第一章质点运动学作业答案

合集下载

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案

大学物理力学一、二章作业答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。

当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。

A .a ;B .a 2;C .2c ;D .224c a +。

2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。

3、一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。

A .2R ;B .R π;C . 0;D .ωπR 。

4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v=2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。

A .22t i +2j m ; B .j t i t2323+m ;C .j t i t343243+; D .条件不足,无法确定。

二、填空题1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。

质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。

该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22m /5s π 。

3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。

4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45º角时角位移是 38rad 。

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

大学物理上册第一章 质点运动学 习题及答案

大学物理上册第一章 质点运动学 习题及答案

第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。

2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。

条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。

二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

大学物理第一章 质点运动学-习题及答案

大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。

又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。

故该质点作变速直线运动。

1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。

(B )只有(2)、(4)是对的。

(C )只有(2)是对的。

(D )只有(3)是对的。

[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。

1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。

第一章质点运动学习题答案

第一章质点运动学习题答案

第一章质点运动学习题答案1-1 质点做直线运动,运动方程为其中以s为单位,以m为单位,求:(1)=4s时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4) 做出-t图、-t图、-t图.解:(1) 根据直线运动情况下的定义,可得质点的位置、速度和加速度分别为(1)(2)(3)当=4s时,代入数字得:mm/sm/s(2)当质点通过原点时,=0,代入运动方程得:=0解得:,代入(2)式得:m/s=-12m/s(3) 将代入(2)式,得解得:s代入(1)式得:12m-6m=6m1.2一质点在平面上运动,运动方程为=3+5,=2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度.解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量.1-4 一质点沿一直线运动,其加速度为,式中的单位为m,的单位为m/s,试求该质点的速度与位置坐标之间的关系.设时,=4m/s解:依题意积分得1-5质点沿直线运动,加速度,如果当=3时,,,求质点的运动方程. (其中以m/s为单位,以s为单位,以m为单位,以m/s为单位)解:加速度表示式对积分,得将=3s,=9m,m/s代入以上二式,得积分常数m/s,=0.75m,则1-6 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成反比,即,其中为常量. 若物体不受其他力作用沿方向运动,通过原点时的速度为,试证明在此后的任意位置处其速度为.解:根据加速度定义得:,因,代入上式,分离变量,整理后得:,应用初始条件,两边积分得得即有:1-7试写出以矢量形式表示的质点做匀速圆周运动的运动学方程,并证明做匀速圆周运动质点的速度矢量和加速度矢量的标积等于零,即解:以直角坐标表示的质点运动学方程为以矢量形式表示的指点运动学方程为速度和加速度分别为所以1-8一质点在平面内运动,其运动方程为,其中均为大于零的常量.(1)试求质点在任意时刻的速度;(2)证明质点运动的轨道为椭圆;(3)证明质点的加速度恒指向椭圆的中心.解:(1)质点在任意时刻的速度(2)由消去,可得轨道方程可见是椭圆方程,表明质点作椭圆运动(3)加速度因为>0,所以的方向恒与反向,即恒指向椭圆中心.1-9路灯离地面高度为,一个身高为的人,在灯下水平路面上以匀速度步行. 如图所示,求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小.解:建立如图所示的坐标,时刻头顶影子的坐标为,设头顶影子的移动速度为,则由图中可看出有,则有所以有1-10 1.10质点沿半径为的圆周按=的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2)为何值时,加速度在数值上等于.解:(1)则加速度与半径的夹角为(2)由题意应有即∴当时,1-11质点做半径为20cm的圆周运动,其切向加速度恒为5cm/s,若该质点由静止开始运动,需要多少时间:(1)它的法向加速度等于切向加速度;(2)法向加速度等于切向加速度的二倍.解:质点圆周运动半径=20cm,切向加速度=5cm/s,时刻速度为,法向加速度为,因此有(1)当时,s(2)当时,s1-12 (1)地球的半径为6.37m,求地球赤道表面上一点相对于地球中心的向心加速度. (2)地球绕太阳运行的轨道半径为1.5m,求地球相对于太阳的向心加速度. (3)天文测量表明,太阳系以近似圆形的轨道绕银河系中心运动,半径为2.8m,速率为2.5m/s,求太阳系相对于银河系的向心加速度.解:(1)地球赤道表面一点相对于地球中心的向心角速度为m/s(2)地球相对太阳的向心加速度为m/s(3)太阳系相对银河系的向心加速度m/s1-13 以初速度=20抛出一小球,抛出方向与水平面成60°的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径.解:设小球所作抛物线轨道如题1-13图所示.题1-13图(1)在最高点,又∵∴(2)在落地点,,而∴1-14一架飞机在水平地面的上方,以174m/s的速率垂直俯冲,假定飞机以圆形路径脱离俯冲,而飞机可以承受的最大加速度为78.4m/s,为了避免飞机撞到地面,求飞机开始脱离俯冲的最低高度. 假定整个运动中速率恒定.解:设飞机以半径为圆形路径俯冲,其加速度为当为飞机所能承受的最大加速度时,即为最小,所以m1-15一飞轮以速度rev/min转动,受制动而均匀减速,经s 静止,求(1) 角加速度和从制动开始到静止飞轮转过的转数;(2) 求制动开始后,s时飞轮的角速度;(3) 设飞轮半径=1m,求s时,飞轮边缘上一点的速度和加速度.解:(1)飞轮的初角速度,当s时,;代入得从开始到静止,飞轮转过的角度及其转数为:radrev(2)s 时,飞轮的角速度为rad/s(3)s 时,飞轮边缘上一点的速度为m/s相应的切线和法线加速度为m/sm/s1-16一质点沿半径为1m的圆周运动,运动方程为,式中以弧度计,以秒计,求:(1)=2s时,质点的切向和法向加速度;(2)当加速度的方向和半径成角时,其角位移是多少?解:(1)时,(2)当加速度方向与半径成角时,有即亦即则解得于是角位移为1-17一圆盘半径为3m,它的角速度在=0时为3.33rad/s,以后均匀地减小,到=4s时角速度变为零. 试计算圆盘边缘上一点在=2s时的切向加速度和法向加速度的大小.解:角速度均匀减小,因此,角加速度为rad/s圆盘做匀角加速度,故有当s时,rad/s法向和切向加速度分别为m/s=-7.8 m/s1-18某雷达站对一个飞行中的炮弹进行观测,发现炮弹达最高点时,正好位于雷达站的上方,且速率为,高度为,求在炮弹此后的飞行过程中,在(以s为单位)时刻雷达的观测方向与铅垂直方向之间的夹角及其变化率(雷达的转动角速度)解:以雷达位置为坐标原点,取坐标系如图所示,根据题意,炮弹的运动方程为可解得:(1)则将(1)式两边对求导数,得则有1-19 汽车在大雨中行驶,车速为80km/h,车中乘客看见侧面的玻璃上雨滴和铅垂线成角,当车停下来时,他发现雨滴是垂直下落的,求雨滴下落的速度.解:取车为运动参考系,雨滴相对于车的速度为,雨滴对地速度为,车对地的速度为,相对运动速度合成定理为见如图所示的速度合成图,则有m/s1-20一升降机以加速度1.22m/s上升,当上升速度为2.44 m/s时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距 2.74m,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:以升降机外固定柱子为参考系,竖直向上为坐标轴正向,螺帽松落时升降机底面位置为原点. 螺帽从=2.74m处松落,以初速度=2.44m/s做竖直上抛运动,升降机底面则从原点以同样的初速度做向上的加速运动,加速度=1.22m/s,它们的运动方程分别为螺帽:底面:螺帽落到底面上时,,由以上两式得=0.705s(2)螺帽相对于升降机外固定柱子的下降距离为m1-21某人骑自行车以速率向西行使,北风以速率吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E,人为动系M。

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。

解:答案是D 。

2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。

简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。

3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。

v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。

4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 选择题:[ C ]1、[基础训练1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 【答】如图建坐标系,设船离岸边x 米,222l h x =+,22dl dxlxdt dt=,dx l dl dt x dt ==0dlvdt=-,220dx h xv i v i dt +==- 2203v h dv dv dxa i dt dx dt x==⋅=-,可见,加速度与速度同向,且加速度随时间变化。

[ D ]2、[基础训练3] 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t rd d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x【答】, dx dy v i j v dt dt =+∴=[ C ]3、[基础训练6] 一飞机相对空气的速度大小为 200 km/h, 风速为56 km/h ,方向从西向东.地面雷达站测得飞机速度大小为 192 km/h ,则飞机飞行方向是(A) 南偏西°;(B) 北偏东°;v →机地v →空气地v →空气地空气v →机地(C) 向正南或向正北; (D) 西偏北°; (E) 东偏南°.【答】根据三个速率的数值关系,以及伽利略速度变换式=+v v v →→→机地机空气空气地,可以画出三个速度之间的矢量关系,如图所示。

=200km/h, 56/, =192km/h km h v v v →→→=机空气空气地机地,根据余弦定理,222200=56192256192cos θ+-⨯⨯,解得:cos =0θ,所以=2πθ±.[ B ]4、(自测提高3)质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0. 【答】平均速度大小:0rv t ∆==∆ 平均速率:2s R v t T∆==∆π[ C ] 5、[自测提高6]某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 【答】t k t 2d /d v v -=,分离变量并积分,020vtv dv ktdt v =-⎰⎰,得02121v v +=kt .[ B ]6、[自测提高7]在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) 2i +2j . (C) -2i -2j . (D) 2i -2j. 【答】B A 对v =B 对v 地+A 对v 地 =B 对v 地-A 对v 地 =2222 (/)j i i j m s -=-+.二. 填空题n ag1、[基础训练7] 已知质点的运动学方程为 j t t i t t r)314()2125(32++-+=(SI),当t = 2 s 时,加速度的大小为a =217/ m s ;加速度a与x 轴正方向间夹角=0 104【答】22125x t t -+=,3314y t t +=, 22221 /x t sd xa m s dt===-,222222 4 /y t st sd ya tm s dt=====大小22221417/x y a a a m s =+=+=;与x 轴正方向间夹角 001arctan 90arctan 10424x y a a πα⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭2、[基础训练10] 一物体作如图所示的斜抛运动,测得在轨道A 点处速度v的大小为v ,其方向与水平方向夹角成30°,则物体在A 点的切向加速度a t = -0.5g ,轨道的曲率半径223 v g.(重力加速度为g )【答】如图,将重力加速度分解为切向加速度分量和法向加速度分量,得22sin 300.5, cos 30 cos 30t n v v a g g a g g ρρ=-=-==∴=3、[基础训练12] 一质点沿直线运动,其运动学方程为x = 6 t -t 2(SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 8 () m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 () m .【答】(1)x = 6 t -t 2(SI),位移大小()24064408 ()r x x m ∆=-=⨯--=;(2)62x dxv t dt==-,可见,t<3s 时,x v >0;t=3s 时,x v =0;而t>3s 时,x v <0;所以,路程=()()()3034()909810 ()x x x x m -+-=-+-=v30°Ata4、[自测提高9] 一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律为2126 (SI)t t β=-,则质点的角速度ω =3243 (/) t t rad s -;加速度切向分量a t =22126 (/) t t m s -。

【答】(1)2126d t t dt ωβ=-=,()200126td t t dt ωω=-⎰⎰,3243 (/)t t rad s ω=-;(2)22126 (/)t a R t t m s β==-;5、[自测提高11]一质点从O 点出发以匀速率1 cm/s 作顺时针转向的圆周运动,圆的半径为1 m ,如图所示.当它走过2/3圆周时,走过的路程是(m ),这段时间内的平均速度大小为34.1310(/) m s -⨯,方向是__与x 轴正方向逆时针成600. 【答】24S 2R 4.19(m)33ππ=⨯==路程03r 2cos30v 4.1310(/)S t vm s -∆⨯====⨯∆平均速度大小;方向如图。

三.计算题1、[基础训练16 ]有一质点沿x 轴作直线运动,t 时刻的坐标为x = t 2– 2 t 3(SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1)t 1=1s 时,x 1=2.5m ; t 2=2s 时,x 2=2m ;21212 2.50.5 (/)21x x x x v m s t t t -∆-====-∆--,0.5 (/)v i m s =- v(2)),69(2t t dtdx v x -== )/(6 ),/( 6 2s m i v s m v s t x -=-==时,(3)令0)69(2=-=t t v x , 得:' 1.5t s =. 此时 3.375m x ='第二秒内的路程()()m ....x'x x x's 2522375352375321=-+-=-+-=2、[基础训练17 ] 倾斜上抛一小球,抛出时初速度与水平面成600角,秒钟后小球仍然斜向上升,但飞行方向与水平面成450角。

试求:(1)小球到达最高点的时间; (2)小球在最高点的速度。

解 :以抛出点为原点、水平向右为x 轴、竖直向上为y 轴,建立坐标系。

(1)设初速度为v 0,则有000v 2160cos =︒=v v x ,000v 2360sin =︒=v v y 任意时刻t :000x v 2160cos v =︒==v v x ,gt gt y -=-=00y v 23v v 依题意,s t 1=时,速度v 与水平方向成450,则有y x v v =, ∴1v 23v 2100⨯-=g 解得 :s m /8.26138.9213g 2v 0=-⨯=-=小球到达最高点时,0v y =,即0v 230=-gt ,解得:s gt 37.21332v 30=-==(2)小球在最高点时的速度沿水平方向,其大小为 s m x /4.13v 21v 0===v3、[基础训练19 ]质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。

解:tan ,n t a a ϕ= 将t dv a dt=,2n v a R =代入,得2tan dv v dt R ϕ=,分离变量并积分:002000tan 11, tan tan tan vtv v R dv dt tv v R v v R R v t ϕϕϕϕ=-+=∴=-⎰⎰4、[自测提高15 ]质点按照212s bt ct =-的规律沿半径为R 的圆周运动,其中s 是质点运动的路程,b 、c 是常量,并且b 2>cR 。

问当切向加速度与法向加速度大小相等时,质点运动了多少时间 解:212s bt ct =-,ds v b ct dt==-, 切向加速度大小t dv a c c dt ==-=,法向加速度大小2n v a R=; 当切向加速度与法向加速度大小相等时:2v c R=, v cR =±(负号表示反向运动),即 b ct cR -=±, 得 12 , b cR b cRt t -+==5、[自测提高17 ] 一敞顶电梯以恒定速率v 10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大(2) 抛出后经过多长时间再回到电梯上解:(1) 根据伽利略速度变换式对对对v v v =+球地球梯梯地,可得球相对地面的初速度:方向向上,大小为 2010对v =+=球地30 m/s球到达最高点时,对地的速度为零。

可得最大高度为 245.92对v h g==球地m/s离地面高度为 H = +10) m =55.9 m(2) 以地面作为参考系:球回到电梯上时,电梯上升的高度=球上升的高度,即212v v 对对t t gt =-梯地球地解得: 02v 0 4.08t t g===(舍去)或 s 【若以电梯作为参考系:则再回到电梯上时,满足00v v gt -=-,得:t = 】附加题:[ 自测提高16 ] 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T .若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v .求飞机仍沿原正方形(对地)轨道飞行时周期要增加多少. 解:如图,设风对地v kvj =,正方形边长为L ,根据+风对地机对地机对风v v v =求解。

相关文档
最新文档