圆柱与正 方体的上下底面均相切,设圆柱的底面圆心为 O1,与正方体的下底面的切点为 M,
圆台
体积 V= Sh =πr2h
V=
1 3Sh
=13πr2h=13πr2
l2-r2
V=13(S 上+S 下+ S上S下)h
=13π(r21+r22+r1r2)h
第11页
高考一轮总复习•数学
名称 棱柱 棱锥 棱台 球
体积 V= Sh
1 V= 3Sh V=13(S 上+S 下+ S上S下)h V=43πR3
= 直观图
2 4S
原图形.
高考一轮总复习•数学
以三角形为例说明原因:
第36页
S
直观图=12B′C′·O′A′·sin
高考一轮总复习•数学
第24页
解析:(1)由圆台定义知,以直角梯形垂直于底边的腰为旋转轴,其余三边旋转一周形 成的面围成的旋转体是圆台,故 A 错误;

高中数学一轮复习 第八章 立体几何

高中数学一轮复习 第八章 立体几何

第八章 立体几何考点1 空间几何体的结构及其三视图与直观图1.(2016·全国Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+365B.54+185C.90D.812.(2016·全国Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π3.(2016·北京,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12 D.14.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π5.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A.大于5 B.等于5 C.至多等于4 D.至多等于36.(2015·北京,5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5B.4+ 5C.2+2 5D.57.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3 B.12 cm 3 C.323cm 3 D.403 cm 38.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.89.(2014·福建,2)某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体 D.三棱柱10.(2014·江西,5)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )11.(2014·湖北,5)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②12.(2014·新课标全国Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.413.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.考点2 空间几何体的表面积和体积1.(2016·全国Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6π D.32π32.(2016·全国Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π3.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+44.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 25.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π6.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π7.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π8.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.159.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169π C.4(2-1)3π D.12(2-1)3π10.(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.7211.(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm 2B.129 cm 2C.132 cm 2D.138 cm 212.(2014·大纲全国,8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4 B.16π C.9π D.27π413.(2014·安徽,7)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.1814.(2014·陕西,5)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3 B.4π C.2π D.4π315.(2014·湖北,8)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.35511316.(2014·新课标全国Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.1317.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.18.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.19.(2015·江苏,9)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.20.(2014·江苏,8)设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________.考点3 点、线、面的位置关系1. (2016·全国Ⅰ,11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.32 B.22 C.33 D.132.(2015·安徽,5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面3.(2014·辽宁,4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(2015·浙江,13)如图,三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.考点4 线面平行的判定与性质1.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.2.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.3.(2015·江苏,16)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.5.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.6.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.考点5 线面垂直的判定与性质1.(2016·浙江,2)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n2.(2015·浙江,8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′CDB的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α3.(2014·广东,7)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定4.(2016·全国Ⅱ,14)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________(填写所有正确命题的编号).5.(2016·全国Ⅰ,18)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥EFDC;(2)求二面角E-BC-A的余弦值.6.(2016·江苏,16)如图,在直三棱柱ABC-A 1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.7.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E =D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.8.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.9.(2014·新课标全国Ⅰ,19)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角AA1B1C1的余弦值.10.(2014·广东,18)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角DAFE的余弦值.11.(2014·辽宁,19)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角EBFC的正弦值.12.(2014·江西,19)如图,四棱锥P-ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.13.(2014·湖南,19)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.考点6 空间向量与立体几何1.(2014·广东,5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)2.(2014·四川,8)如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎡⎦⎤33,1 B.⎣⎡⎦⎤63,1 C.⎣⎡⎦⎤63,223 D.⎣⎡⎦⎤223,13.(2014·新课标全国Ⅱ,11)直三棱柱ABCA 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.224.(2014·江西,10)如图,在长方体ABCD-A 1B 1C 1D 1中,AB =11,AD =7,AA 1=12.一质点从顶点A 射向点E (4,3,12),遇长方体的面反射(反射服从光的反射原理),将第i -1次到第i 次反射点之间的线段记为L i (i =2,3,4),L 1=AE ,将线段L 1,L 2,L 3,L 4竖直放置在同一水平线上,则大致的图形是( )5.(2015·四川,14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.6.(2016·全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上, AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.7.(2015·陕西,18)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.8.(2015·天津,17)如图,在四棱柱ABCD-A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点. (1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.9.(2015·安徽,19)如图所示,在多面体A1B1D1-DCBA,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角E-A1D-B1的余弦值.10.(2015·重庆,19)如图,三棱锥P ABC中,PC⊥平面ABC,PC=3,∠ACB=π2.D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角APDC的余弦值.11.(2015·北京,17)如图,在四棱锥AEFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1) 求证:AO⊥BE;(2) 求二面角F AEB的余弦值;(3)若BE⊥平面AOC,求a的值.12.(2015·四川,18)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角AEGM 的余弦值.13.(2015·江苏,22)如图,在四棱锥P ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.14.(2015·山东,17)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.15.(2014·陕西,17)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角θ的正弦值.16.(2014·天津,17)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC 的中点.(1)证明:BE⊥DC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BF⊥AC,求二面角F ABP的余弦值.17.(2014·四川,18)三棱锥A-BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A-NP-M的余弦值;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.思维辨析 (1)圆柱的侧面展开图是矩形.( √ ) (2)三棱锥的侧面展开图是一个三角形.( × ) (3)多面体的表面积等于各个面的面积之和.( √ )
2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )

A.32 C.48
B.16+16 2 D.16+32 2
解析 由三视图知,四棱锥是底面边长为 4,高为 2 的正四棱锥,∴四棱锥的表面积是 16+4×12×4×2 2 =16+16 2,故选 B.
(2)若圆锥的底面半径为 r,母线长为 l,则 S 侧= πrl ,S 表= πr(r+l).
(3)若圆台的上、下底面半径分别为 r′,r,则 S 侧= π(r+r′)l ,S 表= π(r2+r′2+r′l+rl). (4)若球的半径为 R,则它的表面积 S= 4πR2 .
注意点 侧面积与表面积的区别与联系 (1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. (2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图 的平面图形的特点来求解相关问题. (3)组合体的表面积应注意重合部分的处理.
3.一个几何体的三视图如图所示,则该几何体的表面积为___3_8____.
解析 由三视图可知该几何体为一个长方体从中间挖掉了一个圆柱,长方体表面积为 2×(4×3+3×1 +4×1)=38,圆柱的侧面积为 2π,上下两个底面积和为 2π,所以该几何体的表面积为 38+2π-2π=38.
撬法·命题法 解题法
第八章 立体几何
第1讲 空间几何体的三视图、表面积和 体积
考点二 表面积
撬点·基础点 重难点
1 多面体的侧面积和表面积 因为多面体的各个面都是平面,所以多面体的侧面积就是 侧面展开图的面积 ,表面积是 侧面积 与 底面积的和.
2 旋转体的侧面积和表面积
(1)若圆柱的底面半径为 r,母线长为 l,则 S 侧= 2πrl ,S 表= 2πr(r+l).
相关文档
最新文档