高频变压器设计原则要求和程序
高频变压器的设计原则和材料
高频电源变压器作为一种产品,自然带有商品的属性,因此其设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为它的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。如果能认真考虑一下它的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思。
??3、绝缘材料?
????在绕制过程中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,层间可用聚脂薄膜或电话纸作隔离,绕阻间可用黄腊布作隔离。?
????4、浸渍材料:?
????绕制好后,还要过最后一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料。
1、通常用的材料有?
????漆包线,沙包线,丝包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下最好用Q2型号的高强度的聚脂漆包线。?
2、铁心材料:?
????使用的铁心材料主要有铁片、低硅片,高硅片,的钢片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000。???
35w12v高频变压器绕制
35w12v高频变压器绕制
35W12V高频变压器绕制通常指的是需要制作一个输出功率为35W、输入电压为12V的高频变压器。
高频变压器通常用于电子设备中,将一个电压级别转换为另一个电压级别,或者用于实现电气隔离等功能。
要绕制一个35W12V的高频变压器,需要考虑以下几个关键因素:
1.铁芯材料和尺寸:选择适当的铁芯材料和尺寸是关键,因为它们将决定变
压器的性能和效率。
2.线圈匝数:根据输入和输出电压的要求,确定适当的线圈匝数。
3.线材规格:选择适当线材规格以承载所需的电流,并保持适当的绝缘。
4.绕制方式:确定合适的绕制方式,如层绕、分布式绕制等,以提高变压器
的效率。
5.绝缘处理:确保线圈之间的绝缘和线圈与铁芯之间的绝缘,以确保电气性
能和安全。
6.磁芯选择:选择合适的磁芯材料和尺寸,以确保变压器的性能和稳定性。
总之,35W12V高频变压器绕制是指根据特定的要求和规格,设计和制造一个能够实现特定功能的高频变压器。
这个过程需要充分了解变压器的原理和设计方法,并考虑到各种因素,以确保最终的变压器性能达到要求。
高频变压器安规介绍
高频变压器安规介绍pptxx年xx月xx日•变压器安全概述•高频变压器安规要求•高频变压器安全应用•高频变压器安全风险目•高频变压器安全检测•高频变压器安全培训录01变压器安全概述变压器的安全问题变压器过热由于线圈电流过大或磁芯损耗等因素导致变压器温度升高,可能引发火灾等安全问题。
变压器电磁辐射由于变压器工作过程中产生交变磁场,可能对周围环境和人体健康造成影响。
变压器安全距离不足变压器与周围物体距离过近,可能导致电击等危险。
变压器安全标准与规范国际电工委员会(IEC)标准IEC 60076-1标准对电力变压器安全性能和试验方法做出了具体规定。
要点一要点二国家标准(GB)我国根据IEC标准制定了相应的国家标准,如GB 1094.1-2008等。
行业标准为确保变压器安全,各行业也制定了一系列相关标准,如DL/T 1308-2013等。
要点三高频变压器的安全特点高频变压器产生的磁场和电场强度较大,对周围环境和人体健康可能产生一定影响。
高频变压器的绝缘材料和结构对其安全性能具有重要影响,需特别关注其耐压能力和温升情况。
高频变压器具有更高的效率和节能优势,但同时其安全风险也更高。
02高频变压器安规要求高频变压器安全规定了解高频变压器的安全规定是确保设备安全运行和人员安全的必要条件。
熟悉高频变压器安全法规和标准,如国家电气安全法规和电磁辐射标准等。
掌握变压器的安全使用方法和注意事项,包括使用环境、使用方法、异常情况处理等。
高频变压器安全设计高频变压器安全设计应遵循结构简单、易于维护和更换的原则。
针对不同的应用场景和使用环境,设计符合规范的变压器,确保设备的稳定性和安全性。
在设计中考虑到异常情况下的保护措施,如过载、短路、过压等异常情况的处理和保护。
高频变压器安全认证高频变压器必须通过相关的安全认证,以确保其符合国家安全标准和国际电工委员会(IEC)标准。
熟悉常见的安全认证标准,如中国国家强制性产品认证(CCC)、国际电工认证(CE)等。
高频电源变压器设计原则要求和程序
高频电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用.根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率.传送功率不同,电源变压器的设计也不一样,应当是不言而喻的.有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用.究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定.同一个英文名称“PowerTransformer”,还可译成“电力变压器”.电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA.电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去.电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的.高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的.按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、 500kHz~1MHz、1MHz以上.传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高.这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的.如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文.正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚.如有说得不对的地方,敬请几位作者和广大读者指正.2 高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好.有时可能偏重性能和效率,有时可能偏重价格和成本.现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本.其中成为一大难点的高频电源变压器,更需要在这方面下功夫.所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来.不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰.往往一种新产品最后被成本否决.一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本.因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计.由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正.现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率.这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念.问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚.总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好.检验设计的唯一标准是设计出的产品能否经受住市场的考验.3 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本.3.1 使用条件使用条件包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性.可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止.一般使用条件对高频电源变压器影响最大的是环境温度.有些软磁材料,居里点比较低,对温度敏感.例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃, 80℃,100℃时的各种参考数据.因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于 A级绝缘材料温度.与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据.作者曾开发H 级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了.本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验.请有关作者详细介绍优化设计方案,以便广大读者学习.电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可闻的音频噪声和不可闻的高频噪声.高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩.磁致伸缩大的软磁材料,产生的电磁干扰大.例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上.因此锰锌软磁铁氧体磁芯产生的电磁干扰大.高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力.这些力的变化频率与高频电源变压器的工作频率一致.因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的.既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因. 由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯.至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信.屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法.但是为了阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰.3.2 完成功能高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离.功率传送有两种方式.第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边.在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式.单方向变化工作模式, 磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm.磁通密度变化值ΔB=Bm-Br.为了提高ΔB,希望Bm大,Br小.双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm.磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关.第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载.传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感.电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关.虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容.在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容.只是在“交流损耗”一条中,提出BAC典型值为 0.04~0.075T.显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚.经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T.由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了.电压变换通过原边和副边绕组匝数比来完成.不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换.但是,绕组匝数与高频电源变压器的漏感有关.漏感大小与原绕组匝数的平方成正比.有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法.“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1% ~3%”.“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求.其实这种写法或设计标准很不专业.电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制.在制作变压器的过程中,应在不使变压器的其他参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”.“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”.虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值.因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件承受的电压峰值,对绝缘不利,也产生附加损耗和电磁干扰.绝缘隔离通过原边和副边绕组的绝缘结构来完成.为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大.还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路.这样,匝数有下限,使漏感也有下限.总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题.3.3 提高效率提高效率是对电源和电子设备的普遍要求.虽然从单个高频电源变压器来看,损耗不大.例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多.但是成十万个,成百万个高频电源变压器,总损耗可能达到上100kW,甚至上MW.还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上10GW·h.这样,提高高频电源变压器效率,可以节约电力.节约电力后,可以少建发电站.少建发电站后,可以少消耗煤和石油,可以少排放CO2, SO2,NOx,废气,废水,烟尘和灰渣,减少对环境的污染.既具有节约能源,又具有环境保护的双重社会经济效益.因此,提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下.高频电源变压器损耗包括磁芯损耗(铁损)和绕组损耗(铜损).有人关心变压器的铁损和铜损的比例.这个比例是随变压器的工作频率发生变化的.如果变压器的外加电压不变,工作频率越低,绕组匝数越多,铜损越大.因此在50Hz工频下,铜损远远超过铁损.例如:50Hz,100kVAS9型三相油浸式硅钢电力变压器,铜损为铁损的5倍左右.50Hz,100kVASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右.并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则.随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降.而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大.在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损.造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”.导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系.而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势.说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况.根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分.正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容.铁损也成为评价软磁芯材料的一个主要参数.铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗.用符号表示时,也必须标明PB/f〔式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)〕.例如,P0.5/400表示工作磁通密度为0.5T,工作频率为 400Hz时的损耗.又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时的损耗.铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损.软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限.所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值.新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高.例如,PW3类软磁铁氧体材料,工作频率为 100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a 级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3).日本TDK公司生产的PC44型软磁铁氧体材料达到PW3a级标准,达不到PW3b级标准.“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度.读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于 50mW/cm3的铁氧体材料是非常先进的.请介绍一下是哪家公司哪种型号产品,以便读者也去购买.在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损.由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象“辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用.不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦.因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的.同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2.应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索.“你走你的阳关道,我走我的独木桥”.为什么一定要按你指定的道路走,才不是“错误概念”呢?3.4 降低成本降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求.高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争.竞争的内容包括性能和成本两个方面,缺一不可.不注意降低成本,往往会在竞争中被淘汰.高频电源变压器的成本包括材料成本,制造成本和管理成本.设计是高频电源变压器降低成本的主要手段.高频电源变压器所用的材料和零部件的贵贱和数量的多少?是否方便采购?是否要备有多少库存量?磁芯,线圈和总体结构的加工和装配工艺复杂还是简单?需要人工占的比例多大(实现生产过程的机械化和自动化,可以减少人工工时,更能保证产品的一致性和质量)?是否需要工模具?质量控制中需要检测的工序和参数:哪些参数要在加工过程中检测?哪些参数要在出厂试验中检测(出厂试验的参数应选择能决定性能的关键参数,数量不要多,以便能即时判断产品质量.)?哪些参数要在型式试验中检测?要用什么检测仪器和设备,价格如何?等等,都是由设计来决定的.因此,高频电源变压器的设计者除了要了解高频电源变压器的理论和设计方法而外,还要了解各种软磁材料和磁芯的性能和价格,各种电磁线的性能和价格,各种绝缘材料的性能和价格;还要了解磁芯加工热处理工艺,线圈绕制和绝缘处理工艺及变压器组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及高频电源变压器的市场动态等等.只有知识全面的设计者,才能设计出性能好,成本低的高频电源变压器产品.降低成本是促进高频电源变压器技术发展的一种推动力.为什么轻、薄、短、小成为高频电源变压器的发展方向?原因之一是这样既能降低材料成本,又能降低制造成本.提高工作频率,可以使高频电源变压器的重量和体积下降.但是,要克服高频带来的负面影响,必须采用新的软磁材料和导电材料并增加抑制高频电磁干扰的措施,因此,对具体使用条件下的高频电源变压器究竟选用多高的工作频率?要在综合考虑性能和总体成本后决定.提高效率,降低损耗发生的热量,可以减少高频电源变压器散热的表面积,从而使体积和重量下降.但是,降低损耗必须采用新材料和新工艺.因此,对具体使用条件下的高频电源变压器究竟达到多高的效率?也要在综合考虑性能和总体成本后决定. 4高频电源变压器的设计程序高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容.下面分别进行讨论.4.1 磁芯材料根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项.但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情.许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提.而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道.《电源技术应用》2003年第6期中的两篇文章就是一例.和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点.软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯.缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感.因此,有些高频电源变压器并不适合选择软磁铁氧体.例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势.又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜, 与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位.即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比.4.2 磁芯结构高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等.漏磁和漏感与磁芯结构有直接关系.如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗.封闭磁芯的磁通基本上集中在磁芯里面,漏磁小.同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消.但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘.不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易.建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗.矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径.不封闭磁芯中的气隙大小和位置与漏磁和漏感有密切关系.在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸.因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利.另外,气隙的位置最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用.窗口面积的大小与线圈发热损耗和散热面积有关.窗口面积大,绕的电磁线截面。
高频变压器的设计方法及其应用研究
高频变压器的设计方法及其应用研究摘要:首先论述了设计高频变压器的基本原则,分析了高频变压器设计的基本要求。
阐述了高频变压器的设计方法,详细讨论了磁芯材料、磁芯结构、磁芯参数、线圈参数、组装结构和工作点确定等各个方面设计时应该注意的问题。
运用面积相乘(AP)法设计了一款实际应用的高频变压器。
最后简介了高频变压器的发展方向和应用前景。
关键词:高频变压器,面积相乘法,磁芯材料,线圈参数1.引言电子变压器、半导体开关器件、半导体整流器件和电容器一起,被称为电源装置中的四大主要元器件[1]。
电子变压器作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。
高频变压器是指工作频率大于等于20KHz的变压器,主要用于高频开关电源中作高频开关电源变压器,也可以用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器。
一般传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。
高频电子变压器和它的发展方向最近成为电子变压器行业关注的一个焦点。
电子设备小型化和轻量化的需求日益突出,因此,对于占用电子设备很大体积和重量的电感变压器相应向高频化的方向发展。
同时,器件也由传统的插件向表面贴装的方向发展,笔记本电脑的日益普及,各种数码消费电子和汽车电子的蓬勃发展,都为高频电感变压器的发展提供千载难逢的机会。
在DC-DC转换器中,更低的电压,更高的电流的发展趋势,对相应的高频电子变压器的设计提出更高的要求。
2.高频变压器的设计原则与设计要求(1) 高频变压器的设计原则。
高频变压器作为一种产品,与其他商品一样,设计原则是在具体使用条件下完成具体功能中追求性能价格比最好。
产品虽然性能好,但如果价格不能为市场接受也会遭冷落和淘汰。
(2) 高频变压器的设计要求。
以设计原则为出发点,高频变压器的设计要求包括:使用条件,完成功能,提高效率,降低成本。
使用条件包括两方面内容:可靠性和电磁兼容性。
可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止[2]。
高频变压器安规介绍
安装时要注意电源接入的方向 ,确保输入、输出端接反。
安装过程中要避免损伤变压器 的线路和结构。
高频变压器维护的安全规范
维护前要断开电源,并检查变压器周围是否有杂物或水渍。 维护时要使用专业的工具和材料,避免使用不适当的工具和方法。
维护完成后要检查变压器的性能和安全防护设施是否正常。
03
高频变压器安规检测方法
创新设计方案介绍
采用新型磁芯材料
采用具有高磁导率、低损耗等 特点的新型磁芯材料,提高变
压器的效率,降低能耗。
创新绕组设计
采用新型绕组设计技术,减小 绕组间电容,提高变压器的绝
缘性能和可靠性。
采用数字控制技术
将数字控制技术应用于高频变 压器的设计中,实现精确控制 和优化运行,提高设备的性能
和可靠性。
作用
主要作用是变换电压、电流和阻抗,实现电能的安全、高效 传输和分配。
高频变压器的分类及特点
分类
按工作频率可分为工频变压器、中 频变压器和高频变压器。
工频变压器
工作频率为50Hz或60Hz,主要用 于电力传输和配电系统。
中频变压器
工作频率在500Hz~10kHz之间,主 要用于音频、视频信号的传输和变 换。
高频变压器
工作频率在10kHz以上,主要用于 通信、雷达、电子对抗等领域。
高频变压器的应用场景
通信领域
电力电子领域
高频变压器在通信领域应用广泛,如移动通 信基站、卫星通信地球站、光纤通信等。
高频变压器在电力电子领域应用较多,如开 关电源、逆变器、整流器等。
音频视频领域
其他领域
高频变压器在音频视频领域应用较多,如音 响设备、电视机、电子乐器等。
提交申请
高频变压器设计原理
摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。
关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。
电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。
当温度超过一定值时,失效率呈指数规律增加。
有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。
所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。
而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。
完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。
最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。
2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。
针对每一种发热元器件均有不同的控制发热量的方法。
2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。
开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。
其中导通状态的损耗由开关管本身的通态电阻决定。
可以通过选择低通态电阻的开关管来减少这种损耗。
MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。
现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。
美国APT公司也有类似的产品。
高频变压器设计规范
高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。
2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。
3.引用/参考标准或资料无。
4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。
反激变压器:又称单端反激式变压器或Buck-Boost转换器。
因其输出端在原边绕组断开电源时获得能量故而得名。
5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。
主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。
现我司高频变压器通常采用锰锌铁氧体材料。
磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。
以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。
通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。
图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。
EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。
每种规格磁芯对应多种尺寸可供选择。
一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。
图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。
高频变压器培训教材
高频变压器培训教材一、变压器基础知识1.变压器的定义:变压器是一种利用电磁感应原理将交流电压、电流转换成另一数值电压、电流的电气设备。
2.变压器的组成:包括铁芯、绕组、绝缘材料等部分。
二、电磁感应原理1.法拉第电磁感应定律:当一个导线在磁场中做切割磁感线运动时,会在导线中产生感应电动势。
2.变压器的工作原理:基于电磁感应原理,通过改变铁芯中的磁通量,在绕组中产生感应电动势和电流。
三、变压器设计原理1.变压器的设计目标:实现电压、电流、阻抗的转换,满足特定应用需求。
2.变压器的设计参数:包括输入输出电压、电流,阻抗匹配,效率等。
四、绕组设计及制作方法1.绕组材料选择:根据工作频率、电流大小等因素选择合适的导线材料。
2.绕组结构:单层绕组、多层绕组、纠结绕组等。
3.绕组制作工艺:包括绕线、绝缘处理、引出线制作等步骤。
五、磁芯选择及设计原则1.磁芯材料:根据工作频率、磁通密度等因素选择合适的磁芯材料。
2.磁芯结构:包括E型、I型、罐型等结构。
3.磁芯设计原则:保证磁通量最大化,减小损耗,提高效率。
六、绝缘处理与安全操作规程1.绝缘材料选择:选择合适的绝缘材料,保证变压器正常工作且安全可靠。
2.绝缘处理方法:浸渍绝缘漆、绕包绝缘材料等。
3.安全操作规程:包括操作流程、注意事项、异常情况处理等。
七、性能测试与评估方法1.性能测试项目:包括电压比测试、电流比测试、绝缘电阻测试等。
2.评估方法:通过对比实验数据与设计目标,评估变压器的性能指标。
八、常见故障及维护方法1.常见故障:包括绕组短路、磁芯松动、绝缘损坏等。
2.维护方法:定期检查、清洁、紧固各部件,及时更换损坏的部件。
九、应用案例及设计实例1.应用案例:列举高频变压器在不同领域的应用案例,如通信、电力电子等。
2.设计实例:提供高频变压器设计实例,包括参数设定、结构选择等详细信息。
高频变压器设计规范
东莞市X X科技股份有限公司东莞市X X电子有限公司文件名称:高频变压器设计规范档编号:R&D-OD-030版本:A0生效日期:2015-01-21档正式审批编制部门编制审核批准标准化研发部东莞市X X科技股份有限公司东莞市X X电子有限公司文件编号R&D-OD-030版次A工作文件修订码0生效日期2015-01-21高频变压器设计规范页码2/76修订页修订码修订内容修订确认修订日期全部0第一次发行焦平2015/01/21相关部门会签:部门意见签名日期部门意见签名日期生产技术部品质部人力资源部生产部研发工程部财务部文控中心销售部采购部物控部总经办仓储部本文件盖红色“受控档”印章,随时保持最新版本;未经总经理批准,不得外借、复印或用于其他目的。
文件发行印章工作文件生效日期2015-01-21高频变压器设计规范页码3/761.0目的本规范用于指导变压器工程师根据开关电源产品的功能、环境条件和载荷条件及用户的特殊要求进行变压器设计,保证开发设计出的产品符合市场需求,满足客户的要求,同时具有合理的工艺性、良好稳定的质量,适合本公司生产,提高工作效率,具有较高的性价比。
2.0适用范围适用于研发部所有开关高频变压器设计工作。
3.0定义变压器的功能:电压变换;电流变换,阻抗变换;隔离;稳压4.0职责高频工程师按照本“高频变压器设计规范”进行设计。
5.0流程图工作文件生效日期2015-01-21高频变压器设计规范页码4/766.0设计举例6.1相关规格取得例:60watts ADAPTER POWER MAIN X'FMRINPUT:90~264Vac47~63HZ;OUTPUT:DC19V0~ 3.16A;Vcc=12VDC0.1Aη≧0.83;f s=70KHZ;Duty cylce over50%△t≦40o(表面)@60W;X'FMR限高21mm.CASE Surface Temperature≦78℃.Note:Constant Voltage&Current Design(UC3843AD)6.2选择CORE材质,确定△B本例为ADAPTER DESIGN,由于该类型机散热效果差,故选择CORE材质应考量高Bs,低损耗及高μi材质,结合成本考量,在此选用Ferrite Core,以TDK之PC40or PC44为优选,对比TDK DATABOOK,可知PC44材质单位密度下铁损Pcv明显低于PC40,最后确定应用PC44材.相关参数如下:μi=2400±25%Pvc=300KW/m2@100KHZ,100℃Bs=390mT Br=60mT@100℃Tc=215℃为防止X'FMR出现瞬态饱和效应,此例以低△B设计.选△B=60%Bm,即△B=0.6*(390-60)=198mT≒0.2T6.3确定Core Size和Type.6.3.1求core AP以确定sizeAP=AW*Ae=(Pt*104)/(2ΔB*fs*J*Ku)=[(60/0.83+60)*104]/(2*0.2*70*103*400*0.2)=0.59cm4式中Pt=Po/η+Po传递功率J:电流密度A/cm2(300~500)Ku:绕组系数0.2~0.5.6.3.2形状及规格确定.形状由外部尺寸,可配合BOBBIN,EMI要求等决定,规格可参考AP值及形状要求而决定,结合上述原则,查阅TDK之DATA BOOK,可知RM10,LP32/13,EPC30均可满足上述要求,但RM10和EPC30可用绕线容积均小于LP32/13,在此选用LP32/13PC44,其参数如下:Ae=70.3mm2Aw=125.3mm2AL=2630±25%le=64.0mmAP=0.88cm4Ve=4498mm3Pt=164W(forward)6.3.3估算临界电流IOB:本例以IL达80%Iomax时为临界点设计变压器.即:IOB=80%*Io(max)=0.8*3.16= 2.528A6.3.4求匝数比nn=[VIN(min)/(Vo+Vf)]*[Dmax/(1-Dmax)]VIN(min)=90*√2-20=107V =[107/(19+0.6)]*[0.5/(1-0.5)]=5.5≒6匝比n可取5或6,在此取6以降低铁损,但铜损将有所增加.CHECK DmaxDmax=n(Vo+Vf)/[VINmin+n(Vo+Vf)]=6*(19+0.6)/[107+6*(19+0.6)]=0.52工作文件生效日期2015-01-21高频变压器设计规范页码6/766.3.11.4估算铜窗占有率.0.4Aw≧Np*rp*π(1/2dwp)2+Ns*rs*π(1/2dws)2+Nvcc*rv*π(1/2dwv)20.4Aw≧60*2*3.14*(0.35/2)2+10*6*3.14+(0.4/2)2+7*3.14*(0.18/2)2≧11.54+7.54+0.178=19.260.4*125.3=50.1250.12>19.26OK6.3.12估算损耗、温升.6.3.12.1求出各绕组之线长.6.3.12.2求出各绕组之RDC和Rac@100℃6.3.12.3求各绕组之损耗功率6.3.12.4加总各绕组之功率损耗(求出Total值)如:Np=60Ts,LP32/13BOBBIN绕线平均匝长 4.33cm则lNP=60*4.33=259.8cmNs=10Ts则lNS=10*4.33=43.3cmNvcc=7Ts则lNvc=7*4.33=30.31cm查线阻表可知:Φ0.35mm WIRE RDC=0.00268Ω/cm@100℃Φ0.40mm WIRE RDC=0.00203Ω/cm@100℃Φ0.18mm WIRE RDC=0.0106Ω/cm@100℃R@100℃= 1.4*R@20℃求副边各电流值.已知Io= 3.16A.副边平均峰值电流:Ispa=Io/(1-Dmax)= 3.16/(1-0.52)= 6.583A副边直流有效电流:Isrms=√〔(1-Dmax)*I2spa〕=√(1-0.52)*6.5832= 4.56A副边交流有效电流:Isac=√(I2srms-Io2)=√(4.562-3.162)= 3.29A求原边各电流值:Np*Ip=Ns*Is原边平均峰值电流:Ippa=Ispa/n= 6.58/6= 1.097A原边直流有效电流:Iprms=Dmax*Ippa= 1.097*0.52=0.57A原边交流有效电流:Ipac=√D*I2ppa= 1.097*√0.52=0.79A求各绕组交、直流电阻.原边:RPDC=(lNp*0.00268)/2=0.348ΩRpac= 1.6RPDC=0.557Ω副边:RSDC=(lNS*0.00203)/6=0.0146ΩRsac= 1.6RSDC=0.0243ΩVcc绕组:RDC=30.31*0.0106=0.321Ω计算各绕组交直流损耗:副边直流损:PSDC=Io2RSDC= 3.162*0.0146=0.146W交流损:Psac=I2sac*Rsac= 3.292*0.0234=0.253W原边直流损:PPDC=Irms2RPDC=0.572*0.348=0.113W交流损:Ppac=I2pac*Rpac=0.792*0.557=0.348W忽略Vcc绕组损耗(因其电流甚小)Total Pp=0.461W总的线圈损耗:Pcu=Pc+Pp=0.399+0.461=0.86W工作文件生效日期2015-01-21高频变压器设计规范页码7/766.3.12.5计算铁损PFe查TDK DATA BOOK可知PC44材之△B=0.2T时,Pv=0.025W/cm2LP32/13之Ve= 4.498cm3PFe=Pv*Ve=0.025* 4.498=0.112W6.3.12.6Ptotal=Pcu+PFe=0.6+0.112=0.972W6.3.12.7估算温升△t依经验公式△t=23.5PΣ/√Ap=23.5*0.972/√0.88=24.3℃估算之温升△t小于SPEC,设计OK.6.3.13结构设计查LP32/13BOBBIN之绕线幅宽为21.8mm.考量安规距离之沿面距离不小于6.4mm.为减小LK提高效率,采用三明治结构,其结构如下:X'FMR结构:7.0安规介绍与要求7.1安规的意义:7.1.1防人身触电。
高频变压器工作原理及用途
高频变压器工作原理及用途简介就是作为开关电源最主要得组成部分。
开关电源中得拓扑结构有很多。
比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz得高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈得匝数比例则决定了输出电压得多少。
典型得半桥式变压电路中最为显眼得就是三只高频变压器:主变压器、驱动变压器与辅助变压器(待机变压器),每种变压器在国家规定中都有各自得衡量标准,比如主变压器,只要就是200W以上得电源,其磁芯直径(高度)就不得小于35mm。
而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。
工作原理变压器就是变换交流电压、电流与阻抗得器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)与线圈组成,线圈有两个或两个以上得绕组,其中接电源得绕组叫初级线圈,其余得绕组叫次级线圈。
用途高频变压器就是工作频率超过中频(10kHz)得电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源与高频逆变焊机中作高频逆变电源变压器得。
按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。
传送功率比较大得情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小得,可以采用MOSFET,工作频率就比较高。
制造工艺高频变压器得制造工艺要点一。
绕线A 确定BOBBIN得参数B 所有绕线要求平整不重叠为原则C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错D 横跨线必需贴胶带隔离1、疏绕完全均匀疏开2、密绕排线均匀紧密3、线圈两边与绕线槽边缘保持足够得安全距离A,B4、套管长度必须足够,一端伸入绕线管得安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN5、最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖。
高频变压器脚位排列原则
高频变压器脚位排列原则
高频变压器是电子设备中常用的一种元件,其作用是将电压变形,并且将电流从一个
电路传递到另一个电路中。
高频变压器主要由高磁导率材料和导电线圈制作而成,其脚位
排列原则主要有以下几点:
1. 脚位排列应符合标准
高频变压器的引脚排列需要进行合理规划,遵循国际上的标准化要求。
其脚位数量和
排列方式应该明确,以便于与其它设备或线路中的接口和元件连接。
2. 电源引脚设计应有区分
高频变压器的电源引脚一般为二极管引脚,需要在设计时区分正极和负极,以保证正
确的连接。
特别是在三极管电路中,电源引脚连接错误会导致电路故障或高频变压器起
火。
高频变压器连接的元器件一般包括电容、电感、二极管等。
这些器件的引脚排列需符
合标准化规范,以确保在进行焊接或插入连接时,能够方便地进行引脚的匹配和连接。
4. 非电性部分与引脚分离设计
高频变压器中的非电性部分和引脚应分离设计,以消除相互之间的干扰和电磁波辐射。
这一点在设计过程中需要特别注意,以确保高频变压器具有良好的屏蔽性能和稳定性。
5. 重复测试确定引脚正确性
在生产过程中,应反复检查高频变压器引脚的正确性,以确保每个元器件的引脚符合
标准。
同时,应进行可靠性测试和性能测试,以保证高频变压器的电气性能符合设计要
求。
总之,高频变压器脚位排列原则是非常重要的,其设计应符合标准化要求,保障电子
设备高效稳定运行。
全桥逆变焊机高频变压器设计
摘要关键词:AbstractKey Words :目录引言文献综述1.1电焊机的构造及原理电焊机是利用正负两极在瞬间短路时产生的高温电弧来熔化电焊条上的焊料和被焊材料,来达到使它们结合的目的。
电焊机的结构十分简单,说白了就是一个大功率的变压器,将220V交流电变为低电压,大电流的电源,可以是直流的也可以是交流的。
电焊变压器有自身的特点,就是具有电压急剧下降的特性。
在焊条引燃后电压下降;在...电焊机的工作电压的调节,除了一次的220/380电压变换,二次线圈也有抽头变换电压,同时还有用铁芯来调节的,可调铁芯... 电焊机一般是一个大功率的变压器,系利用电感的原理做成的.电感量在接通和断开时会产生巨大的电压变化,利用正负两极在瞬间短路时产生的高压电弧来熔化电焊条上的焊料.来达到使它们结合的目的1.2全桥逆变焊机(Full Briudge)工作原理分析工频交流电源的整流滤波回路与双单端逆变器相同,只是在逆变单元中分别由VT1 和VT3 组成左桥臂,VT2 和VT4组成右桥臂,四个开关功率管共同组成桥式电路。
1.3工作原理分析:1) 在NT时,左桥臂中VT1 和右桥臂VT4 门极激励脉冲信号Ugvt1 和Ugvt4 同时现,VT1 和VT4 同时导通,高频变压器将向次级传输能量,原边电流回路为Ud + →VT1 →T1 →VT4 →Ud - 。
经过次级的整流电路整流、直流电抗器DCL 的滤波作用,从而得到合适焊接工艺要求的直流电。
图1b 为此时等效电路(Equivalent circuit) 。
电路稳态方程:输出电压:Uo = D Ud / n2) 在NT + ton 时,功率开关VT1、VT4 的控制极的PWM脉冲激励同时消失,VT1、VT4 同时截止,由于VD2、VD3 的钳位作用,VT1、VT4 承受最大电压Ud ,次级整流管的截止,其阻断了高频变压器与输出回路的联系,此时主电路将不再向输出回路传输能量,高频变压器等效为一个电感,将储存在其中的电磁能量通过VD2、VD3 回馈到电源中。
高频变压器
高频变压器高频变压器是作为开关电源最主要的组成部分。
开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。
典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm。
而辅助变压器,在电源功率不超过3 00W时其磁芯直径达到16mm就够了。
变压器的工作原理变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、5 00kHz~1MHz、1MHz以上。
传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。
[1]高频变压器悬赏分:0 - 解决时间:2009-1-15 15:35高频变压器中的EC42型和EE42有什么区别,42前面的字母分别代表什么?提问者:hbt0090 - 初学弟子一级最佳答案EC42型和EE42型是用于高频变压器或电感的两种铁氧体磁芯的型号,这种磁芯由两个“E”形磁体组成,这两种型号磁芯的区别(亦即42前面字母的含义)在于:EC型的磁芯中芯柱为圆形,EE型的磁芯中芯柱为方形。
高频变压器用在低频电路会出现什么问题悬赏分:0 - 解决时间:2007-5-25 18:28高频变压器用在低频电路会出现什么问题;低频变压器用在高频电路会出现什么问题?比如50HZ和50KHZ!提问者:余成YW S - 助理四级最佳答案高频变压器用在低频电路中电流增大,可能烧坏变压器。
高频变压器设计基础知识
高频变压器设计基础知识高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。
高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。
单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。
在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。
关于大功率高频变压器的设计!
关于大功率高频变压器的设计!高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。
高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。
单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。
在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、T Otch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。
高频高压变压器设计
IGBT大功率高频高压开关电源变压器的研制栾松张海峰(辽宁大连大连电子研究所 116021)摘要:主要分析了高频高压变压器的等效电路和研制难点,提出了设计方案。
关键词:开关器件微晶体在国外,70年代开始,日本的一些公司开始采用开关电源技术,将市电整流后逆变为3kHz左右的中频,然后升压,从而减小变压器体积和重量。
进入80年代,高压开关电源技术迅速发展。
德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kH:以上。
使变压器系统的体积进一步减小。
近十年来,随着电力电子技术的进步和开关器件的发展,高压开关电源技术不断发展。
突出的表现是频率在不断提高,如德国的霍夫曼公司高压发生器频率高达40kHz。
另外,高压开关电源的功率也在不断地提高,30kW的大功率高压开关电源在产品上己很成熟,更高功率的高压开关电源也有很快的发展。
可以看出,高压开关电源的发展的主要趋势是:①频率不断提高,②功率不断增加。
我国自90年代初开始对高频化的高压大功率开关电源技术进行研究,静电除尘高压直流电源也实现了高频化,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压,在电阻负载条件下,输出直流电压达到72kV,电流达到0.8A,工作频率为20kHz。
因此,高频高压变压器研制是高压开关电源重点。
一、高频高压变压器的等效电路图1(a)图1(b)图1(c)图1高频高压变压器的等效电路图1(a)为变压器等效电感模型,励磁电感Lm 很大,并且与原边绕组并联,因此可以忽略副边的漏感L2折合到原边值,L2和原边的漏感Ll的和为变压器的等效漏感Ls。
图1(b)为变压器分布电容的等效模型,Clg为原边匝间及对地电容;C2g为副边匝间及对地电容;C2为副边各层间电容;C12原副边间电容。
在各分布电容中,C2g较其它分布电容都小,可以忽略;Clg C12和C2的电容值大约为10-100pF,而C2折合到原边后则比Clg和C12大得多,因此Clg和C12可以忽略,在各分布电容中C2起着主导作用,将其折合到原边,可以得到变压器的等效电路模型图1(c),它由等效漏感Ls,等效电容Cp和理想变压器组成。
高频变压器安规介绍
双重绝缘或加强绝缘要求 跨接元件的要求: 跨接元件的要求:
●
不容许电容跨接输入输出电路
输出电压的要求: 输出电压的要求:
● ●
35Vpeak 单极接触
60Vdc
接触电流的要求: 接触电流的要求:0.7mA a.c 放电的要求
2mA dc
防止电击(安全隔离变压器) 防止电击(安全隔离变压器)
防电击基本要求
Class III(低压保护) III(低压保护 低压保护)
安全低压供电 不产生高于安全低电压的电压
基本概念
Class I (接地) (接地 接地)
Class II (双重绝缘/加强绝缘) (双重绝缘 加强绝缘) 双重绝缘/
Class III (安全特地电压SELV) (安全特地电压 安全特地电压SELV)
防止电击(安全隔离变压器) 防止电击(安全隔离变压器)
防止触及危险带电件防止触及危险带电件-外壳防护的强度要求
固定式变压器: 固定式变压器:冲击测试 直插便携式变压器:滚桶跌落测试 直插便携式变压器: 带电源线的便携式变压器: 带电源线的便携式变压器:跌落测试
防止电击(安全隔离变压器) 防止电击(安全隔离变压器)
初级线圈 次级线圈
初级线圈
基本绝缘 (附加绝缘) 附加绝缘)
磁心
附加绝缘 (基本绝缘) 基本绝缘)
次级线圈
防止触电和电击(安全隔离变压器) 防止触电和电击(安全隔离变压器)
电气间隙 爬电距离
高压部分
低压部分
绝缘厚度
防止电击(安全隔离变压器) 防止电击(安全隔离变压器)
验证试验: 验证试验:
防锈试验 潮态试验 绝缘电阻测试 耐压测试 接地电阻测试 倍频倍压测试
高频变压器的安规设计基本要求
备注:如果两部件都有绝缘保护,还是被视为导电体,例如:变压器两绕组之间的电气间隙就 是两个绕组之间靠的最近的铜线的距离
蓝色线的就是电气间隙
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
第一章 名词解释
1.2 爬电距离(Creepage Distance): 指中国广东省东莞市石排镇庙边王沙迳村中九路 523330
第一章 名词解释
1.7 Ⅰ类变压器 Class Ⅰ Transformer
其防电击不仅依靠基础绝缘, 而且还包含有附加安全措施的一种变压器, 其附加安全措施采取配备诸如接地端子的装置,使可触及的导电金属零部件能与 设备中固定布线的保护接地导线相连,以便一旦基础绝缘失效,可触及导电零部 件不会成为带电零部件.
东莞市铭普实业有限公司
地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
第四章 安规申请注意事项
4.1 变压器安规申请注意事项 :
对于我们常规的高频类的变压器安规申请来说,首先要注意的是结构申请还是 绝缘系统申请,如果结构申请,只有同系列的变压器才有考虑结构申请的需要,对于 客人定制品,安规还是直接以公司内既有的绝缘系统配合即可. 对于结构申请的产品来说,在做安规申请时必须考虑以下因素: 1) 产品适用的标准; 2) 产品绝缘种类要求; 3) 产品污染等级要求; 4) BOBBIN的结构; 5) 产品的绕线结构; 6) 各使用材料的安规证书.
之间的沿绝缘表面最短的距离
备注:如果两部件都有绝缘保护,还是被视为导电体,例如:变压器两绕组之间的爬电距离就 是两个绕组之间靠的最近的铜线沿BOBBIN档墙表面的距离
蓝色线的就是爬电距离
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频变压器设计原则要求和程序
摘要:从高频变压器作为一种产品(即商品)出发,说明了它的设计原则和要求,并介绍了它的设计程序。
1前言
同一个英文名称“Power
高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆
变电源变压器的。
按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。
传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。
这样,既有工作频率的差别,又有传送功率的差别,新晨阳电容电感工作频率不同档次的电源变
压器设计方法不一样,也应当是不言而喻的。
如上所述,作者对高频变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。
正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频变压器的设计问
题弄清楚。
如有说得不对的地方,敬请几位作者和广大读者指正。
以设计原则为出发点,可以对高频变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。
1使用条件
电磁兼容性是指高频变压器既不产生对外界的电磁干扰,又能承受外界的电磁
干扰。
电磁干扰包括可闻的音频噪声和不可闻的高频噪声。
高频变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。
磁致伸缩大的软磁材料,产生的电磁干扰大。
例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。
因此锰锌软磁铁氧体磁芯产生的电磁干扰大。
高频变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力。
这些力的变化频率与高频电源变压器的工作频率一致。
因此,工作频率为100kHz左右的高频变压器,没有特殊原因是不会产生20kHz以下音频噪声的。
既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因。
由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯。
至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信。
屏蔽是防止电磁干扰,增加高频变压器电磁兼容性的好办法。
但是为了阻止高频变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,
只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰。
2完成功能
高频变压器完成功能有3个:功率传送,电压变换和绝缘隔离。
功率传送有两种方式。
新晨阳电容电感第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边。
在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式。
单方向变化工作模式,磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm。
磁通密度变化值ΔB=Bm-Br。
为了提高ΔB,希望Bm大,Br校双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm。
磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关。
第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载。
传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感。
电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关。
虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容。
在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容。
只是在“交流损耗”一条中,提出BAC典型值为0.04~0.075T。
显然,文中的高频变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚。
经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T。
由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了。
电压变换通过原边和副边绕组匝数比来完成。
不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换。
但是,绕组匝数与高频电源变压器的漏感有关。
漏感大小与原绕组匝数的平方成正比。
有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法。
“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%”。
“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感。