水泥水化机理
水泥水化硬化机理-课件

影响因素: 影响因素: 1,熟料的矿物组成:28天内各矿物的水化速度 熟料的矿物组成: 熟料的矿物组成 28天内各矿物的水化速度 AF> 为C3A>C4AF>C3S>C2S或C3A> C3S > AF> 含量大,水化快; C4AF>C2S即: C3A含量大,水化快; C3S含 量大,水化慢. 量大,水化慢. 水灰比: 影响水泥浆的结构和孔隙率; 2,水灰比:1)影响水泥浆的结构和孔隙率;2) 影响水化速度. 影响水化速度. 水泥细度: 细度越细, 3,水泥细度:1)细度越细,反应物的表面积 越大,反应速度越快; 磨细的过程中, 越大,反应速度越快;2)磨细的过程中,使 晶格扭曲程度增大,晶格缺陷增加, 晶格扭曲程度增大,晶格缺陷增加,使水化 反应易于进行 养护温度:温度越高,速度越快. 4,养护温度:温度越高,速度越快.温度对水 化速度的影响主要在早期, 化速度的影响主要在早期,对后期影响不 .;温度低于 10℃水泥基本不发生水化 温度低于水泥基本不发生水化. 大.;温度低于-10℃水泥基本不发生水化. 外加剂:促凝剂,早强剂, 5,外加剂:促凝剂,早强剂,缓凝剂
第八章
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化? 水泥加水以后为什么可以凝结硬化?
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒
水泥+ 水泥+水(流体)-可塑性浆体(塑性体)-固体 流体)-可塑性浆体(塑性体)-固体 )-可塑性浆体 )-
水化速度 水化产物
综上所述,水泥的水化反应过程如下: 水泥的水化反应过程如下: 水泥的水化反应过程如下 水泥加水后, C3S ,C3A ,C4AF均很快水化, 同时石膏迅速溶解,形成 Ca(OH)2与 CaSO4 的饱 和溶液,水化产物首先出现六方板状的Ca(OH)2 与针状的AFt相以及无定形的C-S-H.之后,由于 不断生成AFt相,SO42- 不断减少,继而形成AFm AFm 相及C-A-H晶体和C4(AF)晶体.
第二篇第二章第五节-水泥水化

• (3)当C3A尚未完全水化而石膏已经耗尽时,
C3A水化所成的C4AH13与先前形成的钙矾石依下式 反应,生成单硫型水化硫铝酸钙(AFm):
3CaO Al 2O3 3CaSO4 32H 2O 2(CaO Al 2O3 13H 2O) 3(3CaO Al 2O3 CaSO4 12H 2O) 2Ca(OH) 20H 2O
C3S水化过程
衰减期
稳定期
School of Highway, Chang’an University
长安大学公路学院
• I 诱导前期 • 急剧反应,出 现第一个放热 峰,时间很短, 在15min以内 结束。
School of Highway, Chang’an University
长安大学公路学院
阶段C:相应于在C3A周围形成立方状C3AH6水化物,水化反应变慢。
School of Highway, Chang’an University
长安大学公路学院
C3A在有石膏、Ca(OH)2存在的条件下水化
• (1)在液相的氧化钙浓度达到饱和时
3CaO Al 2O3 Ca(OH) 2 12H 2O 4CaO Al 2O3 13H 2O
School of Highway, Chang’an University 长安大学公路学院
C3A在纯水中的水化过程分为3个阶段:(P54图2-2-5-7)
阶段A: 相应于C3A迅速溶解以及六方片状水化产物形成,第一放热峰 出现,水化反应速度下降;
阶段B:相应于C3AH6立方体的形成,使六方片状水化物层破坏,第 二放热峰出现,水化反应重新加速;
阶段IV:石膏消耗完毕,C3A与钙矾石继续反应生成单硫型铝酸钙(Afm),出现第二 个放热高峰。
水泥水化

2CaO SiO 2 nH2O xCaO SiO 2 yH2O (2 x)Ca(OH)2
18
C2S的水化反应过程及水化产物和C3S极为相似,也有诱导期、加速期等过 程。C—S—H的形态与C3S水化所生成的 C—S—H相比只有很小的差别,但生成的 Ca(OH)2晶体较大,而且数量少些。水化物的表面积变化基本上和C3S一样。但水 化反应速率要比 C3S慢得多。大部分的水化反应是在 28天以后进行,即使在几个 星期以后也只有在表面上覆盖一薄层无定形的C—S—H,乃至一年以后仍然还有 明显的水化。因此C2S的水化反应主要提供28天以后或更长龄期的强度。
16
上面重点介绍了第Ⅰ、Ⅱ阶段的反应情况,而在第Ⅲ阶段产物迅速生成并开 始发展成牢固的整体;在第Ⅳ阶段时,反应逐渐缓慢。在第Ⅴ阶段时反应更加缓 慢。在这些阶段,最初的产物,大部分生长在原始颗粒之间的空间内,也称为 “外部”产物,其 C/S 约为 1.6 。后期的生长则在原始颗粒界面内进行,又称为 “内部”产物,随着水化的进行,C3S界面和富硅层逐渐推向内部并由于外层纤 维状的C—S—H已经成为离子迁移的障碍,所以内部生成的C—S—H主要沉积在外 层C—S—H的里面。但由于空间限制和离子浓度的变化,“内部”产物在形态和 成分等方面与“外部”产物有所差异。通过用扫描透射电子显微镜观察经离子束 减薄的切片和用高压电子显微镜观察置于湿盒内的潮湿环境下的切片,吉尼斯 (Jennigs)等人认为:C—S—H的“早期产物”是薄箔,它可以剥落并皱折成针状 物,这个过程在整个第Ⅱ阶段中就缓慢进行;第Ⅲ、第Ⅳ阶段则会产生胶体状的 “中间产物”其后,根据可得到的空间不同,它将发展成纤维状或交织在一起的 薄箔层状结构。在第Ⅴ阶段,形成的是具有细粒外形或不规则、扁平又大小差不 多的粒子,构成“内部”产物。
矿渣和粉煤灰水泥基材料的水化机理研究共3篇

矿渣和粉煤灰水泥基材料的水化机理研究共3篇矿渣和粉煤灰水泥基材料的水化机理研究1水泥基材料是建筑工程中常用的材料之一,矿渣和粉煤灰水泥基材料是近年来发展的一种新型水泥基材料。
矿渣和粉煤灰是工业副产品,将其掺入水泥基材料中,不仅能够降低生产的成本,还能够有效地利用工业副产品,减少对环境的污染,从而得到广泛的应用。
本文将探讨矿渣和粉煤灰水泥基材料的水化机理。
1. 矿渣水化机理水泥基材料的水化反应主要是硅酸盐水化反应。
矿渣中含有大量的二氧化硅和铝氧化物等成分,这些成分可以参与硅酸盐水化反应。
矿渣水化是一个较为复杂的过程,主要包括以下几个阶段:(1) CaO和MgO水化阶段:矿渣中含有大量的CaO和MgO等物质,当石灰石与热力煤渣反应时,产生的高温可以将石灰中的CaO和MgO分解出来,在水中溶解形成Ca(OH)2和Mg(OH)2等化合物。
这些化合物具有较强的碱性,可以中和其它酸性物质,从而起到保护作用。
(2) 活性硅酸盐水化阶段:当矿渣中的SiO2在水中溶解时,可以与Ca(OH)2等碱性物质反应形成C-S-H凝胶,C-S-H凝胶是水泥基材料的主要水化产物之一,可以起到胶凝和增强作用。
(3) 铝酸盐水化阶段:矿渣中含有大量的铝酸盐,当铝酸盐在水中溶解时,可以与Ca(OH)2等碱性物质反应,形成膨胀胶体,并将矿渣中的Ca(OH)2消耗殆尽,从而减缓水化反应速率,增加水化产物的稳定性。
2. 粉煤灰水化机理粉煤灰水泥基材料的水化机理与矿渣水泥基材料有些不同。
粉煤灰中含有大量的SiO2和Al2O3等物质,这些物质可以参与水化反应,并与水中的Ca(OH)2等碱性物质反应形成C-S-H凝胶和C-A-H凝胶等水化产物,从而起到增强作用。
粉煤灰水泥基材料的水化反应主要包括以下几个阶段:(1) CaO和MgO水化阶段:粉煤灰中含有大量的CaO和MgO等物质,这些物质可以与水中的Ca(OH)2等碱性物质反应,形成Ca(OH)2和Mg(OH)2等化合物,从而起到碱性作用。
混凝土中水泥水化反应的原理

混凝土中水泥水化反应的原理一、水泥的成分和特性水泥是混凝土的主要成分,其主要成分为熟料和石膏。
熟料是指将石灰石和粘土等原料在高温下煅烧得到的矿物物质,其中主要成分为三氧化二铝和二氧化硅。
石膏则是用于调节水泥硬化过程中的凝结时间和硬化性能的一种添加剂。
水泥的主要特性包括初凝时间、终凝时间、强度和耐久性等。
二、水泥水化反应的基本过程水泥在混凝土中的主要作用是通过水化反应形成胶凝体,填充空隙并形成强度。
水泥水化反应的基本过程可分为以下几个阶段:1. 水化初期水泥与水发生反应,形成硬化物质和水化热。
水化初期的主要反应是三氧化二铝和水的化学反应,产生氢氧化铝胶体和放热。
这个阶段的特点是反应速度快、放热量大、强度增长较慢。
2. 胶凝期随着水化反应的进行,氢氧化铝胶体逐渐成熟,形成更加稳定的硅酸盐胶凝体。
胶凝期的主要反应是氢氧化铝胶体和硅酸盐之间的反应,产生硅酸钙胶凝体。
这个阶段的特点是反应速度减慢、放热量减少、强度增长较快。
3. 强化期随着胶凝体的形成,水泥石的强度逐渐增加。
强化期的主要反应是硅酸盐胶凝体的晶化和形成更加稳定的结构。
这个阶段的特点是反应速度缓慢、放热量减少、强度增长较快。
4. 稳定期水泥水化反应的最后阶段是稳定期。
此时,水泥石的强度基本上已经达到了稳定状态。
稳定期的主要反应是水泥石结构的继续稳定和硬化过程的结束。
三、水泥水化反应的影响因素水泥水化反应的速度和强度受到多种因素的影响,包括水泥熟料的成分、水泥的质量、混凝土配合比、水泥与水的接触方式等。
1. 水泥熟料的成分水泥熟料的成分对水泥水化反应的速度和强度有很大的影响。
一般来说,熟料中的三氧化二铝含量越高,水泥的早期强度越高,但晚期强度可能降低。
二氧化硅含量较高的熟料可提高水泥的晚期强度。
石膏的添加量也会影响水泥水化反应的速度和强度。
2. 水泥的质量水泥的质量对水泥水化反应的速度和强度也有很大的影响。
水泥的烧制温度、磨细度、比表面积等因素都会影响水泥的水化反应速度和强度。
水泥水化过程,机理

1.强度的产生和发展
一种认为,水泥加水拌和后,熟料矿物迅速水化,生成大 量的水化产物C-S-H凝胶,并生成Ca(OH)2及钙矾石(AFt)晶体。 经过一定时间以后,C-S-H凝胶也以长纤维晶体从熟料颗粒上 长出,同时钙矾石晶体逐渐长大,它们在水泥浆体中相互交织 联结,形成网状结构,从而产生强度。随着水化的进一步进行, 水化产物数量不断增加,晶体尺寸不断长大,从而使硬化浆体 结构更为致密,强度逐渐提高。
③外加剂
如采用掺入适当品种与掺量的减水剂,可使水灰比大 幅度减小到0.25,稳定地促进强度的增长;
采用早强剂可大幅度提高早期强度;
采用如引气剂、膨胀剂、速凝剂等则可能会引起后期强 度的降低,故在使用时应严格控制其掺加量。
School of Materials Science & Engineering
School of Materials Science & Engineering
(3)施工条件 水泥石结构的强度与其施工过程密切相关。
在施工过程中,水灰比、骨料级配、搅拌振捣的程度、 养护温度及是否采用 外加剂等对强度都有很大影响。
①水灰比及密实程度 水泥的水化程度越高,单位体积内水化产物就越多,
密度
2(3CaO·SiO2)+6H20=3CaO·2SiO2·3H20+3Ca(OH)2
3.14
1.00
2.44
2.23
摩尔质量 228.23
18.02
342.48
74.10
摩尔体积 72.71
18.02 140.40
33.23
体系中所占体积145.42 108.12 140.40
水泥水化过程,机理PPT课件

随着扩散作用的继续进行,钙矾石增多,当钙矾石覆 盖层增加到足够厚时,渗透到内部的SO42-逐渐减少到不足 以生成钙矾石,而形成单硫型水化硫铝酸钙、C4AHl3及其 固溶体,并伴随有体积增加。当固相体积增加所产生的结 晶压力达到一定数值时,钙矾石膜就会局部胀裂,水和离 子的扩散失去阻碍,水化就能得以继续进行。
School of Materials Science & Engineering
2.硅酸盐水泥凝结时间的调节 (1).快凝现象与假凝现象
快凝现象 指熟料粉磨后与水混合时很快凝结并放出热量的现象 假凝现象 指水泥的一种不正常的早期固化或过早变硬现象。
School of Materials Science & Engineering
7硅酸盐水泥的性能及耐久性
主要内容
7.1硅酸盐水泥的性能 7.2 耐久性
School of Materials Science & Engineering
7.1硅酸盐水泥的性能
7.1.1凝结时间
水泥浆体的凝结可分为初凝和终凝。
初凝表示水泥浆体失去流动性和部分可塑性,开始凝结。 终凝则表示水泥浆体逐渐硬化,完全失去可塑性,并具有一 定的机械强度,能抵抗一定的外来压力。
School of Materials Science & Engineering
影响凝结速度的因素
(1)水泥熟料矿物的组成
决定水泥凝结的主要矿物是C3A和C3S;在C3A含量较高 或石膏等缓凝剂掺量过少时,出现 “速凝”或“闪凝”。产 生这种不正常快凝时,浆体迅速放出大量热,温度急剧上升。
混凝土硬化过程中的化学反应原理

混凝土硬化过程中的化学反应原理一、引言混凝土是一种广泛应用于建筑和基础设施工程中的材料,它的主要成分是水泥、沙子、石子等。
混凝土硬化是指混凝土在水泥水化反应的作用下,逐渐变得坚硬和耐用的过程。
混凝土硬化过程中的化学反应是混凝土硬化的关键,本文将对混凝土硬化过程中的化学反应原理进行详细介绍。
二、混凝土硬化过程中的化学反应1. 水泥水化反应水泥是混凝土中的主要胶凝材料,它的水化反应是混凝土硬化过程中最重要的化学反应。
水泥水化反应包括初期水化反应和后期水化反应两个阶段。
(1)初期水化反应水泥在加水后,会和水发生反应,生成水化产物。
初期水化反应的产物主要有硬石膏、水化硅酸钙等。
这些产物会填充混凝土中的微孔和毛细孔,从而提高混凝土的密实度和强度。
(2)后期水化反应后期水化反应是指水泥在初期水化反应后,继续和水发生反应,生成新的水化产物。
后期水化反应的产物主要有水化铝酸盐凝胶、水化硅酸钙凝胶等。
这些产物不仅填充混凝土中的孔隙,还能与混凝土中的骨料和水化硅酸钙等形成化学键,从而提高混凝土的强度和耐久性。
2. 水泥熟料矿物的化学反应水泥熟料是水泥的主要原料,它由石灰石、粘土等矿物在高温下煅烧得到。
水泥熟料在混凝土硬化过程中也会发生化学反应。
(1)熟料中的矿物相互反应熟料中的矿物相互反应会产生新的化合物,如水化硅酸盐、水化铝酸盐等。
这些化合物会在水泥水化反应中起到重要的催化作用,促进水泥水化反应的进行。
(2)熟料中的CaO与水反应熟料中的CaO会和混凝土中的水发生反应,生成Ca(OH)2。
Ca(OH)2能够促进水泥水化反应的进行,同时也会填充混凝土中的孔隙,提高混凝土的密实度和强度。
3. 混凝土中的化学反应混凝土中的水化硅酸钙、水化铝酸盐、水化硅酸钠等成分也会发生化学反应,这些反应会进一步提高混凝土的强度和耐久性。
(1)水化硅酸钙与水化铝酸盐的反应水化硅酸钙和水化铝酸盐会相互反应,生成水化硅酸钙凝胶。
水化硅酸钙凝胶能够填充混凝土中的孔隙,同时与混凝土中的骨料和水化硅酸钙等形成化学键,提高混凝土的强度和耐久性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1水泥的水化机理
从化学角度来看,水泥的水化反应是一个复杂的溶解沉淀过程,在这一过程
中,与单一成分的水化反应不同,各组分以不同的反应速度同时进行水化反应,而且不同的矿物组分彼此之间存在着互相影响。
水泥中最多的熟料矿物是硅酸盐化合物,是制约水泥水化性质及相关性能的关键组分。
水泥中的硅酸盐熟料矿物的主要成分为硅酸三钙和硅酸二钙。
(1)硅酸三钙(C
3
S)的水化
硅酸三钙是水泥熟料中的含量最多的组分,通常占材料总量的50%左右,有时高达60 %。
硅酸钙的水化产物的化学组成成分不稳定,常随着水相中钙离子的浓度、温度、使用的添加剂、养护程度而发生变化,而且形态不固定,通常称为“C-S-H”凝胶。
C
3
S在常温下发生水化反应,可大致用下列方程式表述:
硅酸三钙的水化速率很快,其水化过程根据水化放热速率随时间的变化,可
以将C
3
S的水化过程划分为五个阶段,各阶段的化学过程和动力学行为如表1.1所示。
表1.1 C
3
S水化各阶段的化学过程和动力学行为时期早期中期后期
反应阶段诱导前期诱导期加速期减速期稳定期
化学过程初始水解,
离子进入溶
液
继续溶解,
早期C-S-H
稳定水化产
物开始生长
水化产物继
续生长,微
结构发展
微结构组件
密实
动力学行为反应很快反应慢反应快反应变慢反应很慢(2)硅酸二钙的水化
C
2
S也是水泥主要熟料矿物组分之一,水化过程与C3S相似,也有诱导期、
加速期,但是水化速率特别慢。
C
2
S的水化反应可大致用下列方程表述:
(3)铝酸三钙的水化
C
3
A是水泥熟料矿物的重要组分之一,其水化产物的组成与结构受溶液中的氧化铝、氧化钙浓度的影响很大,它对水泥的早期水化和浆体的流变性能起着重
要的作用。
纯水中C
3A的水化:大量的研究结果表明,C
3
A遇水后能够立即在表
面形成一种具有六边形特征的初始胶凝物质粒子,开始时其结晶度很差也很薄,呈不规则卷层物,随着水化时间的推移,这些卷层物生长成结晶度较好的,成分
为C
4AH
19
和C
2
AH
8
济的六边形板状物。
这种六边形水化物是亚稳的,并能转化成立
方形稳定的晶体颗粒。
常温下C
3
A在纯水中的水化反应可用下式表示:
有石膏存在时C
3A的水化:在水泥浆体中,熟料中的C
3
A实际上是在和有石
膏存在的环境中水化的,C
3A在Ca(OH)
2
饱和溶液中的水化反应可以表述为
C 3A+CH+12H=C
3
AH
13。
当处于水泥浆体的碱性介质中时,C
3
AH
13
在室温下能稳定存在,
其数量增长也很快,这是水泥浆体产生瞬时凝结的主要原因之一。
(4)铁铝酸四钙的水化
铁铝酸四钙的水化与铝酸三钙的水化过程相似,只是反应速率很慢,而且产物是含铁和铝的共同产物。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。