三角函数的图像和性质(第一课时)
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
必修四第一章第3节 三角函数的图象和性质(一)周期性与图象
年级高一学科数学版本苏教版课程标题必修四第一章第3节三角函数的图象和性质(一)周期性与图象编稿老师王东一校林卉二校黄楠审核王百玲一、考点突破1. 掌握正弦、余弦、正切三角函数的图象和性质,会作三角函数的图象。
通过三角函数的图象研究其性质。
2. 注重函数与方程、转化与化归、数形结合思想等数学思想方法的运用。
3. 掌握正弦型函数y=A sin(ωx+φ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题。
高考命题趋势考查内容1. 对三角函数图象的考查多以选择题、填空题为主。
对数形结合思想的考查主要通过三角函数图象和单位圆中的三角函数线等来体现。
2. 三角函数的性质是考查的重点,这类题目概念性强,具有一定的综合性与难度。
能力要求熟练掌握基本技能与基本方法。
难度与赋分高考中以三基为主,多为基础题目,每年分值约为8分。
二、重难点提示重点:正弦、余弦、正切函数的周期性、图象及性质;函数y=A sin(ωx+φ)的图象及参数对函数图象变化的影响。
难点:周期函数的概念;画三角函数的图象;函数y=A sin(ωx+φ)的图象与正弦曲线的关系。
一、知识脉络图正弦函数y=sinx三角函数的图象余弦函数y=cosx正切函数y=tanxy=Asin(ωx+φ)作图象描点法(五点作图法)几何作图法性质定义域、值域单调性、奇偶性、周期性对称性最值二、知识点拨1. 正弦、余弦、正切函数的主要性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:)(0,2Zkk∈⎪⎭⎫⎝⎛+ππ无对称轴对称中心:⎝⎛⎭⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间⎣⎡2kπ-π2,2kπ+⎦⎤π2(k∈Z);单调减区间⎣⎡2kπ+π2,2kπ+⎦⎤3π2(k∈Z)单调增区间[2kπ-π,kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间⎝⎛kπ-π2,kπ+⎭⎫π2(k∈Z)奇偶性奇偶奇2. 函数y=A sin(ωx+φ)(1)用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找到五个特征点。
高中数学第一章三角函数1.4三角函数的图象与性质1.4.2正弦函数、余弦函数的性质(第1课时)习题课
(2)若函数
f(x)是以π2
为周期的偶函数,且
π f( 3
)=1,求
f(-167π
)
的值. 【思路分析】 将-176π利用周期性转化为π3 ,进而求值.
π 【解析】 ∵f(x)的周期为 2 ,且为偶函数,
【解析】 (1)∵x∈R,f(x)=sin(34x+3π2 )=-cos34x,∴f(- x)=-cos3(-4 x)=-cos34x=f(x).
∴函数 f(x)=sin(34x+3π2 )为偶函数. (2)f(x)=(1-c1o+s2sxi)nx+sinx=sin12+x+sinsixnx=sinx,但函数应满 足 1+sinx≠0,
思考题 3 判断下列函数的奇偶性:
(1)f(x)=sinx-x tanx; (2)f(x)=lg(1-sinx)-lg(1+sinx); (3)f(x)=1c-oss2inxx; (4)f(x)= 1-cosx+ cosx-1. 【答案】 (1)偶函数 (2)奇函数 (3)非奇非偶函数 (4)既是 奇函数又是偶函数
(1)①要判断奇偶性的函数是三角函数型的复合函数. ②sin(34x+3π 2 )=-cos34x.
(2)①所判断的函数是以公式形式给出的; ②f(x)的定义域可求,即 sinx+1≠0. 解答本题中的(1)可先利用诱导公式化简 f(x),再利用 f(-x) 与 f(x)的关系加以判断. 解答本题中的(2)可先分析 f(x)的定义域,然后再利用定义加 以分析.
∴函数的定义域为{x|x∈R,且 x≠2kπ+32π,k∈Z}. ∵函数的定义域不关于原点对称, ∴该函数既不是奇函数也不是偶函数. 探究 3 (2)中易忽视 f(x)的定义域而进行非等价变形,得 f(x) =sinx(1+1+sinsxinx)=sinx,从而导致结果错误. 判断函数的奇偶性,首先要看定义域是否关于原点对称,再 看 f(-x)与 f(x)的关系.
3、三角函数的图像和性质(第一课时)
第三节、三角函数的图像和性质(第一课时)一、基础知识 1、三角函数的图像和性质 x y sin =x y cos = x y tan =图像定义域值域增区间减区间奇偶性周期性对称轴对称中心2、的五个关键点,在⎥⎦⎤⎢⎣⎡=20sin πx y ( ),( ),( ),( ),( ),( ) 的五个关键点,在⎥⎦⎤⎢⎣⎡=20cos πx y ( ),( ),( ),( ),( ),( ) 3、______,___,_______)00)(sin(初相相位,频率,振幅为期为表示一个振动量,则周,>>+=ωϕωA x A y1、三角函数图像及其之间的关系图像变换而来的样由的图像,并说明它是怎、做出例x y x y sin 1)62sin(21=++-=π练习:的周期性的图像,并研究、作出函数的图像、作出函数出该函数的周期的图像,并根据图像求、作出函数)(1sin 2)(3sin tan 12cos 112x f y x x f x xy x y =+=⋅=-=2、根据图像确定函数解析式k x A y ++=)sin(ϕω示,则函数表达式()的部分函数图像如图所、函数例)2,0)(sin(1πϕωϕω<>+=x A yA 、)48sin(4ππ+-=x y B 、)48sin(4ππ-=x y C 、)48sin(4ππ--=x y D 、)48sin(4ππ+=x y练习: ____B )sin(1示,试写出函数表达式的部分函数图像如图所、函数++=ϕωx A y3、三角函数图像的应用[][]求这两个根的和的范围求实数实数根,上有且仅有两个不同的在区间的方程、关于例的范围点,则有且仅有两个不同的交的图像和直线,、函数例)2()1(2,00cos 3sin 2____2,0sin 2sin )(1a a x x x k k y x x x x f ππ=++=∈+=[]_____0,21cos N 0,21sin 4,0212sin 3=⋂⎭⎬⎫⎩⎨⎧≤≤≤=⎭⎬⎫⎩⎨⎧≤≤≥=∈≥N M M x x x ,则,、若集合例的集合且的、求例πθθθπθθθπ的实数解个数、求方程例的实数解的个数、求方程例x x x x cos 26cos 52==4、三角函数图像的周期)63sin(2)3)(4121sin()2(2cos 11π-=+==x y x y x y )(、求下列函数周期例x x y x y x y x y x y 2cos 12cos 151)63cos(2)4()63cos(2)3()4121sin(4)2(sin 12++-=+-=-=+==)()(、求下列函数周期例ππ[][]的解析式,,求当时,若当是周期函数证明:对称的图像关于上的偶函数,且是定义在、已知函数例的值为则时,当,的最小正周期为数,若既是偶函数又是周期函上的函数、定义在例的值求为周期的偶函数,且是以、例)(2,61)(2,2)2()()1(2)()(5_____)35(,sin )(2,0)()(4)617(,1)3(2)(32x f x x x f x x f x x f y R x f f x x f x x f x f R f f x f --∈+-=-∈===⎥⎦⎤⎢⎣⎡∈-=ππππππ5、三角函数的定义域x x y x x x y x y x x y tan log 2)4()82cos(1tan )1sin 2lg()3(1sin 1log )2(cos lg 36)1(12122++=+--+-=-=+-=π、求下列函数的定义域例6、三角函数的奇偶性)1sin lg(sin )4(cos sin 1cos sin 1sin cos 1cos sin 1)3)(sin(cos )2)(cos()1(12++=-+++⨯++-+==+=x y xx x x x x x x y x y x x y π性、判断下列函数的奇偶例练习:______0)sin()4(1cos cos 1)3(sin 1cos )2(cos sin )1(等于上的偶函数则)是(若函数ϕπϕϕR x y x x y xx y x x y ≤≤+=-+-=-==7、三角函数的单调性)4sin()4(1cos 2cos 2)3)(43cos(log )2)(21sin(3)1(1221πππ+-=--=+=+-=x y x x y x y x y 间、求下列函数的单调区例的取值范围单减,则在,函数、已知例ωπππωω),2()4sin()(02+=>x x f () A 、⎥⎦⎤⎢⎣⎡4521, B 、⎥⎦⎤⎢⎣⎡4321, C 、⎥⎦⎤ ⎝⎛210, D 、(]20,的取值范围单增,求在,函数练习、已知ωππωω⎥⎦⎤⎢⎣⎡-=>4,3sin 2)(0x x f)83sin(cos )83sin(sin )4(160cos 194sin )3)(20)(cos(sin )sin(cos )2(47cos 101sin ,23cos )1(300πππ与与与,、比较函数各组的大小例<<-x x x练习:____2sin cos )2,0(1的大小关系为与,试比较,且,、已知πβαβαπβα+>∈ 2、C B A C B A ABC cos cos cos ______sin sin sin ++++中,则有在锐角三角形8、三角函数的对称性____2)20(cos 24____3)0(cos 3382cos 2sin 2)32sin(21围成的封闭图形面积为的图像与直线、函数例轴围成的图形面积为及的图像与直线、函数例的值对称,求的图像关于直线、如果函数例的对称中心、求函数例=≤≤=-=≤≤==+=-=y x x y y y x x y a x x a x y x y ππππ。
三角函数的图像与性质课件
1
0 -1
y
y=-cosx x [0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,
且
f(x)
=
cos(
π 2
+
2x)
=
-
sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0
三角函数的图象和性质PPT优秀课件1
比比看!看谁画的最快,最准确!
建构数学
一、函数y=sinx,x∈[0,2π]的图象
1、列表描点法 列表
4
2 2
x y
0 0
2
3
4
2 2
5
4
2 2
3 2
7
4
2 2
2
1
0
-1
0
问题4:怎样才能比较精确的作出这些 点,并且可以准确的反映函数的变化 趋势呢? 利用正弦线可以实现吗?
作 图
1, 1
) 2
单调减
问题情境
问题2 “为了更加直观地研究三角函数 的性质,可以先作出它们的图象.” 怎样作出正弦函数y = sinx的图象?
学生活动
问题3 根据周期性,可以先作出y = sinx,x [0,2π]的图象,再由周期性得到整个图象. 描点法的基本步骤是什么? 基本步骤:1、列表;2、描点;3、连线 又叫列表描点法。
数学运用
例1.用五点法画出下列函数的简图: (1)y=2cosx,x R (2)y=sin2x,x R 问题9: y=2cosx可以看成由y=cosx如何变换 得来?
横坐标不变,纵坐标变为原来的2倍。
数学运用
例1 .用五点法画出下列函数的简图: (1)y=2cosx,x R (2)y=sin2x,x R 问题10: y=sin2x可以看成由y=sinx如何变换 得来? 纵坐标不变,横坐标变为原来的一半。
B
A O -1
1
(B) π π 2
3π 2
2π X
4、五点作图法:
建构数学
二、函数y=sinx,x∈R的图象
将y=sinx,x∈[0,2π ]的图象向左、右平行移动,每 次2π个单位长度就可以得到y=sinx,x∈R的图象.又叫正 弦曲线(sine curve) . 与正弦线一样 作 吗? 图 几种作图法的特点 ①列表描点法: 方法较基本,但较繁琐,细节不够准确; ②几何法: 充分反映x与y之间的依存关系,但较繁琐; ③电脑作图法: 精确度高,作图方便,对设备要求较高. ④五点作图法: 简便.
高中数学 第一章 三角函数 第4节 三角函数的图象与性质(第1课时)正弦函数、余弦函数的图象教案(含
第1课时 正弦函数、余弦函数的图象[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 30~P 33的内容,回答下列问题. (1)观察教材P 31图1.4-3,你认为正弦曲线是如何画出来的?提示:利用单位圆中的正弦线可以作出y =sin_x ,x ∈[0,2π]的图象,将y =sin_x 在[0,2π]内的图象左右平移即可得到正弦曲线.(2)在作正弦函数的图象时,应抓住哪些关键点?提示:作正弦函数y =sin x ,x ∈[0,2π]的图象时,起关键作用的点有以下五个:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). (3)作余弦函数的图象时,应抓住哪些关键点?提示:作余弦函数y =cos x ,x ∈[0,2π]的图象时,起关键作用的点有以下五个:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.归纳总结,核心必记 (1)正弦曲线正弦函数y =sin x ,x ∈R 的图象叫正弦曲线.(2)正弦函数图象的画法 ①几何法:(ⅰ)利用正弦线画出 y =sin x ,x ∈[0,2π]的图象; (ⅱ)将图象向左、向右平行移动(每次2π个单位长度). ②五点法:(ⅰ)画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线连接;(ⅱ)将所得图象向左、向右平行移动(每次2π个单位长度). (3)余弦曲线余弦函数y =cos x ,x ∈R 的图象叫余弦曲线.(4)余弦函数图象的画法①要得到y =cos x 的图象,只需把y =sin x 的图象向左平移π2个单位长度即可,这是由于cos x =sin ⎝⎛⎭⎪⎫x +π2.②用“五点法”:画余弦曲线y =cos x 在[0,2π]上的图象时,所取的五个关键点分别为(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1),再用光滑的曲线连接.[问题思考](1)正弦曲线和余弦曲线是向左右两边无限延伸的吗? 提示:是.(2)余弦曲线与正弦曲线完全一样吗?提示:余弦曲线与正弦曲线形状相同,但在同一坐标系下的位置不同.[课前反思](1)正弦曲线的定义: ; (2)正弦曲线的画法: ; (3)余弦曲线的定义: ; (4)余弦曲线的画法: .知识点1用“五点法”作简图讲一讲1.用“五点法”作出下列函数的简图:(1)y=sin x-1,x∈[0,2π];(2)y=2+cos x,x∈[0,2π].[尝试解答] (1)列表:x 0π2π3π22πsin x 010-10sin x-1-10-1-2-1 描点、连线,如图.(2)列表:x 0π2π3π22πcos x 10-10 12+cos x 3212 3描点、连线,如图.类题·通法用“五点法”画函数y=A sin x+b(A≠0)或y=A cos x+b(A≠0)在[0,2π]上的简图的步骤:(1)列表:x 0π2π3π22πsin x 或cos x 0或11或00或-1-1或00或1y y 1 y 2 y 3 y 4 y 5(2)描点:在平面直角坐标系中描出下列五个点:(0,y 1),⎝ ⎛⎭⎪⎫π2,y 2,(π,y 3),⎝ ⎛⎭⎪⎫3π2,y 4,(2π,y 5).(3)连线:用光滑的曲线将描出的五个点连接起来. 练一练1.利用“五点法”作出下列函数的简图: (1)y =-sin x (0≤x ≤2π); (2)y =1+cos x (0≤x ≤2π). 解:(1)列表:x0 π2 π 3π2 2π sin x 0 1 0 -1 0 -sin x-11描点、连线,如图.(2)列表:x0 π2 π 3π2 2π cos x 1 0 -1 0 1 1+cos x2112描点、连线,如图.利用正、余弦函数的图象解不等式知识点2讲一讲2.利用正弦曲线,求满足12<sin x ≤32的x 的集合.[尝试解答] 首先作出y =sin x 在[0,2π]上的图象.如图所示,作直线y =12,根据特殊角的正弦值,可知该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π6和5π6;作直线y =32,该直线与y =sin x ,x ∈[0,2π]的交点横坐标为π3和2π3.观察图象可知,在[0,2π]上,当π6<x ≤π3,或2π3≤x <5π6时,不等式12<sin x ≤32成立.所以12<sin x ≤32的解集为⎩⎨⎧x |π6+2k π<x ≤π3+2k π,或⎭⎬⎫2π3+2k π≤x <5π6+2k π,k ∈Z .类题·通法用三角函数图象解三角不等式的步骤(1)作出相应的正弦函数或余弦函数在[0,2π]上的图象; (2)写出适合不等式在区间[0,2π]上的解集; (3)根据公式一写出定义域内的解集. 练一练2.使不等式2-2sin x ≥0成立的x 的取值集合是( )A.⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+3π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+7π4,k ∈ZC.⎩⎨⎧⎭⎬⎫x |2k π-5π4≤x ≤2k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x |2k π+5π4≤x ≤2k π+7π4,k ∈Z解析:选C 不等式可化为sin x ≤22. 法一:作图,正弦曲线及直线y =22如图(1)所示.由图(1)知,不等式的解集为⎩⎨⎧ x |2k π-5π4≤x ≤2k π+π4,}k ∈Z .故选C.法二:如图(2)所示不等式的解集为⎩⎨⎧ x |2k π-5π4≤x ≤2k π⎭⎬⎫+π4,k ∈Z .故选C.知识点3正、余弦曲线与其他曲线的交点问题讲一讲3.判断方程sin x =lg x 的解的个数.[尝试解答] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移,得到y =sin x 的图象.在同一坐标系内描出⎝ ⎛⎭⎪⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图.由图象可知方程sin x =lg x 的解有3个.类题·通法(1)确定方程解的个数问题,常借助函数图象用数形结合的方法求解.(2)三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.练一练3.已知函数f (x )=sin x +2|sin x |,x ∈[0,2π],若直线y =k 与其仅有两个不同的交点,求k 的取值范围.解:由题意知f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈π,2π].图象如图所示:若函数f (x )的图象与直线y =k 有且仅有两个不同的交点,则由图可知k 的取值范围是(1,3).[课堂归纳·感悟提升]1.本节课的重点是“五点法”作正弦函数和余弦函数的图象,难点是图象的应用. 2.本节课要重点掌握正、余弦函数图象的三个问题 (1)正、余弦函数图象的画法,见讲1; (2)利用正、余弦函数的图象解不等式,见讲2; (3)正、余弦曲线与其他曲线的交点问题,见讲3. 3.本节课要牢记正、余弦函数图象中五点的确定y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象上的关键五点分为两类:①图象与x 轴的交点;②图象上的最高点和最低点.其中,y =sin x ,x ∈[0,2π]与x 轴有三个交点:(0,0),(π,0),(2π,0),图象上有一个最高点⎝⎛⎭⎪⎫π2,1,一个最低点⎝ ⎛⎭⎪⎫3π2,-1;y =cos x ,x ∈[0,2π]与x 轴有两个交点:⎝ ⎛⎭⎪⎫π2,0,⎝ ⎛⎭⎪⎫3π2,0,图象上有两个最高点:(0,1),(2π,1),一个最低点(π,-1).课下能力提升(八)[学业水平达标练]题组1 用“五点法”作简图1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2π B.0,π4,π2,3π4,πC .0,π,2π,3π,4π D.0,π6,π3,π2,2π3解析:选B 分别令2x =0,π2,π,3π2,2π,可得x =0,π4,π2,3π4,π. 2.以下对正弦函数y =sin x 的图象描述不正确的是( )A .在x ∈[2k π,2k π+2π](k ∈Z )时的图象形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点解析:选C 由正弦函数y =sin x 在x ∈[2k π,2k π+2π](k ∈Z )时的图象可知C 项不正确.3.函数y =sin|x |的图象是( )解析:选B y =sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,sin -x ,x <0.作出y =sin|x |的简图知选B.4.用“五点法”作出函数y =1+2sin x ,x ∈[0,2π]的图象. 解:列表:x0 π2 π 3π2 2π sin x 0 1 0 -1 0 1+2sin x131-11在直角坐标系中描出五点(0,1),⎝ ⎛⎭⎪⎫π2,3,(π,1)⎝⎛⎭⎪⎫3π2,-1,(2π,1),然后用光滑曲线顺次连接起来,就得到y =1+2sin x ,x ∈[0,2π]的图象.题组2 利用正、余弦函数的图象解不等式 5.不等式cos x <0,x ∈[0,2π]的解集为( ) A.⎝⎛⎭⎪⎫π2,3π2 B.⎣⎢⎡⎦⎥⎤π2,3π2C.⎝ ⎛⎭⎪⎫0,π2D.⎝ ⎛⎭⎪⎫π2,2π 解析:选A 由y =cos x 的图象知, 在[0,2π]内使cos x <0的x 的范围是⎝⎛⎭⎪⎫π2,3π2.6.函数y =2cos x -2的定义域是________. 解析:要使函数有意义,只需2cos x -2≥0, 即cos x ≥22.由余弦函数图象知(如图).所求定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z . 答案: ⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π,k ∈Z7.求函数y =sin x -12+cos x 的定义域.解:由⎩⎪⎨⎪⎧sin x -12≥0,cos x ≥0,得⎩⎪⎨⎪⎧π6+2k π≤x ≤5π6+2k π,k ∈Z ,2k π-π2≤x ≤2k π+π2,k ∈Z .∴2k π+π6≤x ≤2k π+π2,k ∈Z ,即函数y =sin x -12+cos x 的定义域为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+π2(k ∈Z ). 题组3 正、余弦曲线与其他曲线的交点问题8.y =1+sin x ,x ∈[0,2π]的图象与直线y =32交点的个数是( )A .0B .1C .2D .3解析:选C 画出y =32与y =1+sin x ,x ∈[0,2π]的图象,由图象可得有2个交点.9.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个 D .无数个解析:选B 设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.10.判断方程sin x =x10的根的个数.解:因为当x =3π时,y =x10=3π10<1;当x =4π时,y =x 10=4π10>1. 所以直线y =x10在y 轴右侧与曲线y =sin x 有且只有3个交点(如图所示),又由对称性可知,在y 轴左侧也有3个交点,加上原点(0,0),一共有7个交点.所以方程sin x =x10有7个根.[能力提升综合练]1.与图中曲线(部分)对应的函数解析式是( )A .y =|sin x |B .y =sin |x |C .y =-sin |x |D .y =-|sin x |解析:选C 注意图象所对的函数值的正负,可排除选项A ,D.当x ∈(0,π)时sin |x |>0,而图中显然小于零,因此排除选项B.故选C.2.方程|x |=cos x 在(-∞,+∞)内 ( ) A .没有根 B .有且只有一个根 C .有且仅有两个根 D .有无穷多个根解析:选C 在同一坐标系内画出函数y =|x |与y =cos x 的图象,易得两个图象在第一、二象限各有一个交点,故原方程有两个根,选C.3.函数y =-x cos x 的部分图象是( )解析:选D ∵y =-x cos x 是奇函数,它的图象关于原点对称,∴排除A ,C 项;当x∈⎝⎛⎭⎪⎫0,π2时,y =-x cos x <0,∴排除B 项,故选D. 4.在(0,2π)上使cos x >sin x 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫5π4,2πB.⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4 C.⎝⎛⎭⎪⎫π4,5π4 D.⎝ ⎛⎭⎪⎫-3π4,π4解析:选A 以第一、三象限角平分线为分界线,终边在下方的角满足cos x >sin x . ∵x ∈(0,2π),∴cos x >sin x 的x 的范围不能用一个区间表示,必须是两个区间的并集.5.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点坐标为____________. 解析:作出函数y =cos x +4,x ∈[0,2π]的图象(图略),容易发现它与直线y =4的交点坐标为π2,4,⎝ ⎛⎭⎪⎫3π2,4. 答案:⎝⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,46.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0x +2,x <0,则不等式f (x )>12的解集是____________________.解析:在同一平面直角坐标系中画出函数f (x )和函数y =12的图象,如图所示.当f (x )>12时,函数f (x )的图象位于函数y =12的图象的上方,此时-32<x <0或π6+2k π<x <5π6+2k π(k ∈N ).答案:⎩⎨⎧⎭⎬⎫x -32<x <0或π6+2k π<x <5π6+2k π,k ∈N7.方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个实数根,求a 的取值范围.解:首先作出y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图象,然后再作出y =1-a 2的图象,如果y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π与y =1-a 2的图象有两个交点,方程sin x =1-a 2,x ∈⎣⎢⎡⎦⎥⎤π3,π就有两个实数根.设y 1=sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π,y 2=1-a 2.y 1=sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图象如图.由图象可知,当32≤1-a 2<1,即-1<a ≤1-3时,y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎢⎡⎦⎥⎤π3,π上有两个实根.8.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题: (1)观察函数图象,写出满足下列条件的x 的区间. ①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]的图象有两个交点,求a 的取值范围. 解:列表如下:x-π -π2 0 π2 π sin x 0 -1 0 1 0 1-2sin x131-11描点并将它们用光滑的曲线连接起来,如图:(1)由图象可知,图象在直线y =1上方部分时y >1,在直线y =1下方部分时y <1, 所以①当x ∈(-π,0)时,y >1; ②当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x ,x ∈[-π,π]的图象有两个交点时,1<a <3或-1<a <1,所以a 的取值范围是(-1,1)∪(1,3).。
三角函数的图像和性质教学课件
图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
专题01 三角函数的图象与性质(解析版)
专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。
7.3三角函数的图像和性质课件高中数学苏教版必修第一册
当且仅当x=+2kπ(k∈Z)时,取 当且仅当x=2kπ(k∈Z)时,取得最
最值
得最大值1;当且仅当x=-+2kπ 大值1;当且仅当x=2kπ+π(k∈Z)
(k∈Z)时,取得最小值-1
时,取得最小值-1
奇偶性 奇函数
偶函数
对称轴 x=kπ+,k∈Z
x=kπ,k∈Z
对称
中心
(kπ,0),k∈Z
,k∈Z
3
π
π
kπ- ≤x≤kπ+ (k∈Z).
6
3
π
π
所以原函数的减区间是[kπ-6,kπ+3](k∈Z).
π
π
(2)y=2sin 4 - =-2sin - 4 .
π
令 z=x- ,则 y=-2sin z,求 y=-2sin z 的减区间,即求 2sin z 的增区间.
4
π
π
所以- +2kπ≤z≤ +2kπ,k∈Z,
(k∈Z)上都是增函数,其值由-1 (k∈Z)上都是增函数,其值由-1
单调性 增大到1;在每一个闭区间
增大到1;在每一个闭区间
[2kπ+,2kπ+] (k∈Z)上都是减函 [2kπ,2kπ+π] (k∈Z) 上都是减函
数,其值由1减小到-1
数,其值由1减小到-1
函数
正弦函数y=sin x
余弦函数 y=cos x
反思感悟与三角函数有关的函数的值域(或最值)的求解思路
1.求形如y=asin x+b的函数的最值或值域时,可利用正弦函数的有界性
(-1≤sin x≤1)求解.
2.对于形如y=Asin(ωx+φ)+k(Aω≠0)的函数,当定义域为R时,值域为
2021年高中苏教版数学必修4名师导学:第1章 第10课时 三角函数的图象与性质(1)
第10课时三角函数的图象与性质(1)教学过程一、问题情境先观看一个物理试验:这个试验的名称叫做“砂摆试验”,就是将一个装满细砂的漏斗挂在一个铁架上做单摆运动时,沙子落在与单摆运动方向垂直的木板上,我们通过试验看看落在木板上的细砂轨迹是什么?二、数学建构这个曲线在实际生活中经常遇到,同时它也是我们平常所学习过的一个函数的图象,该曲线就是我们这阶段正在学习的正弦函数或余弦函数的图象,点明课题:正弦函数、余弦函数的图象及其画法.首先争辩一下正弦函数y=sin x的图象画法,问题1对于正弦函数y=sin x,在上节课我们已知道正弦函数是周期函数,那么这对作出正弦函数y=sin x的图象有没有挂念?(正弦函数y=sin x是周期函数,它的最小正周期为2π;由于正弦函数的周期为2π,因此我们只需画出一个周期的图象,然后依据周期性就可以得到整个函数的图象了)问题2假如请你画,你会选择怎样的区间?(选择最生疏的区间[0,2π])问题3作函数y=sin x,x∈[0,2π]的图象最基本的方法是什么?其具体步骤又是什么?(描点法(列表、描点、连线))下面可以结合同学的预习,投影呈现利用描点法作出正弦函数y=sin x,x∈[0,2π]上的图象.(1)列表:x0πππ…2πy010 0(2)描点;(3)连线.(如图1)(图1)问题4以上我们利用描点法作出了正弦函数y=sin x,x∈[0,2π]的图象,在上面作图中,你觉得有不满足的地方吗?(描点越多,图象越精确,感觉描的点还不够多(等等))同学可能不会留意点的位置精确度不高,老师可作如下点评:在上面的作图中,我们只是借助于有限的几个特殊角进行描点,这样作出的图象精确度就会打折扣,假如图画得不精确,会影响后面更深化地争辩正弦函数的性质.问题5有没有方法精确地标出正弦函数y=sin x,x∈[0,2π]上任意一点Q(x0, sin x0)呢?(同学可能会供应下面的方法1,在前面指、对数函数和幂函数中已经多次使用过:方法1:我们可以借助计算机计算出sin x0,从而接受描点法作出正弦函数的图象(如图2):x sin x x sin x0010.8414710.10.0998331.10.8912070.20.1986691.20.9320390.30.295521.30.9635580.40.3894181.40.985450.50.4794261.50.9974950.60.5646421.60.9995740.70.6442181.70.9916650.80.7173561.80.9738480.90.7833271.90.9463(图2)老师可以接着提问下面的问题:可不行以不借助电脑而直接利用尺规来描点作图呢?(换句话说就是能否利用几何图形表示出sin x0)方法2:借助正弦线描点作出正弦函数的图象.第一步:列表.首先在单位圆中画出0,,,,…,2π的正弦线,并在x轴上[0,2π]这一段相应的分成12等份.其次步:描点.把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线平移后的终点连接起来,就得到正弦函数y=sin x,x∈[0,2π]的图象(如图3).(图3)作法点评:相比较方法1,方法2作出的图象较为精确了,特殊对于利用正弦线作图,图象的变化一目了然:(老师可以再用动画演示一下)当自变量x由0渐渐增大时,图象在递增并且呈上凸外形,在处函数达到最大值,在递减且上凸,过了π点,在连续递减并且下凸,到π达到最小值,之后在递增且下凸……问题6以上作出了y=sin x,x∈[0,2π]的图象,那么y=sin x,x∈R的图象怎么作出呢?(先作出函数y=sin x,x∈[0,2π]的图象,然后将作出的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象(如图4)).(图4)一般来说,我们将正弦函数的图象叫做正弦曲线.[3]问题7再观看y=sin x,x∈[0,2π]的图象,其图象变化有没有一些关键特征?观看正弦函数在[0,2π]内的图象,可以发觉起关键作用的点有以下五个:(0, 0),,(π, 0),,(2π, 0).事实上,描出这五点后,函数y=sin x,x∈[0,2π]的图象外形就基本确定了.因此在精确度要求不高时,我们经常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就得到函数的简图.五点法的几点总结:(1)留意五点的特征:最高点(波峰)、最低点(波谷)、平衡点(使得sin x, cos x等于0的点),它们属于三种特殊的函数值(正弦值为1,-1, 0);(2)五点的横向间隔相等,其长度等于周期的;(3)五点是连续变化的五点.问题8能否以正弦曲线的画法为基础,作出余弦函数y=cos x,x∈R的图象呢?你现在有几种方法?用平移变换法作y=cos x,x∈R的图象(放手让同学独立思考,自主活动,通过自己的探究得出余弦函数的图象.实际上,只要同学能够想到正弦函数和余弦函数的内在联系,即cos x=sin,通过图象变换,由正弦函数图象得出余弦函数图象的方法是比较简洁想到的),由于cos x=sin,所以只需将y=sin x,x∈R 的图象向左平移个单位即得.课件演示:由于y=cos x=cos(-x)=sin=sin,所以余弦函数y=cos x,x∈R与函数y=sin,x∈R是同一个函数;这样,余弦函数的图象可由正弦函数的图象向左平移个单位得到,如图5所示.(图5)余弦函数的图象叫做余弦曲线.问题9对比正弦曲线、余弦曲线,这两类曲线有相像之处吗?(这两个曲线外形一模一样,只不过是在坐标轴上的位置不同而已)问题10能否也用五点快速作出余弦曲线的图象?(同正弦函数图象一样,打算余弦曲线图象的也是五个关键点:(0, 1),,(π,-1),,(2π, 1),假如精确度要求不高,也可以借助此五点作出余弦函数在一个周期内的图象,进而利用周期性作出整个图象)课件演示:“余弦函数图象的五点作法”(略)三、数学运用【例1】用“五点法”画出下列函数的简图:(1)y=2cos x,x∈R;(2)y=sin2x,x∈R.(见同学用书P19)[处理建议]第(1)小题中,x分别取0,,π,,2π这五个值就可以找到关键的五个点;第(2)小题中,2π相当于正弦函数中的x,所以应当是2x分别取0,,π,,2π这五个值,然后得到x分别取的五个值.可让同学先尝试自己列表、作图,老师然后指出不足.[规范板书]解(1)先用“五点法”画一个周期的图象,列表:x0π2πcos x10-1012cos x20-202描点画图,然后由周期性得整个图象(如图(1)).(例1(1))(2)先用“五点法”画一个周期的图象,列表:x0π2x0π2πsin2x010-10描点画图,然后由周期性得整个图象(如图(2)).(例1(2))[题后反思]如何找到五点是解决本题的关键,应依据五点的图形特征来列表,即应当是图象上的最高、最低点,与x轴的交点.而描点的时候应当是x的取值和对应的y值组成一个点的坐标.思考函数y=2cos x与y=cos x的图象之间有何联系?函数y=sin2x与y=sin x的图象之间有何关系?(函数y=2cos x的图象应当是由函数y=cos x的图象上全部点的横坐标不变而纵坐标变为原来的2倍得到;函数y=sin2x的图象应当是由函数y=sin x 的图象上全部点的纵坐标不变而横坐标变为原来的得到)【例2】画出函数y=sin x+|sin x|的简图.(见同学用书P20)[处理建议]引导同学先求出三角函数的周期,然后作出在一个周期内的图象.要重视对函数解析式的变形.[规范板书]函数的周期为2π,在x∈[0,2π]时,y=作出函数图象如图:(例2)[题后反思]通过本例的学习,体会在数学解题中的等价转化思想,培育同学的分析、解决问题的力气.变式求函数y=sin x+|sin x|的值域.答案[0, 2].[题后反思]通过变题,让同学清楚画好函数图象是今后争辩函数的性质的基础.四、课堂练习1.用“五点法”画出函数y=2sin x的简图.解略.2.用“五点法”画出函数y=cos x-1的简图.解略.3.利用函数y=cos x的图象写出方程cos x=的解集.解.4.利用函数y=sin x的图象写出不等式sin x>的解集.解,k∈Z.五、课堂小结1.正弦函数图象的几何描点作图法(利用三角函数线来描点).2.正弦函数图象的五点作图法(留意五点的选取).3.由正弦函数的图象平移得到余弦函数的图象.4.重视利用正弦、余弦函数的图象来争辩函数的性质.。
三角函数三角函数的图象与性质课件
《三角函数三角函数的图象与性质课件pptx》2023-10-26•引言•三角函数的概念与性质•三角函数的图象表示目录•三角函数的应用•习题解答•总结与展望01引言三角函数是数学中的基础科目,对于高中生来说,掌握好三角函数的知识可以为后续的高等数学学习打下基础。
在本课程中,我们将从定义、图象、性质和应用等方面全面介绍三角函数的知识。
课程背景介绍课程目标熟悉三角函数的图象和变化趋势。
让学生掌握三角函数的定义、公式和基本性质。
培养学生的数学思维和逻辑推理能力。
能够灵活运用三角函数解决实际问题。
课程大纲•第一部分:三角函数的定义与公式•正弦函数、余弦函数和正切函数的定义与基本公式。
•角度与弧度的转换。
•第二部分:三角函数的图象与性质•正弦函数、余弦函数和正切函数的图象与性质。
•三角函数的周期性、最值和对称性。
•第三部分:三角函数的应用•利用三角函数解决实际问题,如物理、工程、计算机等领域的问题。
•三角函数在复数、极坐标系中的应用。
02三角函数的概念与性质1 2 3$y = \sin x$,表示单位圆上点的纵坐标。
正弦函数$y = \cos x$,表示单位圆上点的横坐标。
余弦函数$y = \tan x$,表示单位圆上点的纵坐标与横坐标的比值。
正切函数奇偶性正弦函数和正切函数为奇函数,余弦函数为偶函数。
值域正弦函数和余弦函数的值域为$\lbrack -1,1\rbrack$,正切函数的值域为全体实数。
周期性正弦函数、余弦函数和正切函数都具有周期性,最小正周期为$2\pi$。
定义域正弦函数和余弦函数的定义域为全体实数,正切函数的定义域为不等于$\frac{k\pi}{2} + \pi$的全体实数。
正弦函数的周期性$y = \sin x$的周期为$2\pi$,即$\sin(x + 2k\pi) = \sin x(k \in \mathbf{Z})$。
三角函数的周期性余弦函数的周期性$y = \cos x$的周期为$2\pi$,即$\cos(x + 2k\pi) = \cos x(k \in \mathbf{Z})$。
人教A版高中数学必修一课件《三角函数的图象与性质》三角函数(第一课时正弦函数、余弦函数的图象)
观察图象可知,在[0,2π]上,当π6<x≤π3或23π≤x<56π时,不等式12<sin
x≤ 23成立,
所以12<sin x≤ 23的解集为
xπ6+2kπ<x≤π3+2kπ
或
23π+2kπ≤x<56π+2kπ,k∈Z
.
34
1.用三角函数的图象解sin x>a(或cos x>a)的方法 (1)作出y=a,y=sin x(或y=cos x)的图象. (2)确定sin x=a(或cos x=a)的x值. (3)确定sin x>a(或cos x>a)的解集. 2.利用三角函数线解sin x>a(或cos x>a)的方法 (1)找出使sin x=a(或cos x=a)的两个x值的终边所在的位置. (2)根据变化趋势,确定不等式的解集.
6
思考:y=cos x(x∈R)的图象可由 y=sin x(x∈R)的图象平移得到的原 因是什么?
提示:因为 cos x=sinx+π2,所以 y=sin x(x∈R)的图象向左平移π2个 单位可得 y=cos x(x∈R)的图象.
7
A [五个关键点的横坐标依次
1.用五点法画 y=3sin x, x∈[0,2π]的图象时,下列哪个点不是
[0,2π]上简图的步骤
(1)列表:
x
0
π 2
π
3π 2
2π
sin x (或cos x)
0(或1)
-1 1(或0) 0(或-1)
(或0)
0(或1)
b
A+b
b
-A+b
b
y
(或A+b) (或b) (或-A+b) (或b) (或A+b)
23
(2)描点:在平面直角坐标系中描出五个点(0,y1),π2,y2,(π, y3),32π,y4,(2π,y5),这里的yi(i=1,2,3,4,5)值是通过函数解析式计算 得到的.
三角函数的图像和性质(说课案)
三角函数的图像和性质(第一课时说课案) 下面我将从四个方面说明本节课的教学设计。
一、教材分析二、教学方法分析三、教学流程四、教学说明一、教材分析1、地位与作用:本节课是在学生掌握了单位圆中的正弦线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。
对函数图像清晰而准确的掌握也为学生在解题实践中提供了有力的工具。
2、学情分析:(1)知识与技能:学生已掌握了一些初等基本函数的图像和性质,并了解一些函数图像的画法。
(2)心理与生理:高一上学期的学生已经对高中数学体系中函数问题的处理方法和过程有了初步认识,且具有了较强的分析、判断、理解能力和一定层次上的交流沟通能力。
3、教学目标(1)知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点(零点、最高点、最低点)的本质即:图像中走向趋势发生变化的点。
(2)过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数单调、对称、“周而复始”等性质的认知更为深刻。
(3)情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。
4、重、难点分析:(1)重点:用单位圆中的正弦线作正弦函数在]2,0[π的图象、“五点法”作图;(2)难点:如何由正弦函数在]2,0[π上的图象得到正弦函数在R上的图象;如何在正弦函数的图像上找出“五点”。
二、教学方法教学方法:演示法、示范教学法、启发式引导、互动式讨论、反馈式评价。
学习方法:观察发现、合作交流、归纳总结、反馈模仿。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
三、教学流程1、复习、引入:复习内容有:描点作函数图像的一般步骤;弧度定义;正、余弦函数定义;正弦线、余弦线;诱导公式。
设置的目的是让学生再次回顾弧度的定义(强调弧度与实数一一对应的关系)与正弦线(实质是函数值),为利用正弦线作出正弦函数的图像做准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】5.6三角函数的图像和性质(第一课时)
【教学目标】
知识目标:
(1) 理解正弦函数的图像和性质;
(2) 理解用“五点法”画正弦函数的简图的方法;
(3) 了解余弦函数的图像和性质.
能力目标:
(1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;
(2) 会用“五点法”作出正弦函数、余弦函数的简图;
(3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.
情感目标
培养学生的审美能力,作图能力,激发学习数学的兴趣,探究其他作图的方法.
【教学重点】
(1)正弦函数的图像及性质;
0,2π上的简图.
(2)用“五点法”作出函数y=sin x在[]
【教学难点】
周期性的理解.
【教学设计】
(1)结合生活实例,认识周期现象,介绍周期函数;
(2)利用诱导公式,认识正弦函数的周期;
(3)利用“描点法”及“周期性”作出正弦函数图像;
(4)观察图像认识有界函数,认识正弦函数的性质;
(5)观察类比得到余弦函数的性质.
【教学备品】
课件,实物投影仪,三角板,常规教具.
【课时安排】
1课时.(45分钟)
【教学过程】
一、揭示课题
5.6三角函数的图像和性质
二、创设情景兴趣导入
1、问题
观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?
再经过12个小时后,显示的时间是多少呢?.
2、解决 每间隔12小时,当前时间2点重复出现.
3、推广 类似这样的周期现象还有哪些?
三动脑思考 探索新知
概念
对于函数()y f x =,如果存在一个不为零的常数T ,当x 取定义域D 内的每一个值时,都有x T D +∈,并且等式()()f x T f x +=成立,那么,函数()y f x =叫做周期函数,常数T 叫做这个函数的一个周期.
由于正弦函数的定义域是实数集R ,对α∈R ,恒有2π()k k α+∈∈R Z ,并且
sin(2π)=sin ()k k αα+∈Z ,因此正弦函数是周期函数,并且 2π,4π, 6π,及2π-,4π-,
都是它的周期.
通常把周期中最小的正数叫做最小正周期,简称周期,仍用T 表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是2π.
四、构建问题 探寻解决
说明
由周期性的定义可知,在长度为2π的区间(如[]0,2π,[]2,0-π,[]2,4ππ)上,正弦函数的图像相同,可以通过平移[]0,2π上的图像得到.因此,重点研究正弦函数在一个周期内,即在[]0,2π上的图像.
1、问题 用“描点法”作函数x y sin =在[]0,2π上的图像.
2、解决
把区间[]0,2π分成12等份,并且分别求得函数x y sin =在各分点及区间端点的函数值,列表如下:(见教材)
以表中的y x ,值为坐标,描出点(,)x y ,用光滑曲线依次联结各点,得到[]sin 0,2y x =π在上的图像.(见教材)
3、推广
将函数sin y x =在[]0,2π上的图像向左或向右平移2π,4π,,就得到sin ,y x =∞+∞在(-)上的图像,这个图像叫做正弦曲线.(见教材)
五、动脑思考 探索新知
1、概念
正弦曲线夹在两条直线1y =-和1y =之间,即对任意的角x ,都有sin 1x
成立,函
数的这种性质叫做有界性.
一般地,设函数)(x f y =在区间),(b a 上有定义,如果存在一个正数M ,对任意的
),(b a x ∈都有()f x M ,那么函数)(x f y =叫做区间),(b a 内的有界函数.如果这样的M 不存在,函数)(x f y =叫做区间),(b a 上的无界函数.
显然,正弦函数是R 内的有界函数.
2、归纳
正弦函数x y sin =的定义域是实数集R .具有下面的性质:
(1)是R 内的有界函数,其值域为 []1,1-.当2()2
x k k π=+π∈Z 时, 1max =y ;当2()x k k π=-+π∈2
Z 时,1min -=y . (2)是周期为2π的周期函数.
(3)是奇函数.
(4) 在每一个区间(2,222
k k ππ-+π+π)(k ∈Z )上都是增函数,其函数值由−1增大到1;在每一个区间3(2,222
k k ππ+π+π)(k ∈Z )上都是减函数,其函数值由1减小到−1. 六、知识巩固 教材练习5.6.2
七、归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?
八、作业 学习与训练习题5.6;
板书设计
教学反思:。