苏教版高一数学知识点总结.doc

合集下载

苏教版高一数学必修一知识点归纳总结.doc

苏教版高一数学必修一知识点归纳总结.doc

苏教版高一数学必修一知识点归纳总结.doc
苏教版高一数学必修一知识点归纳总结
【一】
一、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N*或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。

如{xR|x-
3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}。

高一数学 知识要点 苏教版必修4

高一数学 知识要点 苏教版必修4

高一数学知识要点苏教版必修4高一数学知识要点苏教版必修4高一数学必修课的四个知识点第1章:三角函数一.① 任意角度:逆时针旋转形成的角度称为正角度;顺时针旋转形成的角度称为负角;逆时针旋转以增加角度;旋转角度沿顺时针方向减小。

②与角?终边相同的角:2k,k?z③ 象限角:例如,第二象限角:2K??阅读的联系和区别。

④终边落在x轴上的角的集合:2.2k,Kz、注意象限角、锐角和钝角,??z?;终边落在y轴上的角的集合:LLrr11s?lr??r222,??Z最终边落在坐标轴上的一组角度:,??Z22二、弧度制:180 弧度1弧度?一百八十度57.3三、任意角的三角函数:yxy?Yrsin余弦十、rcos棕褐色的Rrx② 每个象限的三角函数符号由X和Y 的正负决定。

记住公式:“一个完整,两个正,三个切割,四个剩余”①sin??③几个特殊角的三角函数值:sin??cos?tan?6123233?422221?3321230010?2?0-103?2-10不存在10不存在四、同角三角函数关系:①sin2??cos2??1.sin2??1.cos2??cos2??1.sin2?sin??sin??tan?cos?cos?2?,co?s可由sin?,si?n,由③已知sin1?cos?,cos1?sin2?求得cossin?求得正切(注意要由角度范围确定符号)tan??cos??sin??tan??④已知tan?,可由?cos?得sin?,cos?(注意要由角度范围确定符号)22?? 罪余弦??1.②棕褐色的⑤ 在三角学中,切弦是一种重要的方法五、诱导公式:终边相同的角的三角函数值相等罪罪罪2k罪KZ① ② 角角度呢??关于X轴对称性coscos?cos???2k???cos?,k?ztan?tan?tan???2k???tan?,k?z③角与角?关于y轴对称sinsin?cos?cos?tan?tan?心、爱和专注1④角与角?关于原点对称sinsin?tan??????tan?coscos?⑤ 喇叭2.安格尔呢?关于y?X对称性罪余弦?罪余弦??2.2.⑥ 余弦?????罪余弦??????罪2.2.棕褐色的小床?棕褐色的小床??2.2.上述归纳公式记住了公式:“奇偶不变性,符号看象限”六、三角函数的图象和性质:性质y?sinxy?cosx定义域值域周期性奇偶性单调性rry?tanx??1,1?2?奇函数2k??2,2k??2?,k?z,增函数3?2k??2,2k??2?,k?z,减函数1,1?2?偶函数xx,??z?2??r?奇函数k??,k???,k?z,增函数222k,2k??,k?z,增函数?2k?,2k,k?z,减函数对称中心对称轴?k?,0?,k?zx?kk??,0?,k?z?2??x?k?,k?z?k?,0?,k?z无?2,k?z10图像yx-15-10-5π/2-8π/2o-1-3π/2ππ/2oπ/2π3π/21015-8-2π-6-3π/2-4π-2π/2ππ-2π-6-3π/2-4π-2π/2oπ/2ππ/2π-2-1-4-2-2-6-3-3-4-4-8-5-6-5-10周期问题:①周期函数定义:一般地,对于函数f(x),如果存在一个非零的常数t,使得定义域内的每一个x 值,都满足f(x?t)?f(x),那么函数就叫做周期函数,非零常数t叫做这个函数的周期。

苏教版高一知识点总结

苏教版高一知识点总结

苏教版高一知识点总结### 苏教版高一知识点总结#### 数学1. 集合与函数- 集合的基本概念:元素、集合、子集、并集、交集、补集。

- 函数的定义、性质、表示法。

- 函数的单调性、奇偶性、周期性。

2. 三角函数- 三角函数的定义:正弦、余弦、正切。

- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。

3. 解析几何- 直线的方程:点斜式、斜截式、一般式。

- 圆的方程:标准式、一般式。

- 直线与圆的位置关系。

4. 不等式与方程- 不等式的性质:可加性、乘法性质。

- 一元二次不等式的解法。

- 线性方程组的解法。

5. 数列- 等差数列与等比数列的定义、通项公式、求和公式。

#### 物理1. 力学基础- 力的基本概念:重力、弹力、摩擦力。

- 牛顿运动定律:第一、第二、第三定律。

2. 运动学- 描述运动的物理量:位移、速度、加速度。

- 匀速直线运动、匀变速直线运动。

3. 能量守恒与转换- 功、功率、能量的概念。

- 能量守恒定律。

4. 动力学- 动量守恒定律。

- 碰撞问题。

#### 化学1. 原子结构- 原子的组成:质子、中子、电子。

- 原子核外电子的排布。

2. 化学键与分子结构- 离子键、共价键。

- 分子的极性。

3. 化学反应- 化学反应的类型:合成、分解、置换、复分解。

- 化学方程式的书写。

4. 化学计量- 摩尔概念、摩尔质量。

- 物质的量与质量、体积、浓度的关系。

#### 生物1. 细胞结构与功能- 细胞的组成:细胞膜、细胞质、细胞核。

- 细胞器的功能。

2. 遗传与进化- DNA的结构与功能。

- 遗传的基本规律。

3. 生态与环境- 生态系统的组成与功能。

- 人类活动对环境的影响。

#### 语文1. 文学鉴赏- 文学作品的类型:诗歌、散文、小说。

- 文学鉴赏的基本方法。

2. 文言文阅读- 古文的句式结构。

- 常见古汉语词汇的用法。

3. 现代文阅读- 文章结构的分析。

- 作者观点与写作手法。

新教材苏教版高中数学必修第一册全册书各章节知识点考点重点难点归纳总结

新教材苏教版高中数学必修第一册全册书各章节知识点考点重点难点归纳总结

苏教版必修第一册重点归纳第一章集合 (2)1.1 集合的概念与表示 (2)1.2 子集、全集、补集 (10)1.3 交集、并集 (17)第二章 常用逻辑用语 (22)2.1 命题、定理、定义 (22)2.2 充分条件、必要条件、充要条件 (26)2.3 全称量词命题与存在量词命题 (30)第三章 不等式 (33)3.1 不等式的基本性质 (33)3.2 ≤a +b 2(a ,b ≥0) (40)3.3 从函数观点看一元二次方程和一元二次不等式 (50)第四章 指数与对数 (66)4.1 指数 (66)4.2 对数 (70)第五章函数概念与性质 (77)5.1 函数的概念和图象 (77)5.2 函数的表示方法 (86)5.3 函数的单调性 (92)5.4 函数的奇偶性 (99)第六章 幂函数、指数函数和对数函数 (105)6.1 幂函数 (105)6.2 指数函数 (110)6.3 对数函数 (120)第七章 三角函数 (128)7.1 角与弧度 (128)7.2 三角函数概念 (139)7.3 三角函数的图象和性质 (158)7.4 三角函数应用 (182)第八章 函数应用 (187)8.1 二分法与求方程近似解 (187)8.2 函数与数学模型 (195)第一章集合1.1集合的概念与表示第1课时集合的概念知识点1元素与集合的概念(1)一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素,简称元.(2)集合中元素的特征:确定性、互异性、无序性.假如在军训时教官喊“全体高个子同学集合”,你会去集合吗?[提示]不去,不清楚自己是不是高个子.集合中的元素必须同时具备确定性、互异性、无序性.反过来一组对象若不具备这三个特性中任何一个,则这组对象不能构成集合.集合中元素的三个特性是判断一组对象能否构成集合的重要依据.知识点2元素与集合1.元素与集合的表示(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.2.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素,记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A,读作“a不属于A”.知识点3常用数集及表示符号名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R 考点类型1集合的概念【例1】(1)考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2021年10月1日,参加一带一路的国家.A.③④B.②③④C.②③D.②④(2)下列说法中,正确的有________.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.(1)B(2)②[(1)①中“美丽”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.(2)①不正确.book的字母o有重复,共有3个不同字母,元素个数是3.②正确.集合M中有3个元素a,b,c,所以a,b,c都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确.小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.]一组对象能组成集合的标准是什么?[提示]判断一组对象是否为集合的三依据:(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.类型2元素与集合的关系【例2】(1)下列所给关系正确的个数是()①π∈R②3∈R③6∉Q④0∈N*⑤|-2|∈ZA.2 B.3C.4 D.5(2)已知集合A含有三个元素2,4,6,当a∈A,有6-a∈A.则a的值为________.(1)C(2)2或4[(1)①π是无理数∴π∈R故①正确,3是无理数∴3∈R,②正确.6是无理数∴6∉Q,④0是自然数是非负整数,0∈N,故④错误.|-2|=2∈Z正确.(2)集合A含有三个元素2,4,6且当a∈A,有6-a∈A.a=2∈A,6-a=4∈A,所以a=2或者a=4∈A,6-a=2∈A,所以a=4.综上所述,a=2或4.]判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.类型3集合中元素的特性及应用【例3】已知集合A中含有两个元素1和a2,若a∈A,求实数a的值.若集合A中含有两个元素a,b,则a,b满足什么关系?若1∈A,则元素1与集合A中元素a,b存在怎样的关系?[提示]a≠b,a=1或b=1.[解]由题意可知,a=1或a2=a.(1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1.(2)若a2=a,则a=0或a=1(舍去).又当a=0时,A中含有元素1和0满足集合中元素的互异性,符合题意.综上可知,实数a的值为0.1.(变条件)本例若去掉条件“a∈A”,其他条件不变,求实数a的取值范围.[解]由集合中元素的互异性可知a2≠1,即a≠±1.2.(变条件)已知集合A含有两个元素a和a2,若1∈A,求a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,所以a≠1.当a=-1时,集合A含有两个元素1,-1,符合集合中元素的互异性.所以a=-1.由集合中元素的特性求解字母取值(范围)的步骤第2课时集合的表示知识点1集合的表示方法表示方法定义一般形式列举法将集合的元素一一列举出来,并置于花括号“{}”内{a1,a2,…,a n,…}描述法将集合的所有元素都具有的性质(满足的条件)表示出来{x|p(x)}Venn 图法用一个封闭曲线围成的平面区域的内部表示一个集合(1)中国的五岳组成的集合中的元素是什么?怎样列举出来?(2)不等式x-2<1的解集中的元素有什么共同特征?[提示](1)中的元素为泰山、华山、衡山、恒山、嵩山.(2)元素的共同特征为x∈R,且x<3.列举法通常适用于元素个数有限的集合.若集合中的元素有无限个,但有一定的规律性也可用列举法.描述法通常适用于元素个数较多而元素的排列又不呈现明显规律的集合或者根本就不能一一列举的集合.知识点2集合的分类(1)集合的分类有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合,记作∅(2)集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.考点类型1用列举法表示集合【例1】用列举法表示下列集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程x2-x-2=0的实根组成的集合C.[解](1)不大于10的非负偶数有0,2,4,6,8,10.所以A={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B={2,3,5,7}.(3)方程x2-x-2=0的实根为2,-1,所以C={2,-1}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}.类型2用描述法表示集合【例2】用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.[解](1)偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n ∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.(2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故n∈N,所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x,y)|xy=0}.利用描述法表示集合应关注4点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.类型3集合表示法的综合应用【例3】集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.[解](1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0有两个相等的实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.1.本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k的值组成的集合.[解]由题意可知,方程kx2-8x+16=0有两个不等实根,故k≠0,且Δ=64-64k>0,即k<1,且k≠0.所以实数k组成的集合为{k|k<1,且k≠0}.2.本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k的取值范围.[解]由题意可知,方程kx2-8x+16=0至少有一个实数根.①当k=0时,由-8x+16=0得x=2,符合题意;②当k≠0时,要使方程kx2-8x+16=0至少有一个实数根,则Δ=64-64k≥0,即k≤1,且k≠0.综合①②可知,实数k的取值范围为{k|k≤1}.(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.类型4 集合相等【例4】 (1)集合A ={x |x 3-x =0,x ∈N }与B ={0,1}________相等集合.(填“是”或“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,b a ,b 且A =B ,则a =________,b =________.[思路点拨] (1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.(1)是 (2)-1 1 [(1)x 3-x =x (x 2-1)=0,∴x =±1或x =0.又x ∈N ,∴A ={0,1}=B .(2)由题意知,a ≠0,故a +b =0,∴b =-a .∴b a =-1,∴a =-1,b =1.]已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.1.2子集、全集、补集第1课时子集、真子集知识点1子集的概念及其性质(1)子集定义如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集符号表示A⊆B(或B⊇A)读法集合A包含于集合B(或集合B包含集合A)图示(2)子集的性质①A⊆A,即任何一个集合是它本身的子集.②∅⊆A,即空集是任何集合的子集.③若A⊆B,B⊆C,则A⊆C,即子集具备传递性.(3)集合相等若A⊆B且B⊆A,则A=B.1.(1)任何两个集合之间是否一定有包含关系?(2)符号“∈”与“⊆”有何不同?[提示](1)不一定,如集合A={1,2}与B={3,4}这两个集合之间没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.不能把“A⊆B”理解为“A是B中部分元素组成的集合”因为集合A 可能是空集,也可能是集合B.知识点2真子集的概念与性质(1)真子集的概念如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A,读作“A真包含于B”或“B真包含A”.(2)性质①∅是任一非空集合的真子集.②若A B,B C,则A C.2.{0}与∅相等吗?[提示]不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.考点类型1确定集合的子集、真子集【例1】设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集与真子集.[解]由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4,或x=-1或x=4,故集合A={-4,-1,4}.由0个元素构成的子集为:∅;由1个元素构成的子集为:{-4},{-1},{4};由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为:{-4,-1,4};故集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}共8个子集.真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}共7个.确定子集、真子集的关键点是什么?有什么规律?[提示] 1.有限集的子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;(3)注意两个特殊的集合,即空集和集合本身.2.与子集、真子集个数有关的三个结论假设集合A中含有n个元素,则有:(1)A的子集的个数为2n个;(2)A的真子集的个数为2n-1个;(3)A的非空真子集的个数为2n-2个.类型2集合关系的判断【例2】指出下列各对集合之间的关系:(1)A={-1,1},B={x∈N|x2=1};(2)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(3)P={x|x=3n-1,n∈Z},Q={x|x=3n+2,n∈Z};(4)A={x|x是等边三角形},B={x|x是三角形};(5)A={x|-1<x<4},B={x|x-5<0}.[解](1)用列举法表示集合B={1},故B A.(2)集合A的代表元素是数,集合B的代表元素是实数对,故A与B之间无包含关系.(3)∵P表示3的整数倍少1的数构成的数集,Q表示3的整数倍多2的数构成的数集,∴P=Q.(4)等边三角形是三边相等的三角形,故A B.(5)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可发现A B.判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A⊆B和A B同时成立,则A B更能准确表达集合A,B之间的关系.类型3集合之间的包含关系【例3】 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. 若B A ,求实数m 的取值范围?集合B 中的元素有何特点?可能为空集吗?m 满足什么条件时B =∅. [提示] 集合B 中的元素不确定,随m 的变化而变化.B 可能为空集. 当m +1>2m -1时B =∅.[解] (1)当B =∅时, 由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎨⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. 综上可得,m 的取值范围是{m |m ≤3}.1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.[解] (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示,∴⎩⎨⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎨⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. [解] 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎨⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎨⎧m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .1.对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.2.两个易错点(1)当B ⊆A 时,应分B =∅和B ≠∅两种情况讨论; (2)列不等关系式时,应注意等号是否成立.第2课时 全集、补集知识点1 补集(1)定义:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为∁S A (读作“A 在S 中的补集”).(2)符号表示∁S A ={x |x ∈S ,且x ∉A }.(3)图形表示:(4)补集的性质①∁S ∅=S ,②∁S S =∅,③∁S (∁S A )=A . 知识点2 全集如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,全集通常记作U.两个不同的集合A、B在同一个全集U中的补集可能相等吗?[提示]不可能相等.因为集合A、B是两个不同的集合.所以必定存在元素在集合A的补集中,但不在集合B的补集中.补集符号∁S A有三层含义:(1)A是S的一个子集,即A⊆S;(2)∁S A表示一个集合,且∁S A⊆S;(3)∁S A是S中所有不属于A的元素构成的集合.考点类型1全集与补集【例1】(1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.(1){2,3,5,7}(2){x|x<-3或x=5}[(1)A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.(2)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.]常见补集的求解方法是什么?[提示]常见补集的求解方法有:(1)列举求解.适用于全集U和集合A可以列举的简单集合.(2)画数轴求解.适用于全集U和集合A是不等式的解集.(3)利用Venn图求解.类型2补集与子集的综合应用【例2】已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.[思路点拨]首先应对B是否为空集进行讨论,得出∁U B,然后再利用A⊆∁B得关于a的不等式求解即可.U[解]若B=∅,则a+1>2a-1,所以a<2.此时∁U B=R,所以A⊆∁U B;若B≠∅,则a+1≤2a-1,即a≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A⊆∁U B,如图,则a+1>5,所以a>4,所以实数a的取值范围为a<2或a>4.(变条件)若将本例中的“A⊆∁U B”改为“B⊆∁U A”,求实数a的取值范围.[解]∁U A={x|x<-2或x>5}.因为B⊆∁U A,当a+1>2a-1,即a<2时,B=∅,B⊆∁U A.当a+1≤2a-1,即a≥2时,B≠∅.所以2a-1<-2或a+1>5,即a>4,综上,a的取值范围为a<2或a>4.1.解决此类问题应注意以下几点(1)空集作为特殊情况,不能忽略;(2)数形结合方法更加直观易懂,尽量使用;(3)端点值能否取到,应注意分析.2.U是由集合A与∁U A的全体元素所构成,对于某一个元素a,a∈A与a ∈∁U A中恰好只有一个成立,即集合中的元素具有确定性.1.3交集、并集知识点1交集1.交集的概念(1)文字语言:一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)Venn图①②③2.交集的性质(1)A∩B=B∩A;(2)A∩B⊆A;(3)A∩B⊆B;(4)A∩A=A;(5)A∩∅=∅;(6)A∩(∁A)=∅;(7)A∩U=A(其中U为全集).U1.A∩B是把A与B的部分元素组合在一起吗?[提示]是把公共元素组合在一起,而不是部分.2.集合M={直线}与集合N={圆}有没有交集?[提示]有.根据交集的概念可知M∩N=∅.3.若A∩B=C∩B,则必有A=C吗?[提示]若A∩B=C∩B,则可能有A=C,也可能不相等.(1)A∩B是一个集合,由A与B的所有公共元素组成,而非部分元素组成.(2)两集合A与B没有公共元素时,不能说集合A与B没有交集,而是A∩B =∅.知识点2并集(1)文字语言:一般地,由所有属于集合A或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B(读作“A并B”).(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)Venn图①②③(3)并集的性质①A∪B=B∪A;②A⊆A∪B;③B⊆A∪B;④A∪A=A;⑤A∪∅=A;⑥A∪(∁U A)=U;⑦A∪U=U(其中U为全集).4.A∪B是把A和B的所有元素组合在一起吗?[提示]不是,因为A和B可能有公共元素,每个公共元素只能算一个元素.5.两个集合并集中的元素个数一定比两个集合元素个数之和大吗?[提示]当两个集合有公共元素时,在并集中只能算作一个.故这种说法不正确.知识点3区间的概念(1)设a,b∈R,且a<b,规定:[a,b]={x|a≤x≤b},(a,b)={x|a<x<b},[a,b)={x|a≤x<b},(a,b]={x|a<x≤b},(a,+∞)={x|x>a},(-∞,b)={x|x<b},(-∞,+∞)=R.[a,b],(a,b)分别叫作闭区间、开区间;[a,b),(a,b]叫作半开半闭区间;a,b叫作相应区间的端点.(2)区间的数轴表示区间表示数轴表示[a,b](a,b)[a,b)(a,b][a,+∞)(a,+∞)考点类型1交集概念及其应用【例1】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于() A.{x|0≤x≤2} B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2(1)A(2)D[(1)∵A={x|-1≤x≤2},B={x|0≤x≤4},如图,故A∩B={x|0≤x≤2}.(2)∵8=3×2+2,14=3×4+2,∴8∈A,14∈A,∴A∩B={8,14},故选D.]1.求以列举法给出的两集合的交集时,可直接寻找其公共元素,但需注意不可遗漏.2.求以描述法给出的两集合的交集时,可先化简集合,再确定两集合的公共元素(区间),有必要时可借助于数轴或Venn图解决.3.已知集合的交集求参数问题要利用交集中元素的特殊性(公有性)列方程或不等式(组)来解决,而且,有些题目还应注意验证得出的结论是否符合集合元素的互异性和是否符合题意.类型2并集的概念及其应用【例2】(1)若A={4,5,6,8},B={3,5,6,7,8},则A∪B=________.(2)若A={x|-1≤x<3},B={x|1<x<4},则A∪B=________.[思路点拨](1)将A,B中的元素合并,注意互异性即可.(2)借助数轴表示A,B,再求A∪B.(1){3,4,5,6,7,8}(2){x|-1≤x<4}[(1)A∪B={3,4,5,6,7,8}.(2)用数轴表示出A,B,如图.所以A∪B={x|-1≤x<4}.]求集合并集的2种基本方法(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.类型3交、并、补集的综合应用【例3】已知全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,4},B={3,4,5,6},试写出∁U A,∁U B,A∩B,A∪B,∁U(A∩B),∁U(A∪B),(∁U A)∩(∁U B),(∁U A)∪(∁B).U[思路点拨]采用列举法逐一将上述各集合写出.[解]∁U A={5,6,7,8},∁U B={1,2,7,8},A∩B={3,4},A∪B={1,2,3,4,5,6}.∁U(A∩B)={1,2,5,6,7,8},∁U(A∪B)={7,8}.(∁U A)∩(∁U B)={7,8},(∁U A)∪(∁U B)={1,2,5,6,7,8}.从本题解答中可以得出两个结论:∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).类型4并集、交集性质的应用【例4】已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A ∪B=A,试求k的取值范围.[解](1)当B=∅,即k+1>2k-1时,k<2,满足A∪B=A.(2)当B≠∅时,要使A∪B=A,只需⎩⎨⎧-3<k +1,4≥2k -1,k +1≤2k -1,解得2≤k ≤52. 综合(1)(2)可知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪ k ≤52.1.把本例条件“A ∪B =A ”改为“A ∩B =A ”,试求k 的取值范围.[解] 由A ∩B =A 可知A ⊆B .所以⎩⎨⎧ -3≥k +1,2k -1≥4,即⎩⎪⎨⎪⎧ k ≤-4,k ≥52,所以k ∈∅.所以k 的取值范围为∅.2.把本例条件“A ∪B =A ”改为“A ∪B ={x |-3<x ≤5}”,求k 的值.[解] 由题意可知⎩⎨⎧-3<k +1≤4,2k -1=5,解得k =3. 所以k 的值为3.1.在进行集合运算时,若条件中出现A ∩B =A 或A ∪B =B ,应转化为A ⊆B ,然后用集合间的关系解决问题,并注意A =∅的情况.2.集合运算常用的性质①A ∪B =B ⇔A ⊆B ;②A ∩B =A ⇔A ⊆B ;③A ∩B =A ∪B ⇔A =B .第二章 常用逻辑用语2.1 命题、定理、定义知识点1 命题的定义与分类(1)命题的定义:在数学中,可以判断真假的陈述句叫作命题. (2)命题定义中的两个要点:“可以判断真假”和“陈述句”.(3)分类:命题⎩⎨⎧真命题:判断为真的语句假命题:判断为假的语句 1.(1)“x -1=0”是命题吗? (2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗? [提示] (1)“x -1=0”不是命题,因为它不能判断真假.(2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.一般地,疑问句、祈使句、感叹句、开语句都不是命题.如x >15等.知识点2 命题的结构及定理、定义1.命题的结构(1)命题的一般形式为“若p ,则q ”.其中p 叫作命题的条件,q 叫作命题的结论.(2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式.2.命题“实数的平方是非负数”的条件与结论分别是什么?[提示] 条件是:“一个数是实数”,结论是:“它的平方是非负数”.2.定理与定义在数学中,有些已经被证明为真的命题可以作为推理的依据直接使用,一般称之为定理.在数学中的定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.(1)数学中的定理、推论和数学中定义都是命题.(2)数学中的定义既可以用于对某些对象的判断,也可以作为某类对象所具有的性质.考点类型1命题的判断【例1】(1)下列语句为命题的是()A.x2-1=0B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 020是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.(1)B(2)①④[(1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.]判断一个语句是否是命题的关键点是什么?[提示](1)该语句必须是陈述句;(2)该语句可以判断真假.提醒:对于含变量的语句,要注意根据变量的取值范围看能否判断其真假,若能,就是命题,若不能,就不是命题.类型2命题的构成【例2】(1)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧.若把上述命题改为“若p,则q”的形式,则p是________,q是________.(2)把下列命题改写成“若p,则q”的形式.①函数y=2x+1是一次函数;②已知x,y为正整数,当y=x+1时,y=3,x=2;③当abc=0时,a=0且b=0且c=0.(1)一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧[命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.](2)[解]①若函数的解析式为y=2x+1,则这个函数是一次函数.②已知x,y为正整数,若y=x+1,则y=3,x=2.③若abc=0,则a=0且b=0且c=0.1.若一个命题有大前提,则在将其改写成“若p,则q”的形式时,大前提仍应作为大前提,不能写在条件中.2.“若p,则q”这种形式是数学中命题的基本结构形式,也有一些命题的叙述比较简洁,并不是以“若p,则q”这种形式给出的,这时,首先要把这个命题补充完整,然后确定命题的条件和结论.类型3命题真假的判断【例3】判断下列命题的真假,并说明理由.(1)正方形既是矩形又是菱形;(2)当x=4时,2x+1<0;(3)若x=3或x=7,则(x-3)(x-7)=0;(4)一个奇数是两个整数的平方差.[解](1)是真命题,由正方形的定义知,正方形既是矩形又是菱形.(2)是假命题,x=4不满足2x+1<0.(3)是真命题,x=3或x=7能得到(x-3)(x-7)=0.(4)是真命题,因为当n∈Z时,任意奇数2n-1=n2-(n-1)2,所以一个奇数是两个整数的平方差.命题真假的判定方法(1)真命题的判断方法要判断一个命题是真命题,一般要有严格的证明或有事实依据,比如根据已学过的定义、公理、定理证明或根据已知的正确结论推证.(2)假命题的判断方法通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.类型4 数学中的新定义【例4】 对于a ,b ∈N *,规定a *b =⎩⎨⎧a +b ,a 与b 的奇偶性相同,a ×b ,a 与b 的奇偶性不同,集合M ={(a ,b )}|a *b =12,a ,b ∈N *},则M 中元素的个数为( )A .6B .8C .15D .16 [思路点拨] 本题新定义两个正整数的新运算,利用新定义解方程a *b =12,a ,b ∈N *,分a ,b 奇偶性相同和a ,b 奇偶性不同进行分类讨论即可.C [分a ,b 奇偶性相同和奇偶性不同两种情况讨论.如果a ,b 奇偶性相同,满足条件的有1+11=2+10=3+9=…=6+6=…=9+3=10+2=11+1,共11种情况,即有11组(a ,b )符合M 中元素的要求;如果a ,b 奇偶性不同,则满足条件的有1×12=3×4=4×3=12×1,共4种情况,即有4组(a ,b )符合M 中元素的要求.综上,M 中元素的个数为11+4=15.故选C .]数学中的定义在解题中得应用还很多,它是数学理论的基础,是进行判断、推理、论证的重要依据.在解题中充分利用定义,有时会收到事半功倍的效果.数学定义的应用蕴涵着极其丰富的内涵,深刻理解定义,可抓住问题的实质,从而找到解决问题的有效途径.本题中新定义的运算,是以正整数的奇偶作为分类的基准,就是本题解相关方程的依据.2.2充分条件、必要条件、充要条件知识点1充分条件与必要条件命题真假“若p,则q ”是真命题“若p,则q”是假命题推出关系p⇒q p q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件“p⇒q”含义的理解:一方面,一旦p成立,q一定也成立.即p对q的成立是充分的;另一方面,如果q不成立,那么p一定不成立;即q对p的成立是必要的.1.(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否相同?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示](1)相同,都是p⇒q.(2)等价.知识点2充要条件(1)如果p⇒q,且q⇒p,那么称p是q的充分且必要条件,简称p是q的充要条件.为了方便起见,p是q的充要条件,就记作p⇔q,称为“p与q等价”或“p 等价于q”.“⇒”和“⇔”都具有传递性,即①如果p⇒q,q⇒s,则p⇒s;②如果p⇔q, q⇔s,则p⇔s;(2)若p⇒q,但q p,则称p是q的充分不必要条件.(3)若q⇒p,但p q,则称p是q的必要不充分条件.(4)若p q,且q p,则称p是q的既不充分也不必要条件.2.(1)若p是q的充要条件,则命题p和q是两个相互等价的命题,这种说法对吗?(2)“p是q的充要条件”与“p的充要条件是q”的区别在哪里?[提示](1)正确.若p是q的充要条件,则p⇔q,即p等价于q.(2)①p是q的充要条件说明p是条件,q是结论.。

高一数学期末知识点苏教版

高一数学期末知识点苏教版

高一数学期末知识点苏教版高一数学期末知识点苏教版高一数学是学生接触到高中数学的第一年,是从初中数学过渡到高中数学的关键时期。

针对苏教版数学教材,下面将对高一数学期末考试可能涉及到的知识点进行一些总结,并进行一定的深入解析。

1. 数列与数列的极限数列是高一数学中的重要概念之一。

数列可以看作是一组按照一定规律排列的数。

在苏教版中,数列的定义与性质是重点内容。

数列的极限是数列理论中最为重要的概念之一。

在数列的极限中,重点关注数列的收敛与发散,以及数列极限的性质。

在考试中,常常会涉及从数列的定义出发来论述数列的极限性质,如夹逼定理、单调有界原理等。

2. 幂指对数函数与三角函数在高一数学中,一元幂指函数、对数函数以及三角函数是重点内容之一。

苏教版中较为详细地介绍了这些函数的定义、性质以及基本公式。

在考试中,常常会出现与这些函数相关的题目,要求学生根据函数的定义、性质以及基本公式来解题。

此外,还会出现一些复合函数求导、积分的应用题。

3. 平面向量与向量共线与垂直的判断平面向量的概念与性质也是高一数学的一项重要知识点。

在苏教版中,介绍了平面向量的定义、性质以及运算规则。

向量的共线性与垂直性是平面向量中的一个重要概念。

考试中,常常要求学生根据题目给出的条件来判断两个向量是否共线或垂直,并应用相关性质进行证明或计算。

4. 直线与圆的方程直线与圆的方程是高一数学中的另一个重要知识点。

通过学习苏教版数学教材,学生将学习到直线的一般方程、截距式方程以及点斜式方程等;圆的方程中,学生将学习到圆心在坐标原点的标准方程、圆心不在坐标原点的一般方程。

在考试中,学生需要根据题目给出的条件来确定直线或圆的方程,并应用相关知识进行求解。

5. 统计与概率统计与概率是高中数学的另一个重要内容。

在苏教版中,介绍了统计与概率的基本概念、统计图表的绘制与分析以及概率计算等内容。

在考试中,常常会涉及到数据的整理与分析、频数统计、概率计算等题型。

苏教版高一数学知识点总结

苏教版高一数学知识点总结

苏教版高一数学知识点总结高一上册数学必修一知识点梳理空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学必修五知识点总结空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

苏教版高中数学必修1知识点总结及题型

苏教版高中数学必修1知识点总结及题型

如果您想要完整电子版,关注后私信发送数字333即可!高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示名称非负整数集(自然数集) 整数集实数集符号N N*或N+Z Q R知识点四集合的表示方法1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集________(或________)真子集如果集合A⊆B,但存在元素________,且________,我们称集合A是集合B的真子集________(或________)2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六 集合的运算 1.交集 2.并集自然语言符号语言图形语言由_________________ _________________组成的集合,称为A 与B 的并集A ∪B =_______________3.交集与并集的性质交集的运算性质并集的运算性质 A ∩B =________ A ∪B =________ A ∩A =________ A ∪A =________ A ∩∅=________ A ∪∅=________ A ⊆B ⇔A ∩B =________A ⊆B ⇔A ∪B =________4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________. 5.补集文字语言 对于一个集合A ,由全集U 中__________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________符号语言 ∁U A =________________图形语言典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。

苏教版高中数学知识点整理

苏教版高中数学知识点整理

第一讲 集 合一、知识精点讲解1.集合:某些指定的对象集在一起成为集合。

(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法:非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。

2.集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作A B ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集; 4.交集与并集:(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。

苏教版高中数学必修一知识点总结

苏教版高中数学必修一知识点总结

苏教版高中数学必修一知识点总结【篇一:苏教版高中数学必修一知识点总结】必修一第一章集合与函数概念 1.用字母表示下列集合。

必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

优秀文档,精彩无限!优质文档,精彩无限!优秀文档,精彩无限!优质文档,精彩无限!引言 1.课程内容:必修课程由5 个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:三角函数、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有3 个系列:选修系列1:由2 个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3 个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。

高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版高中数学知识点大全总结(苏教版)一、函数与导数1. 函数的概念与性质- 函数的定义- 函数的表示方法- 函数的域与值域- 函数的奇偶性- 函数的单调性与周期性2. 基本初等函数- 幂函数、指数函数与对数函数- 三角函数及其性质- 反三角函数- 双曲函数3. 函数的极限与连续性- 极限的概念与性质- 无穷小与无穷大- 函数的连续性与间断点4. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 高阶导数- 微分的概念与应用5. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 洛必达法则- 函数的单调区间与曲线的凹凸性二、三角函数与解三角形1. 三角函数的图像与性质- 三角函数的图像- 三角函数的基本性质- 三角函数的和差化积与积化和差2. 三角函数的恒等变换- 同角三角函数的基本关系- 恒等变换公式3. 解三角形- 三角形的边角关系- 正弦定理与余弦定理- 三角形面积的计算三、数列与数学归纳法1. 等差数列与等比数列- 数列的基本概念- 等差数列与等比数列的定义、通项公式与求和公式2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、平面向量与解析几何1. 平面向量- 向量的基本概念与运算- 向量的模、方向角与投影2. 直线与圆的方程- 直线的点斜式、两点式与一般式方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线与抛物线的方程及其性质五、立体几何1. 空间直线与平面- 空间直线的方程- 平面的方程- 直线与平面的位置关系2. 立体图形的性质- 棱柱、棱锥与圆柱、圆锥、圆台的体积与表面积 - 球的体积与表面积六、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与概率密度函数3. 统计初步- 总体与样本- 统计量的概念与计算- 线性回归与相关分析以上是苏教版高中数学的主要知识点总结,涵盖了函数、三角函数、数列、向量、解析几何、立体几何、概率与统计等多个领域。

苏教版高中数学必修知识点总结

苏教版高中数学必修知识点总结

苏教版高中数学必修知识点总结高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义:集合是由一些确定的元素所组成的整体。

2.集合的元素有三个特性:1) 确定性:元素是确定的,如“世界上最高的山”。

2) 互异性:元素不重复,如由HAPPY的字母组成的集合{H,A,P,Y}。

3) 无序性:元素排列顺序不影响集合本身,如{a,b,c}和{a,c,b}是同一个集合。

3.集合的表示方法:1) 用大括号{…}表示,如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。

2) 用拉丁字母表示集合,如A={我校的篮球队员},B={1,2,3,4,5}。

3) 集合的表示方法有列举法和描述法。

4.常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集记作N*或N+;整数集记作Z;有理数集记作Q;实数集记作R。

5.列举法:{a,b,c……}。

6.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法,如{x R| x-3>2},{x| x-3>2}。

7.语言描述法:如{不是直角三角形的三角形}。

8.Venn图。

4、集合的分类:1) 有限集:含有有限个元素的集合。

2) 无限集:含有无限个元素的集合。

3) 空集:不含任何元素的集合,记为Φ。

二、集合间的基本关系1.“包含”关系—子集:A B表示A是B的子集,即A中的元素都属于B。

注意:A B有两种可能:(1) A是B的一部分;(2) A与B是同一集合。

反之:A B表示A不包含于B,或B不包含于A。

2.“相等”关系:A=B表示A和B的元素完全相同,即任何一个集合都是它本身的子集。

实例:设A={x|x-1=0},B={-1,1},则“元素相同则两集合相等”,即:①任何一个集合是它本身的子集。

A A;②真子集:如果A B,且A B,则集合A是集合B的真子集,记作A⊂B(或B⊃A);③如果A B,B C,则A C;④如果A B且B A,则A=B。

苏教版高一数学知识点总结

苏教版高一数学知识点总结

苏教版高一数学知识点总结
高一数学是初高中数学的过渡阶段,是学生从基础知识向高深知识的过渡时期。

下面是对苏教版高一数学的知识点进行总结:
1. 矩阵与行列式
- 矩阵的基本概念和运算法则
- 矩阵的逆与转置
- 矩阵的秩与模型应用
- 行列式的定义和性质
2. 函数与方程
- 一元二次函数的性质、图像和应用
- 指数函数、对数函数的性质和图像
- 幂函数、分式函数的性质和图像
- 二次函数、双曲线、椭圆的性质和图像
- 一元一次方程组和一元二次方程的解法
- 一元二次方程及其应用
3. 三角函数
- 弧度制和角度制的转换
- 任意角的三角函数的定义和性质
- 三角函数的基本关系式
- 三角函数的图像、性质和应用
4. 平面几何
- 二维坐标系的建立和运用
- 直线、圆和双曲线的方程
- 直线的位置关系、垂直关系和平行关系
- 直线的斜率、倾斜角和法线方程
- 圆和双曲线的性质和参数方程
5. 空间几何
- 三维坐标系的建立和运用
- 空间直线和平面的方程
- 直线与直线、直线与平面的位置关系
- 平面与平面的位置关系
- 空间几何体的体积和表面积
6. 统计与概率
- 随机事件与概率的基本概念
- 概率的运算法则和计数原理
- 基本离散型随机变量及其分布律
- 二项分布和正态分布的性质和应用
以上是苏教版高一数学的主要知识点,每个知识点都有其特点和应用场景。

在学习过程中,要注重理论与实践相结合,同时注重数学思维的培养和数学方法的掌握。

希望这份总结对你有帮助!。

苏教版高一数学知识点总结

苏教版高一数学知识点总结

苏教版高一数学知识点总结高一数学是高中数学的一个重要阶段,是学生从初中数学到高中数学的过渡阶段。

苏教版高一数学主要包括了数与代数、函数与方程、平面几何、空间几何、数列与数列求和、概率与统计等内容。

下面是苏教版高一数学知识点的详细总结。

一、数与代数1. 自然数、整数、有理数、无理数、实数的概念和性质;2. 数的基本运算:加法、减法、乘法、除法以及乘方运算;3. 数的因式分解与整除性质;4. 分数的概念和性质,以及分数的基本运算;5. 百分数、百分数的表示、百分数的计算;6. 比例、比例的性质、比例的计算;7. 理解代数式、等式的含义和性质,掌握代数式的运算法则;8. 理解函数的概念,掌握函数的表示方法和性质;9. 解一元一次方程、一元一次不等式、一元一次方程组、一元一次不等式组的方法。

二、函数与方程1. 二次函数的概念、图象以及性质;2. 平方根函数的概念、图象以及性质;3. 三角函数的概念、图象以及性质;4. 根据函数的图象确定函数的性质;5. 理解函数的复合与反函数的概念;6. 理解函数的定义域和值域的概念;7. 解二次方程、二次不等式、二元二次方程组的方法;8. 解绝对值方程和不等式的方法;9. 解三角方程和三角不等式的方法。

三、平面几何1. 角的概念、性质和角度的计算;2. 直线和射线的概念和性质;3. 平行线与平行线的判定;4. 垂线、高线的概念以及性质;5. 三角形的分类、性质以及判断两个三角形是否全等的方法;6. 三角形的基本线段关系、一次函数解三角形问题的应用;7. 三角形的内角和、外角和的计算;8. 三角形的解题策略。

四、空间几何1. 空间直线与平面的位置关系及其判定;2. 点、直线、平面的投影;3. 空间中两直线、两平面之间的位置关系及其判定;4. 空间中平行线与平面的交线及其交点的位置关系;5. 球与平面的位置关系及其判定;6. 球面的投影、剖面和截面;7. 空间中点与直线的距离、点与平面的距离,直线与平面的距离。

苏教版高中数学知识点必修1集合、函数

苏教版高中数学知识点必修1集合、函数

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x AA = A ∅=B A ⊇ B B ⊇()U A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)()()U U B A B =?)()()U U B A B =?〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]yfg x=为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;yxo(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; ③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02x a->,则()M f p =xxxxx x(q)0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

苏教版高一数学知识点总结

苏教版高一数学知识点总结

苏教版高一数学知识点总结一、函数与方程1. 函数的概念与性质•函数的定义•函数的自变量、函数值和定义域、值域的概念•函数的图像和奇偶性•函数的单调性和最值•反函数的概念与性质2. 一次函数与二次函数•一次函数的概念与性质•一次函数的图像和函数方程•斜率的意义及计算•二次函数的概念与性质•二次函数的图像和函数方程•抛物线的性质和顶点坐标的计算3. 指数与对数函数•指数函数的概念与性质•指数函数的图像和函数方程•对数函数的概念与性质•对数函数的图像和函数方程•指数与对数函数的性质和运算法则4. 三角函数•三角函数的概念与性质•三角函数的图像和函数方程•正弦、余弦和正切函数的周期性和对称性•三角函数的和差化积公式和倍角公式•三角函数的反函数和反函数的性质二、导数与微分1. 导数的概念与性质•导数的定义和几何意义•导数的计算和图形表示•导数的四则运算规则和组合函数求导2. 微分的概念与应用•微分的定义和几何意义•微分的计算和应用•极值问题与最优化问题的求解3. 函数的导数与图像•函数的单调性与导数的关系•函数的凹凸性与导数的关系•函数的极值与导数的关系•函数的图像与导数的关系三、排列与组合1. 排列与组合的基本概念•排列和组合的定义和区别•排列数和组合数的计算方法•二项式定理和应用2. 乘法原理与加法原理•乘法原理和加法原理的概念和应用•置换群、循环群和全排列的计算•计算不重复排列和组合的方法3. 特殊排列和特殊组合•重复排列和重复组合的计算•圆排列和圆组合的计算•二项式系数的性质和应用四、概率与统计1. 随机事件与概率•随机事件的概念和性质•频率与概率的关系•概率的计算和性质•概率的加法定理和乘法定理•独立事件和条件概率的计算2. 分布与随机变量•随机变量的概念和性质•离散随机变量和连续随机变量•期望值和方差的计算•二项分布和正态分布的性质和应用3. 统计与抽样调查•统计的概念和基本思想•抽样调查的方法和步骤•总体和样本的统计量•区间估计和假设检验以上是苏教版高一数学的主要知识点总结。

苏教版高中数学必修一知识点总会

苏教版高中数学必修一知识点总会

高中数学必修一一、集合1.1集合的含义及其表示1.定义:一般的,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素。

2.特别的,自然数集记作N,正整数集记作N*或N+,,整数集记作Z,有理数集记作Q,实数集记作R.3.集合的元素常用小写拉丁字母表示.如果α是集合A 的元素,那么就记作α∈A,读作“α属于A”,例如2∈R;如果α不是集合A的元素,那么就记作α∉A,读作:α不属于A,例如2∉Q.4.集合中的元素具有确定性(a∈A和a不属于A,二者必居其一)、互异性(若a∈A,b∉A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

5.集合的表示方法:常用的有列举法、描述法和图文法。

6.一般的含有有限个元素的集合称为有限集,含有无限个元素的集合称为无限集。

7.我们把不含任何元素的集合称为空集,记作Ø,例如,集合{x|x2+x+1=0,x∈R}就是空集。

1.2子集、全集、补集1.子集定义:如果集合A的任何一个元素都是集合B的元素(若α∈A则a∈B),那么集合A称为集合B的子集,记为A⊆B或B⊇A,读作“集合A包含于集合B”或“集合B 包含集合A”.2.如果A⊆B并且A≠B,那么集合A称为集合B的真子集,记为A B,读作“A真包含于B”,如{α}{α,b}.3.根据子集的定义,我们知道A⊆A,也就是说,任何一个集合是它本身的子集.对于空集Ø,我们规定Ø⊆A,即空集是任何集合的子集.4.设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为C sA(读作“A在S中的补集”),即C sA={x|x∈S,且x∉A}.5.如果集合S包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常可以记作U.例如,在实数范围内讨论集合时,R便可以看做一个全集U.1.3交集、并集1.一般的,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B(读作:“A交B”),即A∩B={x|x∈A,且x∈B}.2.一般的,由所有属于集合A,或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.3.为了叙述方便,在以后的学习中,我们常常会用到区间的概念.设a,b∈R,且a<b,规定[a,b]={x|a≤x≤b},(a,b)={x|a<x<b},[a,b)={x|a≤x<b},(a,b]={x|a<x≤b},(a,+∞)={x|x>a},(-∞,b)={x|x<b},(-∞,+∞)=R.[a,b],(a,b)分别叫做闭区间、开区间:[a,b),(a,b]叫做半开半闭区间:a,b叫做相应区间的端点.读法:∞读作:无穷大;+∞读作:正无穷大(简读:正无穷);-∞读作负无穷大(简读:负无穷).[a,b]读作:闭区间a到b;(a,b)读作:开区间a到b;[a,b)读作:左闭右开a到b;(a,b]读作:左开右闭a到b;(a,+∞)读作:开区间a到正无穷;(-∞,b)读作:开区间负无穷到b;(-∞,+∞)读作:负无穷到正无穷;[a,+∞)读作:闭区间a到正无穷;(-∞,b]读作:开区间。

江苏版高一数学知识点总结

江苏版高一数学知识点总结

江苏版高一数学知识点总结数学是一门需要系统性学习的学科,掌握数学的基础知识对于高中生来说是至关重要的。

下面就是对江苏版高一数学知识点的总结,希望对广大学生有所帮助。

1. 函数与方程1.1 一次函数:一次函数是指函数的最高次幂为1的函数,它的一般表达式为y=ax+b,其中a、b为常数。

一次函数的图像为一条直线,具有斜率和截距的特征。

1.2 二次函数:二次函数是指函数的最高次幂为2的函数,它的一般表达式为y=ax²+bx+c,其中a、b、c为常数。

二次函数的图像为抛物线,可以根据a的正负值判断开口方向。

1.3 三角函数:三角函数包括正弦函数、余弦函数和正切函数等。

它们与三角比的关系密切,可以用于解决各种实际问题,如测量高楼建筑的高度等。

1.4 指数与对数函数:指数函数和对数函数是互为反函数的函数。

指数函数的一般表达式为y=a^x,其中a大于0且不等于1;对数函数的一般表达式为y=logₐx,其中a大于0且不等于1。

它们在数学和科学领域有广泛的应用。

2. 平面几何与立体几何2.1 平面几何:平面几何研究平面内的几何图形及其性质,包括点、线、面、角等。

其中,最基础的平面几何知识包括直线的性质,平行线与垂直线的关系,以及三角形的性质等。

2.2 立体几何:立体几何研究三维空间中的几何图形及其性质,包括点、线、面、直线等。

其中,最基础的立体几何知识包括立体图形的面积与体积的计算,以及球体、圆锥体、圆柱体、棱柱体和棱锥体的性质等。

3. 概率与统计3.1 概率:概率是研究事件发生可能性的数学分支。

在高一数学中,我们需要掌握基本事件与复合事件的概念,并学会如何计算概率。

例如,计算一个色子掷出奇数点数的概率为1/2。

3.2 统计:统计是研究数据收集、整理、分析和解释的学科。

在高一数学中,我们需要掌握如何收集数据,并学会对数据进行整理和分析。

常见的统计方法包括频数统计、频率统计和统计图表的制作等。

4. 数列与数学归纳法4.1 数列:数列是按一定顺序排列的一组数。

苏教版高一数学必修一、必修四拓展知识点

苏教版高一数学必修一、必修四拓展知识点

名师总结优秀知识点苏教版高一数学必修一、必修四拓展知识点必修一1.韦达定理:X 1+X 2=-b/a X 1X 2=c/a2. a3+b3=(a+b)(a 2-ab+b2)a3-b3=(a-b)(a 2+ab+b2)3.四个维度:开口方向、区间端点值的函数符号、对称轴、△。

4.常用对数: log10N=lgN log e=lnN5.函数的表达法:解析法(解析式)、列表法、图像法。

6.求函数定义域的依据:(1)分式的分母不为零。

(2)正切函数中 X≠π /2+k π(k ∈ Z) 。

(3)偶次方根的被开方数不小于零。

(4)零次幂的底数不为零。

(5)考虑实际情况。

(6)指、对数函数的底数大于零且不为一。

(7)对数函数的真数大于零。

7.判断函数是否为增减函数的方法:(1)取值(在定义域上任意取X1X2,且 X1﹤X2)。

(2)作差( f(X 1)-f(X 2 ) )。

(3)变形(通分)。

(4)定号。

(5)结论。

8.判断函数是否为奇偶函数的步骤:(1)求定义域,判断是否关于原点对称。

(2)求 f(-X) 。

(3)判断 f(X )与 f(-X) 的关系。

(4)结论。

9.奇函数与偶函数的性质:(1)单调性是局部性质,奇偶性是整体性质。

(2)奇函数图像关于原点对称,偶函数图像关于y 轴对称。

(3)奇偶函数定义域关于原点对称。

(4)奇函数在 X=0 有意义时,必有 f (0) =010.正数 a 的偶次方根是互为相反数的两个:±n。

n a的奇次方根只有一个为0的 n 次方根为 0。

11.函数图像:函数函数的记号名称。

函数的图形函数的性质名师总结优秀知识点指数函数对数函数幂函a 为任意实数数这里只画出部分函数图形的一部分。

12.设基础值为 N,增长率为 p% , 期数为 X,本利和为 y.则 y=N(1+ p % ) X13.f(x) 与 f(-x) 图像关于 y 轴对称; f(x)与 -f(x) 图像关于 x 轴对称;f(x) 与 -f(-x) 图像关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版高一数学知识点总结
【一】
学习目标
1.了解曲线的方程的概念;
2.通过具体实例研究,掌握求曲线方程的一般步骤;
3.能根据曲线方程的概念解决一些简单问题.
一、预习检查
1.观察下表中的方程与曲线,说明它们有怎样的关系:
序号方程曲线
1
2.条件甲:曲线是方程的曲线.条件乙:曲线上点的坐标都是方程的解.甲是乙的什么条件?
3.长为的线段的两端点分别在互相垂直的两条直线上滑动,求线段的中点的轨迹.
4.求平面内到两定点的距离之比等于2的动点的轨迹方程.
二、问题探究
探究1.我们已经建立了直线的方程,圆的方程及圆锥曲线的方程.那么,对于一般的曲线,曲线的方程的含义是什么?
探究2.回忆建立椭圆,双曲线,抛物线方程的过程,写出求曲线方程的一般步骤;
例1.(1)动点满足关系式:,试解释关系式的几何意义并求动点的轨迹方程.
(2)试画出所表示的曲线.
例2.已知△一边的两个端点是和,另两边所在直线的斜率之积是,求顶点的轨迹方程.
例3.(理科)设直线与双曲线交于两点,且以为直径的圆过原点,求点的轨迹方程.
三、思维训练
1.一个动点P在圆上移动时,它与定点M连线中点的轨迹方程是.
2.在直角坐标系中,,则点的轨迹方程是.
3.点是以为焦点的椭圆上一点,过焦点作∠的外角平分线的垂线,垂足为,点的轨迹是.
4.一动圆与定圆相切,且该动圆过定点.
(1)求动圆圆心的轨迹的方程;
(2)过点的直线与轨迹交于不同的两点,
求的取值范围.
四、课后巩固
1.已知点在以原点为圆心的单位圆上运动,则点的轨迹是.
2.坐标平面上有两个定点和动点,如果直线的斜率之积为定值,则点的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在直线上.
3.设定点是抛物线上的任意一点,定点,,则点的轨迹方程是.4.求焦点在轴上,焦距是4,且经过点的椭圆的标准方程.
5.(理科)已知直角坐标平面上点和圆:,动点到圆的切线长与的比等于常数,求动点的轨迹.
【二】
学习目标
1.通过实例掌握求两条曲线交点的坐标的方法;
2.进一步学习方程思想和数形结合思想对解决问题的指导.
一、预习检查
1.过双曲线右焦点的直线,交双曲线于点,若,则这样的直线有条.
2.不论为何值,直线与双曲线总有公共点,则实数的取值范围是.3.经过点,且与抛物线只有一个公共点的直线有几条?
求出这样的直线方程.
4.已知探照灯的轴截面是抛物线,平行于轴的光线照射到抛物线上的点,反射光线过抛物线焦点后又照射到抛物线上的点Q,试确定点Q的坐标.
二、问题探究
探究1.已知曲线:和曲线:,如何求两曲线与的交点?
探究2.一只酒杯的轴截面是抛物线的一部分,它的方程是.在杯内放入一个玻璃球,要使球触及酒杯底部,那么玻璃球的半径应满足什么条件?
例1.直线与双曲线的右支交于不同的两点,
则的取值范围是.
例2.(理科)学校科技小组在计算机上模拟航天器变轨返回实验,
设计方案如下图,航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴,为顶点的抛物线的实线部分,降落点为,观测点同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在轴上方时,观测点测得航天器的距离分别为多少时,应向航天器发出变轨指令?
三、思维训练
1.已知点,动点满足,则点的轨迹方程是.
2.以双曲线的右焦点为圆心,且与其右准线相切的圆的方程是.3.若曲线与直线有两个交点,则实数的取值范围是.
4.过抛物线的焦点任作一条直线交抛物线于两点,若线段与的长分别为,则的值为.
四、课后巩固
1.设直线:关于原点对称的直线为,若与椭圆的交点为,点为椭圆上的动点,则使△的面积是的点的个数是.
2.是双曲线的右焦点,是双曲线右支上一动点,定点的坐标为则的最小值是.
3.试讨论方程根的情况.
4.直线与圆交于两个不同点,
求中点的轨迹方程.
5.(理科)已知抛物线上横坐标为4的点的焦点的距离是5.
(1)求此抛物线方程;
(2)若点是抛物线上的动点,以为圆心的圆在轴上截得的弦长为4,
求证:圆恒过定点.
6.(理科)如图,在平面直角坐标系中,过轴正方向上任一点任作一直线与抛物线相交于两点.一条垂直于轴的直线分别与线段和直线:交于点.
(1)若,求的值;
(2)若为线段的中点,求证:为此抛物线的切线;
(3)试问(2)的逆命题是否成立?请说明理由.。

相关文档
最新文档