三角函数图像变换顺序详解(全面)
三角函数的图像变换
cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。
三角函数的图像及其变换
振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。
(完整版)三角函数图像平移变换
三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。
1。
为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。
三角函数图像变换顺序详解(全面)
《图象变换的顺序寻根》题根研究一、图象变换的四种类型从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:1.纵向平移——m 变换2.纵向伸缩——A变换3.横向平移——变换4.横向伸缩——变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?【解法1】第1步,横向平移:将y = sin x向右平移,得第2步,横向伸缩:将的横坐标缩短倍,得第3步:纵向伸缩:将的纵坐标扩大3倍,得第4步:纵向平移:将向上平移1,得【解法2】第1步,横向伸缩:将y = sin x的横坐标缩短倍,得y = sin 2x第2步,横向平移:将y = sin 2x向右平移,得第3步,纵向平移:将向上平移,得第4步,纵向伸缩:将的纵坐标扩大3倍,得【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.【质疑】对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反——如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式(y+) = f (),则x、y在形式上就“地位平等”了.如将例1中的变成它们的变换“方向”就“统一”了.对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.故先平移(x→)对后伸缩(→)没有影响;但先收缩(x→)对后平移(→)却存在着“平移”相关. 这就是为什么(在例1的解法2中)后平移时,有的原因.【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:(1)横向平移:x→(2)横向伸缩:x+→(3)纵向伸缩:sin () →A sin ()(4)纵向平移:A sin () →A sin () + m这正是例1中解法1的顺序.二、正向变换与逆向变换如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小一半得y=sin(2 x-),再将横坐标扩大2倍得y=sin(x-),最后将图象左移得函数y= sin x.【例2】将y= f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),得y = 2sin2 x-1,再将 2sin2x-1左移(与正向变换右移相反)得令f (x)·cos x = 2sin x cos x 得f (x) = 2sin x【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.因为2sin2x=1+sin(2 x-),所以下移1个单位得sin(2 x-),左移得sin2x.三、翻折变换使> 0平移变换x→是“对x而言”,由于x过于简单而易被忽略.强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得.其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x→ - x对应着关于y 轴的对称变换,即沿y轴的翻折变换;由f (x) → - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.【例3】求函数的单调减区间.【分析】先变换 -3x→3x,即沿y轴的翻折变换.【解析1】,转化为求g(x)=sin(3x-)的增区间令≤≤≤x ≤(f(x)减区间主解)又函数的f(x)周期为,故函数f(x)减区间的通解为≤x ≤【解析2】的减区间为≤≤即是≤x ≤【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:(1)先求得f(x)减区间的主解≤x ≤(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果去解不等式组将会使你陷入歧途,不防试试!Welcome !!! 欢迎您的下载,资料仅供参考!。
三角函数图像的变换
三角函数图像的变换一.x y sin =图像的三种变换:①函数x y sin =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 二.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.三.练习1.已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_________;初相ϕ=__________.2.三角方程2sin(2π-x )=1的解集为_______________________. 3.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.{2,}3x x k k Z ππ=±∈ )48sin(4π+π-=x y第3题4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位.5.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______. 6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.7.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =ω=______;ϕ=__________.8.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有_____④_____. 9.函数y =sin(2x +3π)的图象关于点_______________对称. 10.求下列函数的单调减区间: (1)⎪⎭⎫⎝⎛+=62cos 2πx y (2)⎪⎭⎫ ⎝⎛+-=32sin 2πx y 11. 函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________12. 7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;π6第8题(2)已知点π2A⎛⎫⎪⎝⎭,,点P是该函数图象上一点,点00()Q x y,是PA当y=ππ2x⎡⎤∈⎢⎥⎣⎦,时,求x的值.13.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像第7题。
三角函数的图像变换
三角函数的图像变换三角函数是数学中重要的概念之一,它们在几何、物理和工程等领域中有着广泛的应用。
而其中,图像变换是三角函数中一个非常有趣和重要的概念。
图像变换可以通过改变三角函数的参数来改变其图像的形状、位置和大小。
本文将探讨三角函数的图像变换,并介绍一些常见的图像变换方法。
首先,我们来讨论正弦函数的图像变换。
正弦函数的一般形式为y = A*sin(Bx+ C) + D,其中A、B、C和D分别是函数的振幅、周期、相位和纵坐标平移量。
通过改变这些参数,我们可以实现正弦函数图像的各种变换。
首先,我们来看振幅的变换。
振幅决定了正弦函数图像的上下波动程度。
当振幅A增大时,正弦函数的波峰和波谷的高度也会增加,图像变得更加陡峭。
相反,当振幅A减小时,正弦函数的波峰和波谷的高度也会减小,图像变得更加平缓。
接下来,我们来看周期的变换。
周期决定了正弦函数图像的重复性。
当周期B增大时,正弦函数的波峰和波谷之间的距离增加,图像变得更加拉长。
相反,当周期B减小时,正弦函数的波峰和波谷之间的距离减小,图像变得更加压缩。
然后,我们来看相位的变换。
相位决定了正弦函数图像的水平位置。
当相位C增大时,正弦函数图像向左平移,波峰和波谷的位置向左移动。
相反,当相位C减小时,正弦函数图像向右平移,波峰和波谷的位置向右移动。
最后,我们来看纵坐标平移量的变换。
纵坐标平移量决定了正弦函数图像的垂直位置。
当纵坐标平移量D增大时,正弦函数图像向上平移,波峰和波谷的位置上升。
相反,当纵坐标平移量D减小时,正弦函数图像向下平移,波峰和波谷的位置下降。
除了正弦函数,余弦函数和正切函数也可以进行图像变换。
余弦函数的图像变换和正弦函数类似,只是相位的变换方向相反。
正切函数的图像变换则更为复杂,它的一般形式为y = A*tan(Bx + C) + D,其中A、B、C和D同样是函数的参数。
通过改变这些参数,我们可以实现正切函数图像的各种变换,包括振幅、周期、相位和纵坐标平移量的变换。
最全三角函数的图像与性质知识点总结
三角函数的图像与性质一、正弦函数、余弦函数的图像与性质
(
二、正切函数的图象与性质
三、三角函数图像的平移变换和伸缩变换
1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象
注意:图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质
(1)定义域、值域、单调性、最值、对称性:
将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:
)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2
ππϕ±=k 时为偶函数;
(3)最小正周期:ω
π2=T
3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义
(1) A 称为振幅; (2)2T πω
=称为周期;
(3)1f
T
=
称为频率;
(4)x ωϕ+称为相位;
(5)ϕ称为初相 (6)ω称为圆频率.。
三角函数图像变换顺序详解(全面)
《图象变换的顺序寻根》题根研究一、图象变换的四种类型从函数y = f (x)到函数y = A f ( )+ m,其间经过 4 种变换:1.纵向平移——m 变换2.纵向伸缩—— A 变换3.横向平移——变换4.横向伸缩——变换一般说来,这 4 种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.以下以y = sin x 到y = Asin ( )+m 为例,讨论 4 种变换的顺序问题.【例1】函数的图象可由y = sin x 的图象经过怎样的平移和伸缩变换而得到?【解法1】第1 步,横向平移:将y = sin x 向右平移,得第2 步,横向伸缩:将的横坐标缩短倍,得第3 步:纵向伸缩:将的纵坐标扩大 3 倍,得第4 步:纵向平移:将向上平移1,得【解法2】第1 步,横向伸缩:将y = sin x 的横坐标缩短倍,得y = sin 2x第2 步,横向平移:将y = sin 2x 向右平移,得第3 步,纵向平移:将向上平移,得第4 步,纵向伸缩:将的纵坐标扩大 3 倍,得【说明】解法 1 的“变换量”(如右移)与参数值()对应,而解法 2 中有的变换量(如右移)与参数值()不对应,因此解法 1 的“可靠性”大,而解法 2 的“风险性”大.【质疑】对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反——如当<0 时对应右移(增方向),而m < 0 时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如| | > 1 时对应着“缩”,而| A | >1 时,对应着“扩”?【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ( )+m 中x 和y 的地位在形式上“不平等”所至. 如果把函数式变为方程式(y+ ) = f ( ),则x、y 在形式上就“地位平等”了.如将例 1 中的变成它们的变换“方向”就“统一”了.对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x 进行的.故先平移(x→)对后伸缩(→)没有影响;但先收缩(x→)对后平移(→)却存在着“平移”相关. 这就是为什么(在例 1 的解法 2 中)后平移时,有的原因.【说明】为了使得 4 种变换量与 4 个参数(A,,,m)对应,降低“解题风险”,在由sinx 变到Asin ( ) ( > 0) 的途中,采用如下顺序:(1)横向平移:x→(2)横向伸缩:x+ →(3)纵向伸缩:sin ( ) →Asin ( )(4)纵向平移:Asin ( ) →Asin ( ) + m这正是例 1 中解法 1 的顺序.二、正向变换与逆向变换如果把由sin x 到Asin ( )+m 的变换称作正向变换,那么反过来,由Asin ( )+m 到sin x 变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.因为正向变换的一般顺序是:(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.所以逆向变换的一般顺序则是:(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.如将函数y= 2sin (2 -) +1 的图像下移 1 个单位得y=2sin (2 x-),再将纵坐标缩小一半得y= sin(2 x-),再将横坐标扩大 2 倍得y= sin( x-),最后将图象左移得函数y= sinx.2 x.【例2】将y = f (x)·cos x 的图象向右平移, 再向上平移1, 所得的函数为y=2sin试求 f ( x)的表达式.【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.2【解析】将y = 2sin x下移1 个单位(与正向变换上移 1 个单位相反),得y = 2sin 2 2x-1,再将2sin x-1 左移(与正向变换右移相反)得令 f (x)·cos x = 2sin x cos x 得 f (x) = 2sin x2x,其逆【说明】由此得原函数为y=f(x)cosx=2 sin x cosx=sin2 x. 正向变换为s in 2x→2sin 2x→sin2x. 变换为2sin2sin2x=1+sin(2 x-),所以下移 1 个单位得sin(2 x-),左移得sin2 x.因为三、翻折变换使> 0.忽略平移变换x→是“对x 而言”,由于x过于简单而易被里x 的系数是+1. 千万不要误以为是由sin( - x)左移而得.强调一下,这于y 其实,x 或y 的系数变- 1,也对应着两种不同的图象变换:由x→- x 对应着关于x 轴的对称变换,即沿x 轴变换,即沿y 轴的翻折变换;由 f (x) →- f (x)对应着关轴的对称的翻折变换.【例3】求函数的单调减区间.【分析】先变换- 3x→3x,即沿y 轴的翻折变换.【解析1】,转化为求g(x)=sin(3 x-) 的增区间令≤≤≤x ≤(f(x)减区间主解),故函数f(x)减区间的通解为又函数的f(x)周期为≤x ≤【解析2】的减区间为≤≤即是≤x ≤,比较解析 1 和解析 2 可知,求f(x)的减区间,实际上分问题度看【说明】从图象变换的角两步进行:(1)先求得f(x)减区间的主解≤x ≤(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.【思考】本解先将“正数化”,使>0 是本解成功的关键.否则,如果去解不等式组将会使你陷入歧途,不防试试!。
三角函数的基本变换平移伸缩和反射
三角函数的基本变换平移伸缩和反射三角函数的基本变换:平移、伸缩和反射三角函数是数学中非常重要且广泛应用的概念之一。
它们在几何、物理、工程学等领域中起着关键作用。
在学习三角函数时,我们经常会遇到一些基本的函数变换,比如平移、伸缩和反射。
本文将介绍三角函数的这些基本变换,帮助读者更好地理解和应用这些概念。
一、平移变换平移是指图形在平面内沿着某个方向移动一段距离。
在三角函数中,平移变换是指将函数图像沿着横轴或纵轴方向移动,改变函数的位置。
对于正弦函数sin(x)来说,平移变换可以表示为sin(x-a),其中a为平移的距离和方向。
当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。
对于余弦函数cos(x)来说,平移变换可以表示为cos(x-a),同样地,当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。
二、伸缩变换伸缩是指图形的尺寸在某个方向上改变。
在三角函数中,伸缩变换是指将函数图像在横轴或纵轴方向上进行拉伸或压缩,改变函数的振幅和周期。
对于正弦函数sin(x)来说,伸缩变换可以表示为a*sin(x),其中a为正实数。
当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。
对于余弦函数cos(x)来说,伸缩变换可以表示为a*cos(x),同样地,当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。
伸缩变换还可以改变函数的周期。
对于正弦函数和余弦函数来说,原本的周期是2π。
通过伸缩变换,可以改变函数的周期为2π/a,其中a为正实数。
三、反射变换反射变换是指图形关于某个轴线对称。
在三角函数中,反射变换是指将函数图像关于横轴或纵轴进行翻转,改变函数的正负号。
对于正弦函数sin(x)来说,反射变换可以表示为-sin(x)。
高中数学三角函数图像的性质及变换规律
高中数学三角函数图像的性质及变换规律三角函数是高中数学中重要的内容之一,它们的图像性质及变换规律是我们学习和应用三角函数的基础。
在本文中,我将详细介绍正弦函数、余弦函数和正切函数的图像性质,并讨论它们的平移、伸缩和翻转变换规律。
一、正弦函数的图像性质及变换规律正弦函数的图像是一条连续的波浪线,它的周期是2π,振幅为1。
正弦函数的图像在原点处有一个特殊点,即(0, 0),称为正弦函数的零点。
正弦函数的图像在每个周期内呈现对称性,即关于y轴对称。
下面我们来看一个具体的例子:求解方程sin(x) = 0.5在区间[0, 2π]内的解。
首先,我们可以通过观察正弦函数的图像,知道sin(x) = 0.5有两个解,一个在第一象限,一个在第二象限。
我们可以通过求解sin(x) = 0.5的解析解来验证这一点。
sin(x) = 0.5的解析解为x = π/6 + 2πn和x = 5π/6 + 2πn,其中n为整数。
在区间[0, 2π]内,满足sin(x) = 0.5的解为x = π/6和x = 5π/6。
这个例子说明了正弦函数的图像性质,以及如何通过观察图像来快速得到方程的解。
二、余弦函数的图像性质及变换规律余弦函数的图像也是一条连续的波浪线,它的周期也是2π,振幅为1。
余弦函数的图像在原点处有一个特殊点,即(0, 1),称为余弦函数的最大值点。
余弦函数的图像在每个周期内呈现对称性,即关于y轴对称。
下面我们来看一个具体的例子:求解方程cos(x) = -0.5在区间[0, 2π]内的解。
根据余弦函数的图像性质,我们可以知道cos(x) = -0.5有两个解,一个在第二象限,一个在第三象限。
我们可以通过求解cos(x) = -0.5的解析解来验证这一点。
cos(x) = -0.5的解析解为x = 2π/3 + 2πn和x = 4π/3 + 2πn,其中n为整数。
在区间[0, 2π]内,满足cos(x) = -0.5的解为x = 2π/3和x = 4π/3。
三角函数的图像与变化规律
三角函数的图像与变化规律三角函数是数学中非常重要的一类函数,涉及到三角学、几何学、物理学等众多领域。
在学习三角函数时,了解其图像与变化规律对于理解和应用三角函数具有重要意义。
1. 正弦函数的图像与变化规律正弦函数的定义域为实数集,值域为[-1, 1]。
它的图像是一条连续的无限曲线,在直角坐标系中表现为一条波浪线,具有周期性。
正弦函数的一周期为360度或2π弧度,可以通过改变系数来调整振幅和周期。
在图像上观察,当自变量增大时,正弦函数的值逐渐增大,当自变量为90度或π/2弧度时,函数取得最大值1;当自变量为270度或3π/2弧度时,函数取得最小值-1。
从图像上看,正弦函数的图像是关于y轴对称的,即sin(-x) = -sin(x)。
2. 余弦函数的图像与变化规律余弦函数也是一个周期函数,其定义域和值域与正弦函数相同。
余弦函数的图像是一条连续的曲线,在直角坐标系中表现为波浪线,与正弦函数的图像形状相似,但相位差90度。
观察余弦函数的图像,当自变量为0度或0弧度时,函数取得最大值1;当自变量为180度或π弧度时,函数取得最小值-1。
余弦函数的图像也是关于y轴对称的,即cos(-x) = cos(x)。
3. 正切函数的图像与变化规律正切函数的定义域为所有实数,值域为(-∞, +∞)。
正切函数的图像是一条连续的曲线,在直角坐标系中表现为一条交于原点的对称曲线。
观察正切函数的图像,可以发现其在自变量为整数倍π/2弧度时,存在垂直渐近线。
当自变量为0度或0弧度时,函数取得最小值0;当自变量为180度或π弧度时,函数取得最大值0。
正切函数的图像是一个周期为180度或π弧度的函数,即tan(x) = ta n(x + π)。
以上是常见的三角函数,它们的图像与变化规律是数学中的基础知识。
通过理解三角函数的图像与变化规律,我们可以应用它们解决各种实际问题,包括测量、建模、信号处理等领域。
总之,在学习和应用三角函数时,要注重掌握它们的图像与变化规律,以便更好地理解和应用相关知识。
三角函数的像变换知识点总结
三角函数的像变换知识点总结三角函数是数学中重要的一门学科,常常用于解决几何问题、物理问题以及信号处理等领域。
而在实际应用中,常常会遇到对三角函数进行像变换的情况,通过像变换可以改变函数的振幅、频率和相位等性质。
以下是三角函数的像变换相关知识点的总结,包括正弦函数、余弦函数和正切函数的像变换特性以及对应的图像变化。
1. 正弦函数的像变换正弦函数的一般形式为y = A*sin(B(x-C))+D,其中A代表振幅,B代表频率,C代表相位,D代表垂直偏移量。
像变换可以通过改变这些参数来实现。
- 振幅的变化:改变A的值可以改变正弦函数的振幅,当A>1时振幅增大,当0 A时振幅减小,当A<0时振幅变为负数,即使曲线翻转。
- 频率的变化:改变B的值可以改变正弦函数的周期,当B>1时周期缩短,当0 B时周期增加。
- 相位的变化:改变C的值可以改变正弦函数的水平移动,当C>0时函数向右移动C个单位,当0 C时函数向左移动C个单位。
- 垂直偏移量的变化:改变D的值可以改变正弦函数的上下平移,当D>0时整个函数上移D个单位,当0 D时整个函数下移D个单位。
2. 余弦函数的像变换余弦函数的一般形式为y = A*cos(B(x-C))+D,其中A代表振幅,B 代表频率,C代表相位,D代表垂直偏移量。
像变换可以通过改变这些参数来实现。
- 振幅的变化:改变A的值可以改变余弦函数的振幅,变换规律与正弦函数相同。
- 频率的变化:改变B的值可以改变余弦函数的周期,变换规律与正弦函数相同。
- 相位的变化:改变C的值可以改变余弦函数的水平移动,变换规律与正弦函数相同。
- 垂直偏移量的变化:改变D的值可以改变余弦函数的上下平移,变换规律与正弦函数相同。
3. 正切函数的像变换正切函数的一般形式为y = A*tan(B(x-C))+D,其中A代表振幅,B 代表频率,C代表相位,D代表垂直偏移量。
像变换可以通过改变这些参数来实现。
三角函数图像变换总结
三角函数图像变换总结三角函数是高中数学中非常重要的一个概念,它在几何、物理、工程等领域中有着广泛的应用。
在学习三角函数时,我们经常会接触到三角函数的图像变换。
图像变换是指通过对原始函数的一系列操作,得到一个新的函数的过程。
一、平移变换平移变换是指将函数的图像沿着横轴或纵轴方向平移一定的距离。
当我们将函数沿着横轴平移时,可以通过将自变量加上一个常数来实现。
例如,若将函数f(x)沿着横轴向右平移a个单位,则新函数为f(x-a)。
同样,当我们将函数沿着纵轴平移时,可以通过将因变量加上一个常数来实现。
二、伸缩变换伸缩变换是指通过改变函数的自变量或因变量的取值范围来改变函数的图像形状。
当我们将函数的自变量进行伸缩时,可以通过改变自变量的比例系数来实现。
例如,若将函数f(x)的自变量x进行伸缩,新函数为f(kx),其中k是一个正常数。
当k 大于1时,函数图像会水平压缩;当0<k<1时,函数图像会水平拉伸。
同样,我们可以将函数的因变量进行伸缩,通过改变因变量的比例系数来实现。
三、翻折变换翻折变换是指通过改变函数的自变量或因变量的正负号来改变函数的图像形状。
当我们将函数的自变量进行翻折时,可以通过将自变量取相反数来实现。
例如,若将函数f(x)的自变量进行翻折,新函数为f(-x)。
同样,我们可以将函数的因变量进行翻折,通过将因变量取相反数来实现。
四、迭加变换迭加变换是指将多个变换效果叠加在一起,从而得到一个新的函数的图像。
例如,我们可以将平移、伸缩和翻折等变换操作应用于原始函数,得到一个经过多次变换的新函数的图像。
通过迭加变换,我们可以获得更加丰富多样的函数图像。
总结起来,三角函数的图像变换是通过对函数的自变量和因变量进行平移、伸缩、翻折等操作来改变函数的图像形状。
通过合理地应用这些图像变换,我们可以更好地理解和应用三角函数,并在解决实际问题时提供便利。
因此,掌握三角函数的图像变换是非常重要的数学技能之一,也是我们在数学学习中需要重点关注和掌握的内容之一。
三角函数的图像的变换口诀解读
三角函数的图像的变换口诀解读变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移.周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ωπ2=T,故要使周期扩大或缩小m (m >0) 倍,则须用xm1去代原式中的x (纵坐标不变),故有“变T 数倒系数议”之说.相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说.三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决.例1 为了得到 y =)62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D) 向左平移3π个单位长度解法1 ∵ y = cos2x =)4(2sin )22sin(ππ+=+x x , 而 y =]3)4[(2sin )62sin(πππ-+=-x x ,由此可得 只须将函数y = cos2x 的图像向右平移3π个单位长度即可.故选(B).解法2 ∵ y =)62sin(π-x )622cos(ππx +-=,即y )3(2cos π-=x , 而已知的函数为y = cos2x ,由此可得,须将函数y = cos2x 的图像向右平3π个单位即可.故选(B).点评 由于当ωϕ-=x 时, 相位0=+ϕωx .因而,我们可称此时的相位为零相位.由此可见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12π与4π-,故所作的平移就是要将已知函数的0相位对应的点)0 ,4(π-移到点)0 12(,π处.易知要平移的数值是:3)4(12πππ=--,方向是向右的.显然这一方法就是“五点作图法”中的第一零点判断法.例2 已知函数 f (x ) =)5sin(2π+x (x ∈R ) 的图像为C, 函数 y =)52sin(π-x (x ∈R ) 的图像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( )(A)52π个单位,横、纵坐标都缩短到原来的21(B)52π个单位,横、纵坐标都伸长到原来的2倍(C)5π个单位,横、纵坐标都缩短到原来的21 (D)5π个单位,横、纵坐标都伸长到原来的2倍解 ∵ 要求的变换是先作平移变换,后作周期变换,再作振幅变换.故将函数y =)5sin(2π+x 的图像向右平移52π个单位, 得到)5sin(2)525sin(2πππ-=-+=x x y的图像.再将此图像的横坐标缩小到原来的一半,得到y =2)52sin(π-x 的图像.最后将其纵坐标缩小到原来的一半,即可得到y =)52sin(π-x 的图像.故选(A).点评 本题要求先作相位变换,后作周期变换,再作振幅变换,且原函数中x 的系数为“1”,明确这一点是非常重要的.。
三角函数的像变换规律总结
三角函数的像变换规律总结三角函数是数学中的重要概念,它们在数学和物理等领域中有广泛的应用。
像变换规律是描述三角函数在图像上的移动、拉伸和反转等变化规律。
在本文中,我们将总结常见的三角函数的像变换规律。
一、正弦函数的像变换规律正弦函数是最常见的三角函数之一,其一般式为y =A*sin(Bx+C)+D,其中A、B、C、D为常数参数。
1. 水平方向平移:当C改变时,函数图像在水平方向上发生平移。
当C>0时,向左平移;当C<0时,向右平移。
平移的距离等于C的绝对值除以B。
2. 垂直方向平移:当D改变时,函数图像在垂直方向上发生平移。
当D>0时,向上平移;当D<0时,向下平移。
平移的距离等于D。
3. 垂直方向拉伸或压缩:当A改变时,函数图像在垂直方向上发生拉伸或压缩。
当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。
拉伸或压缩的程度与|A|的大小有关。
二、余弦函数的像变换规律余弦函数也是常见的三角函数之一,其一般式为y =A*cos(Bx+C)+D,其中A、B、C、D为常数参数。
1. 水平方向平移:与正弦函数类似,余弦函数在改变C时在水平方向上发生平移。
当C>0时,向左平移;当C<0时,向右平移。
平移的距离等于C的绝对值除以B。
2. 垂直方向平移:与正弦函数类似,余弦函数在改变D时在垂直方向上发生平移。
当D>0时,向上平移;当D<0时,向下平移。
平移的距离等于D。
3. 垂直方向拉伸或压缩:与正弦函数类似,余弦函数在改变A时在垂直方向上发生拉伸或压缩。
当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。
拉伸或压缩的程度与|A|的大小有关。
三、正切函数的像变换规律正切函数是另一个常见的三角函数,其一般式为y =A*tan(Bx+C)+D,其中A、B、C、D为常数参数。
由于正切函数在某些点上无定义,因此在图像上会有一些特殊的性质。
三角函数图像变换规律
三角函数图像变换规律三角函数图像变换(TFI)是数学中一个重要的概念,它能够帮助人们更好地理解曲线、函数及它们之间的关系。
三角函数图像变换有助于理解一般函数的性质以及对特殊函数的特性和行为作出准确的预测。
本文旨在探讨三角函数图像变换的一些基本规律以及应用示例,为研究者进行更深入的探究奠定基础。
2、复平面及变换复平面是数学中的一个重要概念,可以用来描述复数的结构和特性。
复平面由实轴和虚轴组成,其中的点的坐标为(x, y),它们之间的距离可以用欧几里得距离来表示。
复平面上的三角函数变换指的是使用三角函数将原有的点变换到新的位置和形状,其原理可以用复数学来分析推导得出。
3、三角函数图像变换三角函数图像变换是指使用三角函数进行图像变换。
它包括改变图像尺寸大小、旋转图像等。
其基本规律是:一个复数可以通过三角函数变换将其变换为另一个复数,而另一个复数可以通过三角函数变换将其变换为第一个复数。
具体来说,对于一张图片,其复数坐标可以用三角函数变换来改变图片的大小。
具体的方法是:将图像中心(原点)放入复数坐标系,以图像原点为基准,使用三角函数变换来平移复数坐标,从而改变图像尺寸大小;同时,还可以使用三角函数来旋转图像,以得到不同的图像形态。
4、三角函数图像变换的应用三角函数图像变换在计算机图像处理和图像恢复方面都有广泛的应用。
在计算机图像处理方面,使用三角函数变换可以用于改变图像尺寸,实现图像膨胀和缩小;也可以实现图像旋转、倾斜等功能,从而使图像变换成不同的形态。
在图像恢复方面,三角函数图像变换可以用来改善图像质量,旋转图像,去除图像噪声,从而获得更清晰、更易于理解的图像。
5、总结三角函数图像变换是一种利用三角函数将图像变换为不同形状、尺寸大小的技术。
它的基本规律就是将源点的复数坐标变换为另一个复数的坐标,实现图像的角度旋转、尺寸膨胀缩小、景深变化等功能,具有广泛的应用前景。
三角函数的图像与变化规律
三角函数的图像与变化规律三角函数是数学中的重要概念,它们在几何、物理、工程等领域中有着广泛的应用。
而三角函数的图像与变化规律是我们理解和应用三角函数的关键。
本文将从正弦函数、余弦函数和正切函数三个方面来探讨三角函数的图像与变化规律。
一、正弦函数的图像与变化规律正弦函数是最常见的三角函数之一,它的图像呈现出周期性的波动。
我们先来看一下正弦函数的图像。
在坐标系中,将x轴分成等分的小段,然后计算每个小段上的正弦函数值,再将这些值在坐标系中表示出来,就得到了正弦函数的图像。
正弦函数的图像是一条连续的波浪线,它在x轴上的取值范围是无穷大,而在y轴上的取值范围是[-1,1]。
正弦函数的图像以原点为对称中心,左右两侧的波浪形状完全相同。
当x=0时,正弦函数的值为0,这是正弦函数的一个特殊点,称为零点。
正弦函数的周期是2π,即在一个周期内,正弦函数的图像会重复出现。
正弦函数的变化规律可以总结为以下几点:1. 周期性:正弦函数的图像在一个周期内重复出现,即在x轴上每增加2π,y轴上的值会再次回到原来的位置。
2. 对称性:正弦函数的图像以原点为对称中心,左右两侧的波浪形状完全相同。
3. 最大值和最小值:正弦函数的最大值为1,最小值为-1。
4. 零点:正弦函数在x=0时取得零值,这是正弦函数的一个特殊点。
二、余弦函数的图像与变化规律余弦函数也是一种常见的三角函数,它与正弦函数在图像上非常相似,但有一些细微的差别。
我们来看一下余弦函数的图像。
余弦函数的图像同样是一条连续的波浪线,它在x轴上的取值范围是无穷大,而在y轴上的取值范围也是[-1,1]。
余弦函数的图像以原点为对称中心,左右两侧的波浪形状完全相同。
当x=0时,余弦函数的值为1,这也是余弦函数的一个特殊点。
余弦函数的变化规律与正弦函数非常相似,但也有一些不同之处:1. 周期性:余弦函数的图像在一个周期内重复出现,即在x轴上每增加2π,y轴上的值会再次回到原来的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图象变换的顺序寻根》
题根研究
一、图象变换的四种类型
从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:
1.纵向平移——m 变换
2.纵向伸缩——A变换
3.横向平移——变换
4.横向伸缩——变换
一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.
以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.
【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?
【解法1】第1步,横向平移:
将y = sin x向右平移,得
第2步,横向伸缩:
将的横坐标缩短倍,得
第3步:纵向伸缩:
将的纵坐标扩大3倍,得
第4步:纵向平移:
将向上平移1,得
【解法2】第1步,横向伸缩:
将y = sin x的横坐标缩短倍,得y = sin 2x
第2步,横向平移:
将y = sin 2x向右平移,得
第3步,纵向平移:
将向上平移,得
第4步,纵向伸缩:
将的纵坐标扩大3倍,得
【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变
换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.
【质疑】对以上变换,提出如下疑问:
(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?
(2)在横向平移和纵向平移中,为什么它们增减方向相反——
如当<0时对应右移(增方向),而m < 0时对应下移(减方向)?
(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——
如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”?
【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式
(y+) = f (),则x、y在形式上就“地位平等”了.
如将例1中的变成
它们的变换“方向”就“统一”了.
对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的.
故先平移(x→)对后伸缩(→)没有影响;
但先收缩(x→)对后平移(→)却存在着“平移”相关. 这
就是为什么(在例1的解法2中)后平移时,有的原因.
【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:
(1)横向平移:x→
(2)横向伸缩:x+→
(3)纵向伸缩:sin () →A sin ()
(4)纵向平移:A sin () →A sin () + m
这正是例1中解法1的顺序.
二、正向变换与逆向变换
如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.
因为正向变换的一般顺序是:
(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.
所以逆向变换的一般顺序则是:
(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.
如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小一半
得y= sin(2 x-),再将横坐标扩大2倍得y= sin(x-),最后将图象左移得函数y= sin x.
【例2】将y = f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.
【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.
【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),
得y = 2sin2 x-1,再将2sin2x-1左移(与正向变换右移相反)
得
令 f (x)·cos x = 2sin x cos x 得f (x) = 2sin x
【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.
因为2sin2x=1+sin(2 x-),所以下移1个单位得sin(2 x-),左移得sin2x.
三、翻折变换使> 0
平移变换x→是“对x而言”,由于x过于简单而易被忽略.
强调一下,这里x的系数是+1. 千万不要误以为是由sin(-x)左移而得.
其实,x或y的系数变-1,也对应着两种不同的图象变换:由x→- x对应着关于y 轴的对称变换,即沿y轴的翻折变换;由f (x) →-f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.
【例3】求函数的单调减区间.
【分析】先变换-3x→3x,即沿y轴的翻折变换.
【解析1】,转化为求g(x)=sin(3x-)的增区间
令≤≤
≤x ≤(f(x)减区间主解)
又函数的f(x)周期为,故函数f(x)减区间的通解为
≤x ≤
【解析2】的减区间为
≤≤
即是≤x ≤
【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:
(1)先求得f(x)减区间的主解≤x ≤
(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.
【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果去解不等式组
将会使你陷入歧途,不防试试!。