高频变压器的计算

合集下载

高频变压器计算公式

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

磁化强度,magnetization,描述磁介质磁化状态的物理量。

是磁化强度,通常用符号M表示。

定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。

高频变压器简单计算方法

高频变压器简单计算方法

高频变压器简单计算方法
高频变压器是一种用于变换交流电压的电器设备。

虽然计算高频变压器的精确参数需要更加复杂的方法和考虑更多的因素,但是在一些简单的应用中,我们可以使用一些基本的计算方法来估算高频变压器的参数。

首先,我们需要知道高频变压器的输入电压(Vin)、输出电压(Vout)、频率(f)和功率(P)。

如果其中任何一个参数未知,我们可以使用其他已知参数来确定。

请注意,这些计算方法是基于一些基本的假设和限制的,可能会有一定的误差。

1. 估算变压器的输出电流:
变压器的输出电流(Iout)可以通过下面的公式进行估算:
Iout = P / Vout
2. 估算变压器的变比:
变比(N)表示输入电压和输出电压之间的比例关系。

可以通过下面的公式进行估算:
N = Vin / Vout
3. 估算变压器的电感:
变压器的电感(L)可以通过以下公式进行估算:
L = (Vout * N) / (2 * π * f * Iout)
这些是一些基本的计算方法,可以帮助我们初步估算高频变压器的一些参数。

然而,考虑到高频变压器的复杂性和一些特殊的应用要求,更精确的计算方法可能需要进一步的分析和模拟。

因此,在实际设计和应用中,建议咨询专业的电气工程师或使用专业的电路设计软件来确保准确性和可靠性。

请记住,电气设备涉及到高压和高电流,操作时务必小心谨慎,并遵循相应的安全规定。

如何计算高频变压器参数

如何计算高频变压器参数

如何计算高频变压器参数高频变压器是一种用于转换电能的电子设备,它对输入电压进行调整和转换,以产生所需的输出电压。

了解和计算高频变压器的参数对设计和使用变压器至关重要。

以下是计算高频变压器参数的方法:1.额定功率和电流:首先确定所需的额定输出功率和电流。

额定功率指的是变压器所能提供的最大输出功率,而额定电流指的是变压器能够承受的最大电流。

2.额定电压比:确定输入电压和输出电压之间的额定电压比。

额定电压比是变压器输入和输出电压之间的比值。

根据所需的输出电压和输入电压来计算额定电压比。

3.磁感应强度和磁通密度:磁感应强度是磁场的强度,通过变压器的铁芯。

磁感应强度的大小取决于所需的输出功率和频率,以及变压器的尺寸和材料。

磁通密度是磁通通过单位面积的量度,计算方法为B=Φ/A,其中B为磁通密度,Φ为磁通量,A为磁路截面积。

4.磁路长度和磁路截面积:磁路长度是磁通从变压器的输入端流向输出端所需的路径长度。

磁路截面积是铁芯截面的面积。

根据所需的输出功率和输入电流,以及变压器的尺寸和材料来计算磁路长度和磁路截面积。

5.匝数比:根据额定电压比和磁路截面积来计算变压器的匝数比。

匝数比指的是输入线圈和输出线圈之间的匝数比。

匝数比的大小取决于所需的额定电压比和变压器的磁路截面积。

6.铜线直径和电流密度:铜线直径是变压器线圈所用的铜线的直径。

电流密度是单位截面积内所流经的电流量。

根据所需的额定电流和铜线的电阻来计算铜线直径和电流密度。

7.线圈绕制数和线圈厚度:根据变压器的匝数比和线圈长度来计算输入线圈和输出线圈的绕制数。

线圈厚度是线圈绕制的厚度。

根据所需的输出功率和变压器的尺寸来计算线圈绕制数和线圈厚度。

高频变压器参数计算方法

高频变压器参数计算方法

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴ Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM=100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM* k / 2) ⑾N1 ----- 初级匝数 VIN(max)------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿Vin(max)----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器计算公式

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

磁化强度,magnetization,描述磁介质磁化状态的物理量。

是磁化强度,通常用符号M表示。

定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全要求:输入AC 220V±10% 效率:80%工作频率40KHZ输出电压62V 电流:2A辅助绕组电压:20V/0.1A最大占空比:0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218VEmax=220*1.1*1.4=339V二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155WPt=Po/η+Po=155+124=279w三.计算AP值选择磁芯AP == Aw*Ac==Pin*10²2*F*Bm*J*Ku*Ki== 279*10²2*40*103* 0.15*4*0.4 *1== 1.45选择PQ32/30磁芯Ae=1.6 Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。

材质选用PC40型。

四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp为0.6Ip =2PinEmin*Dmax*(2-Krp)= 2*155218*0.48*(2-0.6)= 2.1AIrms =Ip*Dmax*(Krp²/3-Krp+1)=2.1*0.48*(0.6²/3-0.6+1)= 1.05A五.计算初级电感量连续模式Lp = Emin*DmaxIp1=Ip2(1-Krp) F*(Ip2-Ip1)=2.1*(1-0.6)=0.84=218*0.4840*103*(2. 1-0.84)= 2.076mH断续模式Lp= Emin²*Dm ax²2*Pin*F=218²*0.48²2*155*40*103= 883.0uH六.计算初级、次级、反馈绕组的圈数DmaxUpmin 计算变压比:n=1-Dmax Up2=0.48218 1-0.48 62= 3.2454初级圈数Np=Emax*1044*F*Bm*Ae=339*1044*40*103*0.15*1.61= 87.7TS 取整数88TS次级圈数Ns1= Np Np*(1-Dmax)*Us1nUpmin*Dmax Np 88n 3.2454 = 27TS反馈圈数Nf= Np*(1-Dm ax)*Us1 Upmin* Dmax= 8.7TS 取9TS八.核算临界电感量(H)Lmin=Ein* nV 。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。

下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。

(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。

(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。

2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。

(2)计算磁通量:Φ=B*A其中,Φ是磁通量。

(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。

3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。

(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。

4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。

(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。

(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。

这些公式提供了一些变压器设计的基本计算方法。

在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。

高频变压器计算公式

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

磁化强度,magnetization,描述磁介质磁化状态的物理量。

是磁化强度,通常用符号M表示。

定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。

高频变压器计算

高频变压器计算

高频变压器计算
高频变压器的计算可以按照以下步骤进行:
1. 确定输入电压和输出电压:根据需求确定输入电压和输出电压。

2. 确定输入电流和输出电流:根据功率平衡关系,可以通过输入电压和输出电压的比值,计算得到输入电流和输出电流。

3. 确定变比:根据输入电压和输出电压的比值,计算得到变比。

4. 确定变压器的参数:根据变比和输入输出电流的比值,可以计算得到变压器的参数,例如匝数比、绕组电流密度等。

5. 选择合适的铁芯:根据输出功率和工作频率,选择合适的铁芯材料和规格。

6. 计算绕组:根据变压器参数,计算得到绕组的匝数和截面积。

7. 考虑损耗:根据工作频率和功率大小,考虑变压器的铜损和铁损,进行损耗的计算和估计。

8. 进行热设计:根据变压器的功率和工作条件,进行热设计,确定散热方式和散热器的尺寸。

以上是高频变压器的计算步骤的一般流程,具体的计算方法还需要根据实际情况进行适当调整和估计。

高频变压器设计的常用计算公式

高频变压器设计的常用计算公式

Irms =
Ip* Dmax*(K rp²/3Krp+1)
2.1* 0.48* (0.6²/3= 0.6+1)
= 1.05A
Ap=1.6*0 .994=1.59
五.计算 初级电感 量
连续模式 断续模式
Emin*Dm ax Lp =
F*(Ip2Ip1)
218*0.48 =
40*103*(2 .1-0.84) = 2.076mH
设计实 例: 要求:输 入AC 220V± 10%
工作频率 40KHZ
输出电压 62V 辅助绕组 电压: 20V/0.1A 最大占空 比: 0.48 一.计算 最小直流 电压和最 大直流电 压
Emin=22 0*0.9*1.1 =218V
Emax=22 0*1.1*1.4 =339V 二.计算 输入功率 和视在功 率
Upmin* Dmax = 8.7TS
取9TS
八.核算 临界电感 量(H)
Ein* nV
。2Lmin=源自Ein+nV。
218* 3.245*62 =
218+3.24 5*62
= 882.8uH 计算出的 结果和断 续模式的 电感一致 。Lp≥ Lmin
T 2Pin
2
0.000025
2*155
六.计算 线径
四.计算 初级电流 峰值和有 效值 设定电路 工作在连 续模式, 根据输入 电压的范 围取Krp 为0.6
== 2*40*103
*0.15*4*
0.4*1
==
1.45
Aw=0.99 Ae=1.6 4
2Pin
Ip = Emin*Dm ax*(2Krp)
2*155 =

高频变压器参数计算

高频变压器参数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器 效率

高频变压器 效率

高频变压器效率
高频变压器是指工作频率较高的变压器,其工作频率通常在数十千赫兹到数兆赫兹的范围内。

与传统的低频变压器相比,高频变压器在尺寸小、重量轻、效率高等方面具有一些优势。

变压器的效率通常是通过功率传输的效率来衡量,计算公式为:
Efficiency (%)=Input Power/Output Power×100高频变压器的效率受到多种因素的影响,以下是一些可能影响高频变压器效率的因素:
1.磁芯材料:高频变压器通常采用特殊的磁芯材料,如磁性材料
和铁氧体。

这些材料的选择直接影响变压器的磁导率和损耗,
从而影响效率。

2.绕组设计:高频变压器的绕组设计需要考虑电流密度、匝数等
因素,以最大限度地减小电阻和焦耳热损耗。

3.绝缘材料:高频变压器需要使用能够在高频条件下保持稳定性
的绝缘材料,以防止电容损耗和漏电流的增加。

4.开关频率:高频变压器通常与开关电源等高频电路一起使用。

开关频率的选择会影响变压器的性能和效率。

5.冷却系统:高频变压器在工作时可能会产生较多的热量,因此
高效的冷却系统对于维持其效率至关重要。

6.磁耦合和电容耦合:在高频条件下,磁耦合和电容耦合的影响
可能会比低频更为显著。

合理设计变压器结构以减小这些耦合
效应对效率的影响。

总体而言,高频变压器的设计和制造需要在上述多个方面进行综合考虑,以达到较高的效率水平。

高频变压器通常用于需要小型化和高效率的电源系统,例如电子设备、通信设备以及一些新能源技术中。

高频变压器计算公式

高频变压器计算公式

高频变压器计算公式(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

高频变压器设计计算公式

高频变压器设计计算公式

0.25
Sc= 0.05mm2
Ip1 =Ip2(1Krp)
=2.1*(10.6)=0.8 4
六.计算 初级、次 级、反馈 绕组的圈 数 计算变压 比:n=
初级圈数
Dmax Upmin
1-Dmax Up2
=
0.48 218
1-0.48
62
= 3.2454
Emax*10
4
Np=
4*F*Bm* Ae
339*104 =
= 4*40*103 *0.15*1.6 1
= 87.7TS
取整数 88TS
次级圈数 反馈圈数
Ns1= Np
Np*(1Dmax)*U s1
n = Np
n = 27TS
Upmin* Dmax
88 3.2454
Np*(1Dmax)*U Nf= s1
Upmin* Dmax = 8.7TS
取9TS
七.核算临界电感量(H)
Ein* nV

2T
Lmin=
为减小趋 肤效应的 损耗,线 径取直径 0.45X2股 绕制
0.2826m Sc= m2
1.13 次级线径 DS= I0/J
1.13 = 2.0/4
=
0.8
为减小趋 肤效应的 损耗,线 径取直径 0.60X2股 绕制 反馈线径
Sc= 0.50mm2
1.13 Df= If/J
1.13 = 0.2/4
=
= 1.05A 五.计算 初级电感
Ap=1.6*0 .994=1.59
连续模式 断续模式
Emin*Dm ax Lp =
F*(Ip2Ip1)
218*0.48 =
40*103*(2 .1-0.84) = 2.076mH

高频变压器设计的常用计算公式

高频变压器设计的常用计算公式

设计实例:要求:输入AC 220V±10%效率:80%工作频率40KHZ输出电压62V电流:2A辅助绕组电压:20V/0.1A 最大占空比:0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218V Emax=220*1.1*1.4=339V 二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155W Pt=Po/η+Po=155+124=279w三.计算AP 值选择磁芯Pin*10²2*F*Bm*J*Ku*Ki279*10²AP ==Aw*Ac==2*40*103*0.15*4*0.4*1== 1.45选择PQ32/30磁芯Ae=1.6Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。

材质选用PC40型。

四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp 为0.62PinEmin*Dm ax*(2-Krp)2*155218*0.48*(2-0.6)= 2.1A Irms =Ip*Dmax*(K rp²/3-Krp+1) =2.1*0.48*(0.6²/3-0.6+1)=1.05A== Ip = =五.计算初级电感量连续模式Emin*DmaxIp1=Ip2(1-Krp)F*(Ip2-Ip1)=2.1*(1-0.6)=0.84218*0.4840*103*(2.1-0.84)= 2.076mH断续模式Emin²*Dmax²2*Pin*F218²*0.48²2*155*40*103=883.0uH六.计算初级、次级、反馈绕组的圈数Dmax Upmin 计算变压比:n=1-Dmax Up2=0.4821862= 3.2454初级圈数Emax*1044*F*Bm*Ae=Lp==Np=Lp =339*1044*40*103*0.15*1.61=87.7TS取整数88TS次级圈数 NpNp*(1-Dmax)*U s1nUpmin*Dmax= Np88 n3.2454=27TS反馈圈数Np*(1-Dmax)*Us1Upmin*Dmax=8.7TS 取9TS八.核算临界电感量(H )2T 。

开关电源高频变压器计算方法

开关电源高频变压器计算方法

开关电源高频变压器计算方法高频开关电源是一种采用高频变压器工作的电源装置,其工作原理是:将输入电压通过高频开关元件进行开关控制,将电能储存于磁性器件中,再经过变压器转换为需要的输出电压。

在高频开关电源中,高频变压器起着关键的作用。

本文将详细介绍高频变压器的计算方法。

一、高频变压器的基本参数在计算高频变压器之前,需要了解以下几个基本参数:1. 输入电压(Vin):即交流电源的输入电压,一般选择标准的电压值,如220V。

2. 输出电压(Vout):根据实际电路需求选择适当的输出电压。

3. 输出功率(Pout):根据实际电路负载情况选择适当的输出功率。

4.工作频率(f):高频开关电源的工作频率一般在10kHz以上,常见的有20kHz、50kHz等。

5. 变比(N):高频变压器的变比是指输入电压与输出电压的比值,即N=Vout/Vin。

二、主要计算步骤计算高频变压器的方法主要包括以下几个步骤:1. 计算输入电流(Iin):根据输出功率和输入电压,可以通过Pout=Vin*Iin计算得到输入电流的值。

2.计算变压器的变比(N):一般情况下,变比N的取值范围为1到10之间,通常的选择是在1.5到2之间。

3. 计算变压比(Vratio):变压比是指输入电压与输出电压之间的比值,即Vratio=Vout/Vin。

4. 计算变压器的一次侧(primary)匝数(Np):一次侧匝数的计算公式为Np = Vout*Vratio/(4*f*Vin)。

5. 计算变压器的二次侧(secondary)匝数(Ns):二次侧匝数的计算公式为Ns = Np/N。

6. 计算变压器的磁路积(Ap):磁路积是变压器的一个重要参数,定义为Ap = Np*Iin/(Bmax*f),其中,Bmax是磁路中磁感应强度的最大值,通常取1.2T。

7.计算磁路截面积(Ae):变压器的磁路截面积决定了磁路元件的尺寸和负载能力,一般情况下,可以通过取Ap的值选择适当的磁路截面积。

高频变压器计算公式

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

磁化强度,magnetization,描述磁介质磁化状态的物理量。

是磁化强度,通常用符号M表示。

定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频变压器参数计算2009-08-28 11:26一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l *N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推导过程:(P/η)/ f = 1/2 * I2 * L⒁P ------- 电源输出功率 (瓦特) η ---- 能量转换效率 f ---- PWM开关频率将⑺式代入⒁式:(P/η)/ f = 1/2 * (EL * ⊿t / L)2 * L⒂⊿t = D / f (D ----- PWM占空比)将此算式代入⒂式变形可得:L = E2 * D2 *η/ ( 2 * f * P )⒃这里取效率为85%, PWM开关频率为60KHz.在输入电压最小的电感量为:L=2002* 0.4812 * 0.85 / 2 * 60000 * 117.5计算初级电感量为: L1 ≌ 558(uH)计算初级峰值电流:由⑺式可得:⊿i = EL * ⊿t / L = 200 * (0.481/60000 )/ (558*10-6)计算初级电流的峰值为: Ipp ≌ 2.87(A)初级平均电流为: I1 = Ipp/2/(1/D) = 0.690235(A)6.计算初级线圈和次级线圈的匝数:磁芯选择为EE-42(截面积1.76mm2)磁通密度为防治饱和取值为2500高斯也即0.25特斯拉, 这样由⑹式可得初级电感的匝数为:N1= ⊿i * L / ( B * S ) = 2.87 * (0.558*10-3)/0.25*(1.76*10-4) 计算初级电感匝数: N1 ≌ 36 (匝)同时可计算次级匝数:N2 ≌ 5 (匝)7.计算次级线圈的峰值电流:根据能量守恒定律当初级电感在功率管导通时储存的能量在截止时在次级线圈上全部释放可以有下式:由⑻⑼式可以得到:Ipp2=N1/N2*Ipp⒄Ipp2 = 7.6*2.87由此可计算次级峰值电流为:Ipp2 = 21.812(A)次级平均值电流为I2=Ipp2/2/(1/(1-D))= 5.7(A)6.计算激励绕组(也叫辅助绕组)的匝数:因为次级输出电压为23.5V,激励绕组电压取12V,所以为次级电压的一半由此可计算激励绕组匝数为: N3 ≌ N2 / 2 ≌ 3 (匝)激励绕组的电流取: I3 = 0.1(A)高频变压器的绕法你如果用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已.以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T.要制作好它就要注意两点:一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可.二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是:①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半.②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组第二段.③绕次级高压绕组第二段.将前面没有剪断的次级高压绕组线翻转上来(注意与前面的初级绕组线不要相碰,必要时可用绝缘纸隔开),又并绕25T,注意绕向要与前面的第一段相同,线仍不剪断.又包一层绝缘纸,准备绕初级低压绕组的另一半.④绕初级低压绕组的另一半.再按步骤②同样的方法绕一次初级低压绕组,注意绕向要与前面的一半相同.同样线剪断,包一层绝缘纸,准备绕次级高压绕组第三段.⑤绕次级高压绕组第三段.再按步骤③提示的方法绕完剩下的次级高压绕组25T,仍注意绕向与前面的两段相同.接好引出线(尾),线剪断.至此,所有的绕组都绕完了.⑥合并初级低压绕组.将前面两次绕的初级低压绕组,头与头并接,中心抽头与中心抽头并接,尾与尾并接(这样绕组匝数仍是3T+3T,而总的并线为38根),接好引出线,即得到初级低压绕组的头、中、尾三个引出端.最后缠一层绝缘胶带,至此线包制作完成.以上叙述起来显得很复杂,实际熟悉后并不难.按此方法绕制高频逆变器中的高频变压器肯定好用;如果再参考高档电子管音频变压器的对称交叉绕制法,并讲求制作上的精细工艺,只要磁芯适应,工作频率可以提升到100KHz以上.不过对称交叉绕法最复杂最难搞(绕组分段更细,每一层都对称地分为两组,接法复杂,稍一疏忽大意就会接错绕组中某一段的相位),就不介绍了.为什么有的人做的高频变压器频率总是提不高,功率做不大(做大功率需要提升频率),而且发热严重,就是因为漏感大,分布电容大,高频电流集肤现象严重等等.。

相关文档
最新文档