极坐标与参数方程基本题型-2018年高考一轮复习资料:极坐标与直角坐标、普通方程与参数方程 的互相转化
参数方程与极坐标题型与方法归纳
参数方程与极坐标题型与方法归纳作者:王园园来源:《教育周报·教育论坛》2018年第04期一、题型与考点(1){_极坐标与直角坐标的互相转化^极坐标与普通方程的互相转化┤ (2){_参数方程与直角坐标方程互化^参数方程与普通方程互化┤(3){_参数方程的几何意义^利用参数方程求值域┤二、解题方法及步骤(1)参数方程与普通方程的互化。
化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y=g (t),再代入普通方程F(x,y)=0,求得另一关系y=g(t)(或x=f(t)).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)。
例1:方程{(x=2^t-2^(-t)@y=2^t+2^(-t))┤(t为参数)表示的曲线是()A.双曲线B.双曲线的上支C.双曲线的下支D.圆解析:注意到2^tt与2^(-t)互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t的项,x^2-y^2=(2^t-2^(-t))^2-(2^t+2^(-t))^2=-4,即有y^2-x^2=4,又注意到2^t>0,2^t+2^(-t)≥2√(2^t⋅2^(-t))=2,即y≥2,可见与以上参数方程等价的普通方程为y^2-x^2=4(y≥2).显然它表示焦点在y轴上,以原点为中心的双曲线的上支,选B。
(2)极坐标与直角坐标的互化。
利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与x轴正方向重合;(3)取相同的单位长度.设点P的直角坐标为(x,y),它的极坐标为(ρ,θ),则{(x=ρcosθ@y=ρsinθ)┤或{(ρ^2=x^2+y^2@tgθ=y/x)┤;若把直角坐标化为极坐标,求极角θ时,应注意判断点P所在的象限(即角θ的终边的位置),以便正确地求出角θ.例2:极坐标方程4ρ⋅sin^2 θ/2=5表示的曲线是()A.圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由4ρ⋅sin^2 θ/2=4ρ⋅(1-cosθ)/2=2ρ-2ρcosθ=5,化为直角坐标系方程为2√(x^2+y^2 )-2x=5,化簡得y^2=5x+25/4.显然该方程表示抛物线,故选D.(3)参数方程与直角坐标方程互化例题3:已知曲线C_1的参数方程为{(x=-2+√10 cosθ@y=√10 sinθ)┤(θ为参数),曲线C_2的极坐标方程为ρ=2cosθ+6sinθ.(1)将曲线C_1的参数方程化为普通方程,将曲线C_2的极坐标方程化为直角坐标方程;(2)曲线C_1,C_2是否相交,若相交请求出公共弦的长,若不相交,请说明理由。
高考极坐标与参数方程常见题型
极坐标与参数方程一、基础知识点梳理(一)极坐标 极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3、极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4、常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和。
极坐标与参数方程题型和方法归纳
极坐标与参数方程题型和方法归纳极坐标与参数方程题型和方法归纳题型一:极坐标方程与直角坐标方程的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。
具体方法如下:1)极坐标方程转直角坐标方程:begin{cases}\rho=x\cos\theta+y\sin\theta\\\tan\theta=\dfrac{y }{x}\end{cases}\Rightarrow\begin{cases}x=\rho\cos\theta\\y=\rho \sin\theta\end{cases}$$其中,$\rho$表示点到原点的距离,$\theta$表示点与$x$轴正半轴的夹角。
2)参数方程转直角坐标方程:begin{cases}x=f(t)\\y=g(t)\end{cases}\RightarrowF(x,y)=0$$其中,$F(x,y)$为$x,y$的函数,$t$为参数。
3)极坐标方程转参数方程:begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\Rightarr ow\begin{cases}r=f(\theta)\\ \theta=g(r)\end{cases}$$题型二:三个常用的参数方程及其应用1)圆的参数方程:begin{cases}x=a+r\cos\theta\\y=b+r\sin\theta\end{cases}$$其中,$(a,b)$为圆心坐标,$r$为半径。
2)椭圆的参数方程:begin{cases}x=a\cos\theta\\y=b\sin\theta\end{cases}$$其中,$a,b$为椭圆的长短半轴。
3)过定点倾斜角为$\alpha$的直线$l$的标准参数方程为:dfrac{x-x_0}{\cos\alpha}=\dfrac{y-y_0}{\sin\alpha}=p$$其中,$(x_0,y_0)$为直线$l$上的一点,$p$为直线$l$到原点的距离。
2018年高考数学总复习 极坐标与参数方程
第二节 极坐标与参数方程(选修4-4)考纲解读1.理解坐标系的作用.2.了解在直角坐标系伸缩变换作用下平面图形的变化情况.3.能在极坐标中用极坐标表示点的位置.理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.5.了解柱坐标系、球坐标系中表示空间中的点的位置的方法,并与空间直角坐标系中表示点的位置方法相比较,了解它们的区别.6.了解参数方程,了解参数的意义.7.能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 8.掌握参数方程化普通方程的方法.命题趋势探究本章是新课标新增内容,属选考内容,在高考中可能有所体现.参数方程是解析几何、平面向量、三角函数、圆锥曲线与方程等知识的综合应用和进一步深化,是研究曲线的工具之一,值得特别关注.知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示).这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). xθOρ(,)M ρθ图 16-31yxθOρ(,)M x y图 16-32三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程000(,)M x yO(,)M x ytyx图16-33双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z . 八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型196 极坐标方程化直角坐标方程思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:33y x =,即30x y -=.圆心(0,2)到直线30x y -=的距离为22|023|31(3)-=+.变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3 已知一个圆的极坐标方程是53cos 5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线 分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.2211x y ρ=⇒+=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C .变式 1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 . 变式3 (2012陕西理15)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型197 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 (2012辽宁理23)在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示); (2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为 (2,),(2,)33ππ-.注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为(1,3),(1,3)-.故圆1C 与2C 的公共弦的参数方程为1(33)x t y t =⎧-≤≤⎨=⎩. 解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 (2012 江西理 15)曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型198 参数方程化普通方程思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答. 例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m的取值范围是 .解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞. 变式1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 .变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin()42m πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 .变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型199 普通方程化参数方程思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt=⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则3cos sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则3cos sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型200 参数方程与极坐标方程的互化思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=,即2sin()204πρθ+-=,化简得sin()24πθ+=.变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .最有效训练题60(限时45分钟)1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆22(sin cos )ρθθ=-的圆心的一个极坐标是( )A. (2,2)-B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4π B. 3(23,)4πC. (23,)πD. (3,)π 4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D. 130 5.过点(2,3)A 的直线的参数方程为232x ty t=+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )A. 5B. 25C. 35D.3526.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 的距离为71010的点的个数为( ) A. 1 B. 2 C. 3 D. 4 7.已知直线l 的极坐标方程为2sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 . 8.在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为5cos 5sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和21222x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 .9.已知抛物线的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,(2,)4π,求△OMN 的面积.11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:23cos 016C ρρθ-+=. (1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值; (2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。
极坐标与参数方程题型分类整理
4√2
,求实数
5
m
的值.
5.在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲
线 C1 的极坐标方程为 ρcos θ=4.
高三一轮复习 极坐标与参数方程
一、 t 的几何意义
例 1.在极坐标系中,曲线 C 的方程为 2 cos2 = 9 ,点 P 2 3, .以极点 O 为
6
原点,极轴为 x 轴的正半轴建立直角坐标系.
(1)求直线 OP 的参数方程的标准式和曲线 C 的直角坐标方程;
(2)若直线 OP 与曲线 C 交于 A 、 B 两点,求
变式 2.在直角坐标系 xOy 中,曲线 C 的参数方程为
x = a + 4t ,
(t为参数).
y = 1 − t,
线 l 的参数方程为
(1)若 a=−1,求 C 与 l 的交点坐标;
(2)若 C 上的点到 l 的距离的最大值为 17 ,求 a.
参数方程专题练习
1.在平面直角坐标系 xOy 中,直线 l 的参数方程为
(1)求曲线 的极坐标方程;
(2)设 l1 : =
6
, l2 : =
3
, ,若 l1 , l2 与曲线 C 分别交于异于原点的 A, B 两点,求
AOB 的面积.
= 2
变式 1.在平面直角坐标系 xOy 中,已知曲线 C:{
,(为参数),以原
= √3
点 O 为极点,x 轴正半轴为极轴建立极坐标系,直线 l 的极坐标方程( −
2
离取得最大值时,点 Q 的直角坐标.
高考极坐标与参数方程题型总结
高考极坐标与参数方程题型总结1.在极坐标系中,要将直线C1:x=-2和圆C2:(x-1)^2+(y-2)^2=1转化为极坐标方程。
以坐标原点为极点,x轴正半轴为极轴,将直线和圆的方程中的x和y用极坐标中的r和θ表示,然后化简即可得到它们的极坐标方程。
求出C2和C3的交点M、N的坐标,然后计算三角形OMN的面积即可求出C2MN的面积。
2.在直角坐标系中,曲线C1的参数方程为x=tcosα,y=tsinα,其中α∈[0,π)。
将C1的参数方程转化为极坐标方程,即可得到C2和C3的极坐标方程。
求出C2和C1的交点A和C3和C1的交点B的极坐标,然后计算AB的极坐标差值的正弦值的最大值,即可得到AB的最大值。
3.在直角坐标系中,曲线C1的参数方程为x=acos(t),y=1+asin(t),其中a>0.将C1的方程转化为极坐标方程,即可得到C2的极坐标方程。
设C3的极坐标方程为ρ=k,其中k>0.将C1和C2的极坐标方程代入C3的极坐标方程中,解出a即可。
1.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为r=cos(2θ),参数方程为x=cos(2t),y=sin(2t)。
2.求解:(1) C1的极坐标方程为r=cos(2θ);(2) 射线x=λ与曲线C1分别交于M,N,求实数λ的最大值。
3.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为r=cos(θ),直线L的极坐标方程为θ=π/3.1) 将曲线C极坐标方程化为直角坐标方程得y=cos(x),其中x=θ-π/2;2) 直线L与曲线C交于A,B两点,点P(0,1)过点A,求点B的坐标为(√3/2,-1/2)。
4.在极坐标系中,已知曲线C的极坐标方程为r=2cos(θ)。
1) 点P的轨迹的极坐标方程为r=2cos(θ)+2sin(θ);2) 以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,直线L:y=√3x 与曲线C相交于E,求E的坐标为(1,√3)。
2018年高考数学试题汇编极坐标和参数方程及详细解析
2018年高考数学试题汇编极坐标和参数方程及详细解析1、(2018年高考数学全国卷I理科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.2、(2018年高考数学全国卷II理科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.3、(2018年高考数学全国卷III理科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=ta nα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1).4、(2018年高考数学天津卷理科12)(5分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.5、(2018年高考数学北京卷理科10)(5分)在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a=1+.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:=1,解得:a=1±.a>0则负值舍去.故:a=1+.6、(2018年高考数学江苏卷理科23)在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.6、(2018年高考数学全国卷I文科22)(10分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,解得:k=或0,(0舍去)故C1的方程为:.7、(2018年高考数学全国卷II文科22)(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,所以:,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.8、(2018年高考数学全国卷III文科22)(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x+,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)由(1)知直线l的斜率不为0,设直线l的方程为x=m(y+),设A(x1,y1),(B(x2,y2),P(x3,y3),联立,得(m2+1)x2+2+2m2﹣1=0,,=﹣+2,=,=﹣,∴AB中点P的轨迹的参数方程为,(m为参数),(﹣1<m<1)。
极坐标与参数方程-题型归纳
极坐标与参数方程-题型归纳高考高频题型整理汇总——《极坐标与参数方程》除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及以下部分问题。
一)有关圆的题型题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较根据圆心到直线的距离公式,即可算出圆心到直线的距离d,再与半径r比较大小,得出圆与直线的位置关系。
当d>r 时,圆与直线相离,无交点;当d=r时,圆与直线相切;当d<r时,圆与直线相交,有两个交点。
题型二:圆上的点到直线的最值问题根据圆心到直线的距离公式,算出圆上任意一点到直线的距离d,再根据圆与直线的位置关系,分别代入公式dmax=d+r和dmin=d-r,得出圆上距离直线最远的点和距离直线最近的点。
题型三:直线与圆的弦长问题根据圆心到直线的距离公式,算出圆心到直线的距离d,再根据弦长公式l=2√(r^2-d^2),得出直线与圆的弦长。
延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题弦长公式为l=t1-t2,其中t1和t2为直线与曲线的交点在曲线参数方程中的参数值。
二)距离的最值:用“参数法”1.曲线上的点到直线距离的最值问题2.点与点的最值问题参数法”:设点的坐标用该点在所在曲线的参数方程来表示,利用点到线的距离公式求出该点到直线的距离,再利用三角函数辅助角公式进行化简,得出距离的最值。
解:1)将圆C的参数方程化为普通方程:x = 3\cos t。
y = 3\sin t$则圆C的普通方程为:x^2 + y^2 = 9$将直线l的极坐标方程$r=2\cos\theta$化为直角坐标方程:r^2 = x^2 + y^2$r\cos\theta = x$代入$r=2\cos\theta$中得:x = 2\cos^2\theta$r\sin\theta = y$代入$r=2\cos\theta$中得:y = 2\sin\theta\cos\theta$则直线l的直角坐标方程为:x = 2y$2)在极坐标系中,圆C的半径为3,直线l的极坐标方程为$r=2\cos\theta$,则直线l与圆C的交点分别为$(\frac{4}{3},\frac{2\sqrt{2}}{3})$和$(\frac{4}{3},-\frac{2\sqrt{2}}{3})$。
(完整word版)极坐标与参数方程(近年高考题和各种类型总结)
极坐标与参数方程(近年高考题和各种类型总结)一、最近8年极坐标与参数方程题型归纳(2018)【点差法】在直角坐标系xOy 中,曲线C的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t y t αα=+⎧⎨=+⎩(t 为参数) (1)求C 和l 的直角坐标方程(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率(2017)【极坐标求轨迹问题】在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16=⋅OP OM ,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为)3,2(π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2016)【极坐标方程求长度】在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,10AB =,求l 的斜率.(2015)【极坐标方程求长度】在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.(2014)【根据极角范围求轨迹】在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(2013)【轨迹问题】已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.(2012)【参数坐标求最值、范围】已知曲线1C 的参数方程是)(3s i n y 2c o s x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
极坐标与参数方程知识点、题型总结
极坐标与参数方程知识点、题型总结(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除极坐标与参数方程知识点、题型总结一、极坐标:直角坐标⇒极坐标cossinxyρθρθ=⎧⎨=⎩极坐标⇒直角坐标222tan(0)x yyxxρθ⎧=+⎪⎨=≠⎪⎩二、直线的参数方程:过定点(x0,y0)倾角为α的直线:ααsincostyytxx+=+=(t为参数)直线上12,P P对应的参数是12,t t。
|P1P2|=|t1-t2|=t1+t22-4t1t2.直线的一般参数方程:0x x aty y bt=+=+(t为参数)若221a b+=,则上面几何意义成立,否则,不成立。
此时,需要换参,令)(222222为参数tbat byybat axxbatt'⎪⎪⎩⎪⎪⎨⎧+'+=+'+=⇒+'=三、圆、椭圆的参数方程圆心在(x0,y0),半径等于r的圆:ααsincosryyrxx+=+=(α为参数)椭圆22221x ya b+=(或22221y xa b+=):ααsincosbyax==(α为参数)(或ααsincosaybx==)补充知识:伸缩变换:点),(yxP是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').(,yy0),(x,x:μμλλϕ的作用下,点),(yxP对应到点),(yxP''',称伸缩变换抛物线22y px=:ptyptx222==(t为参数,p>0)题型归类:方程的互化:1、代公式;2、消参一、极坐标的几何意义的应用1在直角坐标系xOy中。
直线1C:2x=-,圆2C:()()22121x y-+-=,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系。
(1)求1C,2C的极坐标方程;(2)3C 的极坐标方程()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积2.曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠ 0),其中0 ≤ α < π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=。
(完整版)极坐标与参数方程题型及解题方法
(完整版)极坐标与参数⽅程题型及解题⽅法Ⅰ复习提问1、极坐标系和直⾓坐标系有什么区别?学校⽼师课堂如何讲解极坐标参数⽅程的?2、如何把极坐标系转化为直⾓坐标系?答:将极坐标的极点O 作为直⾓坐标系的原点,将极坐标的极轴作为直⾓坐标系x 轴的正半轴。
如果点P 在直⾓坐标系下的坐标为(x ,y ),在极坐标系下的坐标为),(θρ, 则有下列关系成⽴:ρθρθy sin x cos ==3、参数⽅程{cos sin x r y r θθ==表⽰什么曲线?4、圆(x-a)2+(y-b)2=r2的参数⽅程是什么?5、极坐标系的定义是什么?答:取⼀个定点O ,称为极点,作⼀⽔平射线Ox ,称为极轴,在Ox 上规定单位长度,这样就组成了⼀个极坐标系设OP=ρ,⼜∠xOP=θ. ρ和θ的值确定了,则P 点的位置就确定了。
ρ叫做P 点的极半径,θ叫做P 点的极⾓,),(θρ叫做P 点的极坐标(规定ρ写在前,θ写在后)。
显然,每⼀对实数),(θρ决定平⾯上⼀个点的位置6、参数⽅程的意义是什么?参数⽅程极坐标Ⅱ题型与⽅法归纳1、题型与考点(1){极坐标与普通⽅程的互相转化极坐标与直⾓坐标的互相转化(2) {参数⽅程与普通⽅程互化参数⽅程与直⾓坐标⽅程互化(3) {利⽤参数⽅程求值域参数⽅程的⼏何意义2、解题⽅法及步骤(1)、参数⽅程与普通⽅程的互化化参数⽅程为普通⽅程的基本思路是消去参数,常⽤的消参⽅法有代⼊消去法、加减消去法、恒等式(三⾓的或代数的)消去法;化普通⽅程为参数⽅程的基本思路是引⼊参数,即选定合适的参数t ,先确定⼀个关系()x f t =(或()y g t =,再代⼊普通⽅程(),0F x y =,求得另⼀关系()y g t =(或()x f t =).⼀般地,常选择的参数有⾓、有向线段的数量、斜率,某⼀点的横坐标(或纵坐标)例1、⽅程2222t t t t x t y --?=-??=+??(为参数)表⽰的曲线是() A. 双曲线 B.双曲线的上⽀ C.双曲线的下⽀ D.圆解析:注意到2t t 与2t -互为倒数,故将参数⽅程的两个等式两边分别平⽅,再相减,即可消去含t 的项,()()222222224t t t t x y ---=--+=-,即有224y x -=,⼜注意到 202222222t t t t t y -->+≥?=≥,,即,可见与以上参数⽅程等价的普通⽅程为2242y x y -=≥().显然它表⽰焦点在y 轴上,以原点为中⼼的双曲线的上⽀,选B练习1、与普通⽅程210x y +-=等价的参数⽅程是()(t 为能数)。
极坐标与参数方程题型和方法归纳
极坐标与参数方程题型和方法归纳题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。
方法如下:{222cos sin tan (0x y x y yx x ραραρρθ==⎧=+⎪⎨=≠+⎪⎩或(1)极坐标方程直角坐标方程221θθ=−−−−−−−−−−−−→←−−−−−−−−−−−−消参(代入法、加减法、sin +cos 等)圆、椭圆、直线的参数方程(2)参数方程直角坐标方程−−→−−→←−−←−−(3)参数方程直角坐标方程(普通方程)极坐标方程1、已知直线l的参数方程为112x t y ⎧=+⎪⎨⎪=⎩(t 为参数)以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C的方程为2sin cos 0θθ=.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线l 与曲线C 交点的一个极坐标.题型二:三个常用的参数方程及其应用(1)圆222()()x a y b r -+-=的参数方程是: cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数(2)椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数 (3)过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数对(3)注意: P 点所对应的参数为00t =,记直线l 上任意两点,A B 所对应的参数分别为12,t t ,则①12AB t t =-,②1212121212,0,0t t t t PA PA t t t t t t ⎧+⋅>⎪+=+=⎨-⋅<⎪⎩,③1212PA PA t t t t ⋅=⋅=⋅2、在直角坐标系xoy 中,曲线C 的参数方程为2sin y t⎨=⎩ (t 为参数,0a > )以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值; (Ⅱ)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.3、已知曲线1C :12cos 4sin x y θθ=⎧⎨=⎩(参数R θ∈),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为3cos()3ρπθ=+,点Q的极坐标为)4π.(1)将曲线2C 的极坐标方程化为直角坐标方程,并求出点Q 的直角坐标; (2)设P 为曲线1C 上的点,求PQ 中点M 到曲线2C 上的点的距离的最小值.4、已知直线l:1122x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线1C :cos sin x y θθ=⎧⎨=⎩(θ为参数).(1)设l 与1C 相交于两点,A B ,求||AB ; (2)若把曲线1C 上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的2倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值.5、在平面直角坐标系xOy 中,已知曲线:sin C y α⎨=⎪⎩(α为参数),在以坐标原点O为极点,以x 轴正半轴为极轴建立的极坐标系中,直线l的极坐标方程为cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点(1,0)M -且与直线l 平行的直线1l 交C 于,A B 两点,求弦AB 的长.6、面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =5 cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ+ π 4)=2.l 与C交于A 、B 两点.(Ⅰ)求曲线C 的普通方程及直线l 的直角坐标方程;(Ⅱ)设点P (0,-2),求:① |PA |+|PB |,②PA PB⋅,③11PA PB+,④AB题型三:过极点射线极坐标方程的应用 出现形如:(1)射线OP :6πθ=(0ρ≥);(1)直线OP :6πθ=(R ρ∈)7、在直角坐标系xOy 中,圆C的方程为22((1)9x y ++=,以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线OP :6πθ=(R ρ∈)与圆C 交于点M 、N ,求线段MN 的长.8、在直角坐标系xOy 中,圆C 的参数方程为(65sin y αα⎨=-+⎩为参数), 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程为0θα=,其中0α满足0tan 2l α=与C 交于,A B 两点,求AB 的值.9、在直角坐标系xOy 中,直线l 经过点(1,0)P -,其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线C 的 极坐标方程为26cos 50ρρθ-+=.(Ⅰ)若直线l 与曲线C 有公共点,求α的取值范围; (Ⅱ)设(,)M x y 为曲线C 上任意一点,求x y +的取值范围.10、在直角坐标系中xOy 中,已知曲线E经过点1,3P ⎛ ⎝⎭,其参数方程为cos x a y αα=⎧⎪⎨=⎪⎩(α为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线E 的极坐标方程;(2)若直线l 交E 于点A B 、,且OA OB ⊥,求证:2211OAOB+为定值,并求出这个定值.11、在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别是244x t y t ⎧=⎨=⎩(t 是参数)和cos ,1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 的普通方程和曲线2C 的极坐标方程; (2)射线:OM ([,])64ππθαα=∈与曲线1C 的交点为O ,P ,与曲线2C 的交点为O ,Q ,求||||OP OQ ⋅的最大值.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
专题79 极坐标与参数方程-备战2018年高考高三数学一轮热点难点一网打尽(原卷版)
考纲要求:极坐标与参数方程在高考中常以填空或选择的形式出现,在知识上结合解析几何,考查学生曲线方程的转化能力,以及解析几何的初步技能。
题目难度不大,但需要学生能够快速熟练的解决问题基础知识回顾:(一)极坐标:1、极坐标系的建立:以平面上一点为中心(作为极点),由此点引出一条射线,称为极轴,这样就建立了一个极坐标系2、点坐标的刻画:用一组有序实数对(),ρθ确定平面上点的位置,其中ρ代表该点到极点的距离,而θ表示极轴绕极点逆时针旋转至过该点时转过的角度,通常:[)0,0,2ρθπ>∈3、直角坐标系与极坐标系坐标的互化:如果将极坐标系的原点与直角坐标系的原点重合,极轴与x 轴重合,则同一个点可具备极坐标(),ρθ和直角坐标(),x y ,那么两种坐标间的转化公式为:222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪=+⎩,由点组成的直角坐标方程与极坐标方程也可按照此法则进行转化,例如:极坐标方程cos sin 11x y ρθρθ+=⇒+=(在转化成,x y 时要设法构造cos ,sin ρθρθ ,然后进行整体代换即可)(二)参数方程:1、如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,那么()()x f t y g t =⎧⎪⎨=⎪⎩就称为该曲线的参数方程,其中t 称为参数 2、参数方程与一般方程的转化:消参法 (1)代入消参:()323323x t y x y t =+⎧⇒=+-⎨=+⎩(2)整体消参:2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩,由222112t t t t ⎛⎫+=++ ⎪⎝⎭可得:22x y =+(3)平方消参:利用22sin cos 1θθ+=消去参数3、常见图形的参数方程:(1)圆:()()222x a y b r -+-=的参数方程为:[)cos 0,2sin x a r y b r θθπθ=+⎧∈⎨=+⎩,,其中θ为参数,其几何含义为该圆的圆心角(2)椭圆:()222210x y a b a b +=>>的参数方程为[)cos 0,2sin x a y b θθπθ=⎧∈⎨=⎩,,其中θ为参数,其几何含义为椭圆的离心角(3)双曲线:()222210x y a b a b -=>>的参数方程为[)10,2cos tan x ay b θπθθ⎧=⎪∈⎨⎪=⎩,,其中θ为参数,其几何含义为双曲线的离心角(4)抛物线:()220y px p =>的参数方程为222x pt y pt ⎧=⎨=⎩,其中t 为参数(5)直线:过(),M a b ,倾斜角为θ的直线参数方程为cos sin x a t t R y b t θθ=+⎧∈⎨=+⎩,,其中t 代表该点与M 的距离注:对于极坐标与参数方程等问题,通常的处理手段是将方程均转化为直角坐标系下的一般方程,然后利用传统的解析几何知识求解应用举例:例1.【2018届高三南京市联合体学校调研测试】已知在平面直角坐标系xoy 中, O 为坐标原点,曲线C :3{3x cos sin y sin cos αααα=+=-(α为参数),在以平面直角坐标系的原点为极点, x 轴的正半轴为极轴,有相同单位长度的极坐标系中,直线l : sin 16πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程; (Ⅱ)求与直线l 平行且与曲线C 相切的直线的直角坐标方程。
极坐标与参数方程高考常见题型及解题策略
极坐标与参数方程高考常见题型及解题策略【考纲要求】(1)坐标系①了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
②了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化。
表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化。
③能在极坐标系中给出简单图形表示的极坐标方程。
④了解参数方程,了解参数的意义。
能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
⑤能选择适当的参数写出直线,圆和椭圆的参数方程。
了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解他们的区别。
(2)参数方程①了解参数方程,了解参数的意义②能选择适当的参数写出直线、圆和圆锥曲线的参数方程。
③了解平摆线、渐开线的生成过程,并能推导出他们的参数方程。
④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨迹中的作用。
【热门考点】高考题中这一部分主要考查简单图形的极坐标方程,极坐标与直角坐标的互化,直线、圆和圆锥曲线的参数方程,参数方程化为直角坐标方程等。
热点是极坐标与直角坐标的互化、参数方程化为直角坐标方程。
冷点是推导简单图形的极坐标方程、直角坐标方程化为参数方程。
盲点是柱坐标系、球坐标系中表示空间中点的位置的方法,摆线在实际中的应用,摆线在表示行星运动轨道中的作用。
涉及较多的是极坐标与直角坐标的互化及简单应用。
多以选做题形式出现,以考查基本概念,基本知识,基本运算为主,一般属于中档题。
【常见题型】 知识块 能力层次 知识点 11年 12年 13年 14年 备注 十八、坐标系与参数方程 理解 54.坐标系 23 23 23 23 理解55.参数方程23232323一.极坐标方程与直角坐标方程的互化例1. (2011新课标1,第23题)在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x ay a =⎧⎨=+⎩(σ为参数) M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与直角坐标、参数方程与普通方程的转化一、直角坐标的伸缩设点P(x ,y)是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧>='>=')()(0,0,μμλλy y x x 的作用下,点P(x ,y)对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x λ>0y ′=μ·yμ>0下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆(重点考察). 【强化理解】1.曲线C 经过伸缩变换后,对应曲线的方程为:x 2+y 2=1,则曲线C 的方程为( )A .B .C .D .4x 2+9y 2=1【解答】解:曲线C 经过伸缩变换①后,对应曲线的方程为:x ′2+y ′2=1②,把①代入②得到:故选:A2、在同一直角坐标系中,求满足下列图形变换的伸缩变换:由曲线4x 2+9y 2=36变成曲线x ′2+y ′2=1.【解答】解:设变换为φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),可将其代入x ′2+y ′2=1,得λ2x 2+μ2y 2=1.将4x 2+9y 2=36变形为x 29+y 24=1, 比较系数得λ=13,μ=12.所以⎩⎪⎨⎪⎧x ′=13x ,y ′=12y .将椭圆4x 2+9y 2=36上的所有点的横坐标变为原来的13,纵坐标变为原来的12,可得到圆′2+′2=1亦可利用配凑法将4x 2+9y 2=36化为⎝ ⎛⎭⎪⎪⎫x 32+⎝ ⎛⎭⎪⎪⎫y 22=1,与x ′2+y ′2=1对应项比较即可得⎩⎪⎨⎪⎧x ′=x3,y ′=y 2.3、(2015春•浮山县校级期中)曲线x 2+y 2=1经过伸缩变换后,变成的曲线方程是( )A .25x 2+9y 2=1B .9x 2+25y 2=1C .25x+9y=1D .+=1【解答】解:由伸缩变换,化为,代入曲线x 2+y 2=1可得25(x ′)2+9(y ′)2=1,故选:A .二、极坐标 1.公式:(1)极坐标与直角坐标的互化公式如下表:2.极坐标与直角坐标的转化(1)点:有关点的极坐标与直角转化的思路 A :直角坐标化为极坐标的步骤①运用 ②在内由求时,由直角坐标的符号特征判断点所在的象限. (),x y (),ρθ()222tan 0x y yx x ρθ⎧=+⎪⎨=≠⎪⎩[)0,2π()tan 0yx xθ=≠θB::极坐标化为直角坐标的步骤,运用(2)直线:直线的极坐标与直角坐标转化的思路 A :直角坐标转化成极坐标思路:直接利用公式,将式子里面的x 和y 用θρθρsin cos 和转化,最后整理化简即可。
例如:x+3y-2=0:用公式将x 和y 转化,即02-sin 3cos =+θρθρ B :极坐标转化成直角坐标类型①:直接转化---直接利用公式转化类型②:利用三角函数的两角和差公式,即()()2sin 2cos k kρθαρθα±=±=或思路:第一步:利用两角和差公式把sin(θ±α)或cos θ±α)化开,特殊角的正余弦值化成数字,整理化简第二步:利用公式转化解:第一步:利用两角和差公式把sin(θ±α)或cos θ±α)化开特殊角的正余弦值化成数字,整理化简,即第二步:第二步:利用公式转化(),ρθ(),x y sin y ρθ⎧⎨=⎩cos sin x y ρθρθ=⎧⎨=⎩cos sin x y ρθρθ=⎧⎨=⎩cos sin x y ρθρθ=⎧⎨=⎩类型③:角可以不是特殊角)为倾斜角,可以是特殊(ααθ=,该直线经过原点(极点),对应的直角坐标方程为kx x即y tanαy =⋅=(注:直线的直角坐标方程一般要求写成一般式:Ax+By+C=0) 三、曲线极坐标与直角坐标互换 (一)圆的直角与极坐标互换 1.圆的极坐标转化成直角坐标 类型一:θθρsin cos +=详解:一般θθsin ,cos 要转化成x 、y 都需要跟ρ搭配,一对一搭配。
所以两边同时乘以ρ,即0--,sin cos 22222=++=+∴+=y x y x y x y x 即θρθρρ 类型二:2=ρ没有三角函数时,可以考虑两边同时平方44222=+=y x 即ρ2.圆的直角坐标转化成极坐标3)1()4(22=++-y x解题方法一:拆开--公式代入014sin 2cos 801428031216822222=++-∴=++-+=-++++-θρθρρy x y x y y x x 即 解题方法二:代入-拆-合031sin 2sin 16cos 8cos 3)1sin ()4cos (222222=-++++-=++-θρθρθρθρθρθρ即 014sin 2cos 8014sin 2cos 8)sin (cos 2222=++-=++-+∴θρθρρθρθρθθρ即【强化理解】1.将下列点的极坐标与直角坐标进行互化.①将点M 的极坐标⎝ ⎛⎭⎪⎪⎫4,143π化成直角坐标;②将点N 的直角坐标(4,-43)化成极坐标(ρ≥0,0≤θ<2π).【解答】解:①∵x =4cos 143π=4cos 2π3=4×⎝ ⎛⎭⎪⎪⎫-12=-2,y =4sin 143π=4sin 2π3=23,∴点A 的直角坐标是(-2,23).②∵ρ=42+(-43)2=8,tan θ=-434=-3,θ∈[0,2π),又点(4,-43)在第四象限,∴θ=5π3,∴对应的极坐标为⎝⎛⎭⎪⎪⎫8,5π3.2、将下列直角坐标方程与极坐标方程进行互化.①y 2=4x;②θ=π3(ρ∈R );③ρ2cos2θ=4; ④ρ=12-cos θ.【解答】解:①将x =ρcos θ,y =ρsin θ代入y 2=4x ,得(ρsin θ)2=4ρcos θ.化简得ρsin 2θ=4cos θ.②当x ≠0时,由于tan θ=yx ,故tan π3=yx =3,化简得y =3x (x ≠0);当x =0时,y =0.显然(0,0)在y =3x 上,故θ=π3(ρ∈R )的直角坐标方程为y =3x .③因为ρ2cos2θ=4,所以ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. ④因为ρ=12-cos θ,所以2ρ-ρcos θ=1,因此2x 2+y 2-x =1,化简得3x 2+4y 2-2x -1=0.3.化极坐标方程ρ2cos θ﹣ρ=0为直角坐标方程为( )A .x 2+y 2=0或y=1B .x=1C .x 2+y 2=0或x=1D .y=1【解答】解:∵ρ2cos θ﹣ρ=0, ∴ρcos θ﹣1=0或ρ=0, ∵,∴x 2+y 2=0或x=1, 故选C .4.将曲线ρcos θ+2ρsin θ﹣1=0的极坐标方程化为直角坐标方程为( ) A .y+2x ﹣1=0 B .x+2y ﹣1=0 C .x 2+2y 2﹣1=0 D .2y 2+x 2﹣1=0 【解答】解:由曲线ρcos θ+2ρsin θ﹣1=0,及,可得x+2y ﹣1=0.∴曲线ρcos θ+2ρsin θ﹣1=0的极坐标方程化为直角坐标方程为x+2y ﹣1=0.故选:B .5、在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎪⎫θ-π4=22.,求圆O 和直线l 的直角坐标方程;【解答】解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.三、参数方程 1.必记的曲线参数方程抛物线y 2=2px(p >0)⎩⎪⎨⎪⎧2.参数方程与普通方程的转化 (1)参数方程转化成普通方程 类型一:含t 的消参思路:含有t 的参数方程消参时,想办法把参数t 消掉就可以啦,有两个思路: 思路一:代入消元法,把两条式子中比较简单的一条式子转化成t=f(x)或t=f(y), 思路二:加减消元:让含有t 前面的系数相同或成相反数后相加减。
思路二:加减消元:两式相减,x -y -1=0. 类型二:含三角函数的消参思路:三角函数类型的消参一般的步骤就是:移项-化同-平方-相加 移项:把除了三角函数的其他相加减数字移动左边 化同:把三角函数前面的系数化成相同 平方:两道式子左右同时平方 相加:平方后的式子进行相加 (注:有时候并不需要全部步骤)例如:圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消参数θ,化为普通方程是(x -1)2+(y +2)2=1.解:移项:⎩⎨⎧=+=-θθsin 2cos 1y x (三角函数前面系数已经相同,省去化同,直接平方)平方:⎪⎩⎪⎨⎧=+=-θθ2222sin 2cos 1)()(y x 相加:12)y 1-x 22=++()(3.参数方程涉及题型(1)直线参数方程的几何意义(2)距离最值(点到点、曲线点到线、) 【强化理解】1、直线l 的参数方程为为参数).写出直线l 的直角坐标方程;【解答】直线l 的参数方程为为参数).由上式化简成t=2(x﹣1)代入下式得根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分)2、.将参数方程(θ为参数)化为普通方程为()A.y=x﹣2 B.y=x﹣2(0≤y≤1) C.y=x+2(﹣2≤x≤﹣1) D.y=x+2【解答】解:将参数方程(θ为参数)化为普通方程为:y=x+2,(﹣2≤x≤﹣1).故选:C.。