高频变压器绕组面积计算

合集下载

高频变压器计算公式

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。

表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。

如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000初始磁导率μi:是指基本磁化曲线当H→0时的磁导率最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo 磁芯参数:(1)有效磁导率μro。

在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:式中 L——绕组的自感量(mH);W——绕组匝数;磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).(2)饱和磁感应强度Bs。

随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。

(3)剩余磁感应强度Br。

磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。

(4)矫顽力Hco。

磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

公式(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即式中μr1——温度为T1时的磁导率;μr2——温度为T2时的磁导率。

在介质中,磁场强度则通常被定,式中为磁化强度。

磁化强度,magnetization,描述磁介质磁化状态的物理量。

是磁化强度,通常用符号M表示。

定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,则有或其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。

高频变压器方案时挑选磁芯的两种办法

高频变压器方案时挑选磁芯的两种办法

高频变压器方案时挑选磁芯的两种办法1面积乘积法这儿讲的面积乘积。

是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。

标明办法为WaAe,有些讲义和书本上简写为Ap,单位为。

依据法拉第规矩,咱们有:窗口面积运用状况有:KWalpha;=NAw变压器有初级、次级两个绕组。

因而有:KWalpha;=2NAw或0.5KWalpha;=NAw咱们知道:Aw=而电流有用值I=Ip得到以下联络式:0.5KWalpha;=即:所以就有如下式:因为:Edelta;Ip=Pi又有:Pi=究竟得到如下公式:这个公式适用于单端变压器,如正激式和反激式。

delta;<0.5,Bm-T,K-0.3~0.4,eta;-0.8~0.9,J-A/。

推挽式的公式则为:半桥式的公式则为:这儿的delta;>0.5,例如0.8~0.9。

单端变压器如正激式和反激式:Bm=△B=Bs-Br。

双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。

全桥式公式与推挽式相同,但delta;>0.5,例如0.8~0.9。

在J=400A/,K=0.4,eta;=0.8,delta;=0.4(单端变压器),delta;=0.8(双端变压器)。

公式简化如下:(单端变压器)(推挽式)(半桥式和桥式)2几许标准参数法这个办法是把绕组线圈的损耗,即铜损作为方案参数。

因而,公式恰是由核算绕组线圈的铜损的公式演化而来的。

变压器有两个绕组这儿为初级绕组电阻,为次级绕组电阻。

因为因而每个绕组各占一半窗口面积,悉数绕组线圈的铜损的公式:公式简化:改换两个参数的方位,公式变成:初级安匝与次级安匝持平的联络,以及电流有用值同峰值的联络。

上式进一步演化成:同理(碰头积乘积法)有:将两个式子代入,得出公式:与面积乘积法的办法相一同,公式变成如下办法:此公式合适各种电路办法。

Bm取值同面积乘积法。

3实习举例单端反激式电路。

输出功率Po=34W,输入最小直流电压Vi(min)=230V,输入电流峰值1.18A,占空比=0.25,频率f=68kHz,t=14.7mu;s,初级电感Lp=716mu;H,变压器功率eta;=0.8,电流密度J=400A/cm,Bm=0.11T,K=0.4,Pcu=0.34W。

高频变压器参数计算方法

高频变压器参数计算方法

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴ Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM=100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM* k / 2) ⑾N1 ----- 初级匝数 VIN(max)------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿Vin(max)----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

变压器参数计算公式

变压器参数计算公式

高频变压jlm器参数计算1.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S (A) ⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特) 2.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用V RRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = V IN(max) / (V RRM * k / 2) ⑾N1 ----- 初级匝数 V IN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿V in(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比 D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器设计的常用计算公式

高频变压器设计的常用计算公式

Irms =
Ip* Dmax*(K rp²/3Krp+1)
2.1* 0.48* (0.6²/3= 0.6+1)
= 1.05A
Ap=1.6*0 .994=1.59
五.计算 初级电感 量
连续模式 断续模式
Emin*Dm ax Lp =
F*(Ip2Ip1)
218*0.48 =
40*103*(2 .1-0.84) = 2.076mH
设计实 例: 要求:输 入AC 220V± 10%
工作频率 40KHZ
输出电压 62V 辅助绕组 电压: 20V/0.1A 最大占空 比: 0.48 一.计算 最小直流 电压和最 大直流电 压
Emin=22 0*0.9*1.1 =218V
Emax=22 0*1.1*1.4 =339V 二.计算 输入功率 和视在功 率
Upmin* Dmax = 8.7TS
取9TS
八.核算 临界电感 量(H)
Ein* nV
。2Lmin=源自Ein+nV。
218* 3.245*62 =
218+3.24 5*62
= 882.8uH 计算出的 结果和断 续模式的 电感一致 。Lp≥ Lmin
T 2Pin
2
0.000025
2*155
六.计算 线径
四.计算 初级电流 峰值和有 效值 设定电路 工作在连 续模式, 根据输入 电压的范 围取Krp 为0.6
== 2*40*103
*0.15*4*
0.4*1
==
1.45
Aw=0.99 Ae=1.6 4
2Pin
Ip = Emin*Dm ax*(2Krp)
2*155 =

高频变压器参数计算

高频变压器参数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器参数计算

高频变压器参数计算

铁芯截面积A=1.25*√P(功率)。

铁芯取8500高斯。

每伏匝数取:T=450000/8500*S(截面积)漆包线载流量取2.5A-3.5A/mm2小型变压器的绕制:小型变压器铁心匝数绕制随着电子元件大量应用在电厂控制、监测和自动回路中,小型变压器的应用日益广泛。

因小型变压器损坏,市场上一时又难以买到,引起设备不能正常运行的事故较多。

因此,除加强小型变压器的运行维护外,还应掌握小型变压器的绕制。

1 小型变压器的设计设计小型变压器,主要有以下几个步骤:(1)计算变压器的功率;(2)计算变压器的铁心;(3 )计算变压器线圈匝数;(4)计算变压器绕组导线的截面积;(5)计算变压器铁心窗口容纳绕组的导线及绝缘物。

1.1 功率的计算变压器的功率可根据下式计算,即P=IV (1)式中P——电功率;I——电流;V——电压。

先算出次级功率,然后再算初级功率。

线圈总功率(即变压器功率)的计算方法与硅钢片的种类有关,将次级功率加上消耗功率即得初级功率,一般来说,铁心消耗功率约为15%,即初级功率算式如下P1=1.18 P2 (2)式中P1——初级功率;P2——次级功率。

1.2 铁心的计算变压器的功率求出后,可用下式求出铁心有效截面积,即(3)式中A为铁心有效截面积(cm2),数字1.2是根据铁片的不同种类通过经验公式取得的,一般变压器硅钢片采用磁通密度1~1.2 T,用公式(3);如电动机硅钢片采用磁通密度0.8~1 T,可将公式(3)中的1.2改成1.6;如普通黑铁片采用磁通密度0.6~ 0.7 T,可将公式(3)中的1.2改成2。

以上是已知电功率后选铁心时使用的方法,如有现成的铁心,则可以用下式来求可绕制的功率。

(4)式中铁心有效截面积A=铁心宽(cm)×铁心迭厚(cm)。

1.3 匝数的计算求出了铁心有效截面积就可求出每伏应绕制的匝数,计算公式如下(5)式中T为每伏匝数,B为铁心磁通密度(T),A为铁心有效截面积(c m2)。

环形电感 高频变压器 计算

环形电感 高频变压器 计算

环形电感高频变压器计算
环形电感和高频变压器是电子电路中常见的组件,它们在电路
设计中起着重要的作用。

首先,让我们来看看环形电感的计算。


形电感通常用于滤波、阻抗匹配和能量存储等应用中。

它的电感值
可以通过其线圈的结构、材料和匝数来计算。

一般来说,环形电感
的电感值可以通过下面的公式来计算:
L = (μ N^2 A) / l.
其中,L是电感值,μ是材料的磁导率,N是匝数,A是截面积,l是磁路长度。

这个公式可以帮助我们计算出环形电感的电感值,
从而在电路设计中使用。

接下来,让我们来看看高频变压器的计算。

高频变压器通常用
于变换电压、隔离电路和适配器等应用中。

在设计高频变压器时,
需要考虑到匝数、磁芯材料、工作频率等因素。

变压器的设计需要
满足一定的电压变换比和功率传输要求。

计算高频变压器的关键参
数需要考虑到磁芯的磁导率、匝数比、工作频率等因素。

一般来说,可以通过以下公式来计算高频变压器的参数:
Vp/Vs = Np/Ns.
其中,Vp和Vs分别是主辅线圈的电压,Np和Ns分别是主辅线圈的匝数。

通过这个公式,可以计算出变压器的匝数比,从而满足设计要求。

总的来说,环形电感和高频变压器的计算涉及到电磁学、电路理论和材料科学等多个领域的知识。

在实际设计中,需要综合考虑这些因素,以确保电路的性能和稳定性。

希望这些信息能够帮助你更好地理解环形电感和高频变压器的计算方法。

设计变压器的基本公式

设计变压器的基本公式

设计变压器的基本公式————————————————————————————————作者: ————————————————————————————————日期:ﻩ设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)ﻫﻫBm=(Up×104)/KfNpScﻫ式中:Up——变压器一次绕组上所加电压(V)ﻫﻫf——脉冲变压器工作频率(Hz)Np——变压器一次绕组匝数(匝)ﻫﻫSc——磁心有效截面积(cm2)K——系数,对正弦波为4.44,对矩形波为4.0ﻫﻫ一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。

ﻫ变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo×10-5式中:j——导线电流密度(A/mm2)Sc——磁心的有效截面积(cm2)ﻫSo——磁心的窗口面积(cm2)ﻫ3对功率变压器的要求ﻫ(1)漏感要小ﻫﻫ图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。

ﻫ图9双极性功率变换器波形ﻫ功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。

ﻫ(2)避免瞬态饱和ﻫ一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。

它衰减得很快,持续时间一般只有几个周期。

对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。

由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,(3)这是不允许的。

所以一般在控制电路中都有软启动电路来解决这个问题。

ﻫﻫ要考虑温度影响ﻫ开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。

高频变压器绕组绕制方式与分布电容大小分析与计算

高频变压器绕组绕制方式与分布电容大小分析与计算

⾼频变压器绕组绕制⽅式与分布电容⼤⼩分析与计算 随着开关变换器⾼频化,变压器分布电容对电流波形影响越来越明显,由于电容电压不能突变,模态转换时,电容等效为电压源释放电能产⽣尖峰电流。

以下是变压器绕组层间常见的四种绕制⽅法。

下⾯以实际的模型,推导计算C型与Z型绕法分布电容的⼤⼩。

规定沿绕组⾼度⽅向由底端向顶端为y⽅向,初级侧绕组底端电位差为Ua,顶端电位差为Ub,单层绕组的长度为h,两绕组之间的距离为m。

假设绕组均匀分布,则沿着绕组⾼度⽅向的电位线性变化。

若每⼀层绕组两端压差为U,则C型绕法任意⾼度y的电位差为: 根据电场能量的密度的定义: 可得,电场能量为: 其中:MLT为绕组平均周长 电场能量等效为: 解得: 同理:根据Z型绕法U(y)=U,为⼀个常数,可以得到等效的原边电容为: 以下是变压器绕组间常见的绕制⽅法: 初级侧绕组与次级侧绕组层间电容的分析不涉及绕组连接处绕制⽅式的问题,因此可以以平⾏板电容器为模型进⾏类⽐[2]。

式中:d:绝缘层厚度 S:两极板正对有效⾯积 h:绕组⾼度 下图左边为⼀般绕制⽅法的,右图为三明治⽅法绕制。

由于三明治绕制⽅法,Ns绕组两边都与Np绕组接触,所以,平⾏板电容正对⾯⾯积S较⼤。

但由于电压分布的原因,分布带内容不是严格的两倍关系。

故三明治绕制绕组间分布电容⼤于⼀般绕制⽅法。

下图为不同绕组布局,分布电容实验数据[1]。

验证了上⽂理论分析。

结论: 1、因为C型层间电压差数学关系,C型绕制分布电容⽐Z型绕制⼤。

2、将线圈匝数分为相等的n等分,相邻匝间的电压差为原来的1/n。

3、累进式绕法减⼩绕组分布电容的效果最佳参考⽂献: [1] 赵志英等.⾼频变压器分布电容的影响因素分析[J].中国电机⼯程学报,2008,28(9):55-60 [2] 杨欢等.⾼频变压器分布电容的影响因素分析[J].⼭西⼤学学报,2019,42(3):576-583。

高频变压器的绕制方法

高频变压器的绕制方法

高频变压器的绕制方法-CAL-FENGHAI.-(YICAI)-Company One1高频变压器的绕制方法你如果用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法。

这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已。

以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz。

其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T。

要制作好它就要注意两点:一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应。

所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强)。

采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线。

例如初级的3T+3T,你如果用直径的单根漆包线,导线的截面积为平方毫米,而如果用直径的漆包线(单根截面积平方毫米)38根并绕,总的截面积也达到要求。

然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=××1×L=,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=××38×L=,后者是前者的=倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制。

次级75T高压绕组用3~5根并绕即可。

二是最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容。

高频变压器参数计算

高频变压器参数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:=100V正向电流(10A)的肖特基二极管两个,若初次级匝次级整流管选用VRRM数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = V IN(max) / (V RRM * k / 2) ⑾------ 最大输入电压 k ----- 安全系数N1 ----- 初级匝数 VIN(max)N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿----- 输入电压最大值 Vo ----- 输出电压Vin(max)Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V) 4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。

计算公式为AP=AwAe式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。

根据计算出的AP值,即可查表找出所需磁心型号。

下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。

1 高频变压器电路的波形参数分析开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。

高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。

1)波形系数Kf为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。

根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。

正弦波的电压有效值为在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。

2)波形因数kf为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。

在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式以正弦波为例,这表明,Kf=4kf,二者相差4倍。

开关电源6种常见波形的参数见表1。

因方波和梯形波的平均值为零,故改用电压均绝值来代替。

对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

2 用AP法( 面积乘积法)选择磁心的公式推导令一次绕组的有效值电压为U1,一次绕组的匝数为NP,所选磁心的交流磁通密度为BAC,磁通量为Φ,开关周期为T,开关频率为f,一次侧电流的波形系数为Kf,磁心有效截面积为Ae(单位是cm2),有关系式考虑Kf=4kf关系式之后,可推导出同理,设二次绕组的有效值电压为US,二次绕组的匝数为NS,可得设绕组的电流密度为(单位是A/cm2),导线的截面积为S=I/J。

高频变压器

高频变压器

高频变压器高频变压器是作为开关电源最主要的组成部分。

开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。

典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm。

而辅助变压器,在电源功率不超过3 00W时其磁芯直径达到16mm就够了。

变压器的工作原理变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。

按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、5 00kHz~1MHz、1MHz以上。

传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。

[1]高频变压器悬赏分:0 - 解决时间:2009-1-15 15:35高频变压器中的EC42型和EE42有什么区别,42前面的字母分别代表什么?提问者:hbt0090 - 初学弟子一级最佳答案EC42型和EE42型是用于高频变压器或电感的两种铁氧体磁芯的型号,这种磁芯由两个“E”形磁体组成,这两种型号磁芯的区别(亦即42前面字母的含义)在于:EC型的磁芯中芯柱为圆形,EE型的磁芯中芯柱为方形。

高频变压器用在低频电路会出现什么问题悬赏分:0 - 解决时间:2007-5-25 18:28高频变压器用在低频电路会出现什么问题;低频变压器用在高频电路会出现什么问题?比如50HZ和50KHZ!提问者:余成YW S - 助理四级最佳答案高频变压器用在低频电路中电流增大,可能烧坏变压器。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全变压器是将电能由一个交流电路传送到另一个电路中的一种电气设备。

它通过电磁感应原理实现电压的改变,主要由铁芯、绕组和壳体等部分组成。

在设计变压器时,需要考虑各种参数和公式,以确保其工作效果和安全性。

以下是一些常见的变压器设计计算公式的示例:1.变压器的输出电压(U2)和输入电压(U1)之间的转变关系可以通过变压器的变比(a)来表示。

变比是指输入和输出绕组的匝数比,可通过以下公式计算:a=N2/N1=U2/U1其中,N1和N2分别表示输入和输出绕组的匝数。

2.变压器的输出电流(I2)和输入电流(I1)之间的转变关系可以通过变压器的变比和功率关系来表示。

根据功率守恒定律,输入功率等于输出功率,因此有以下公式:I2=(U1/U2)*I1=(N1/N2)*I13.变压器的功率(P)可以通过乘法公式计算,即功率等于电压乘以电流:P=U1*I1=U2*I24. 变压器的主要电流(I0)和短路电压(Ucc)之间的关系可以通过以下公式计算:I0 = Ucc / (√3 * Z)其中,Z是变压器的内阻。

5.变压器的效率(η)可以通过以下公式计算:η=(输出功率/输入功率)*100%6.变压器的线圈电阻(R)和线圈电感(L)可以通过以下公式计算:R=ρ*(L/S)其中,ρ是线圈材料的电阻率,S是线圈的截面积。

7.变压器的磁通(Φ)和电压(U)之间的关系可以通过以下公式计算:Φ=U*10^-4/(4*π*f*N)其中,f是电源的频率,N是绕组的匝数。

8.变压器的磁化电流(Im)可以通过以下公式计算:Im=(V/(√2*f*B*Ae))其中,V是输入电压,f是电源的频率,B是铁芯的磁感应强度,Ae 是铁芯的有效截面积。

以上是一些常见的变压器设计计算公式的示例,每个公式都有其相应的物理意义和应用场景。

在实际设计中,还需要考虑其他因素,如绕组线径、铁芯材料选择、温升等,这些因素需要根据具体的设计需求和规范进行综合考虑和计算。

高频变压器设计基础知识

高频变压器设计基础知识

高频变压器设计基础知识高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。

在高频链的硬件电路设计中,高频变压器是重要的一环。

设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。

在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

半桥变换器中的高频变压器设计公式

半桥变换器中的高频变压器设计公式

半桥变换器中的高频变压器设计公式
一、半桥变换器原理
半桥变换器是一种基于电子变压器的放大型电源电路,它主要由一个
大变压器、一个小变压器、一个稳压管、两个桥式整流桥和一个滤波电容
等主要组件组成。

其中大变压器用于将直流源提供的电源变换为高压交流电,小变压器将高压交流电转换成低压交流电。

稳压管和桥式整流桥则把
低压交流电转换成稳定的直流电压,而滤波电容用于降低直流电压的波动,提升线性度。

二、高频变压器设计
1、首先根据电路的工作要求,计算所需的高频变压器输出电压以及
短路容量。

2、根据输出短路容量的不同,可以确定变压器的芯股或者线圈数量,一般情况下两线圈分别连接到上下桥式整流桥的正负输出端,同时把其中
的一条线圈连接到小变压器的输入绕组上。

3、然后,确定变压器线圈的绕组形式,以及线圈绕组的布线方法,
比如蜂窝状布线、螺旋状布线等。

4、根据变压器的线圈绕组数量及布线形式,计算变压器各线圈的绕
组面积,以及变压器的主线圈的绕组面积和小线圈的绕组面积之比。

5、在电路设计过程中应注意,高频变压器的芯股或者线圈的面积应
尽量充分发挥变压器的输出能力。

高频变压器绕制方法

高频变压器绕制方法
二是最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容。例如上述变压器的绕法,初级分两层,次级分三层三段。具体是:①绕次级高压绕组第一段。接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半。②绕初级低压绕组的一半。预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理。用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断。在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整。注意三次的头、中、尾放在一起,且绕向要相同。然后又包一层绝缘纸,准备绕次级高压绕组第二段。③绕次级高压绕组第二段。将前面没有剪断的次级高压绕组线翻转上来(注意与前面的初级绕组线不要相碰,必要时可用绝缘纸隔开),又并绕25T,注意绕向要与前面的第一段相同,线仍不剪断。又包一层绝缘纸,准备绕初级低压绕组的另一半。④绕初级低压绕组的另一半。再按步骤②同样的方法绕一次初级低压绕组,注意绕向要与前面的一半相同。同样线剪断,包一层绝缘纸,准备绕次级高压绕组第三段。⑤绕次级高压绕组第三段。再按步骤③提示的方法绕完剩下的次级高压绕组25T,仍注意绕向与前面的两段相同。接好引出线(尾),线剪断。至此,所有的绕组都绕完了。⑥合并初级低压绕组。将前面两次绕的初级低压绕组,头与头并接,中心抽头与中心抽头并接,尾与尾并接(这样绕组匝数仍是3T+3T,而总的并线为38根),接好引出线,即得到初级低压绕组的头、中、尾三个引出端。最后缠一层绝缘胶带,至此线包制作完成。
以上叙述起来显得很复杂,实际熟悉后并不难。按此方法绕制的高频变压器肯定好用;如果再参考高档电子管音频变压器的对称交叉绕制法,并讲求制作上的精细工艺,只要磁芯适应,工作频率可以提升到100KHz以上。不过对称交叉绕法最复杂最难搞(绕组分段更细,每一层都对称地分为两组,接法复杂,稍一疏忽大意就会接错绕组中某一段的相位),就不介绍了。为什么有的人做的高频变压器频率总是提不高,功率做不大(做大功率需要提升频率),而且发热严重,就是因为漏感大,分布电容大,高频电流集肤现象严重等等。

实例讲解电源高频变压器的设计方法

实例讲解电源高频变压器的设计方法

实例讲解电源高频变压器的设计方法电源企业网2008-09-1215:21:57作者:SystemMaster来源:文字大小:[大][中][小]例,向大家介绍一种电源高频变压器的设计方法。

设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

设计步骤:1、计算高频变压器初级峰值电流Ipp由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。

由电感的电流和电压关系V=L*di/dt可知:输入电压:Vin(min)=Lp*Ipp/Tc取1/Tc=f/Dmax,则上式为:Vin(min)=Lp*Ipp*f/Dmax其中:V in:直流输入电压,VLp:高频变压器初级电感值,mHIpp:变压器初级峰值电流,ADmax:最大工作周期系数f:电源工作频率,kHz在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f将其与电感电压相除可得:Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f)由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax)其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V,取最大工作周期系数Dmax=0.45。

则:Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A当功率管导通时,集极要能承受此电流。

2、求最小工作周期系数Dmin在反馈式电流不连续电源中,工作周期系数的大小由输入电压决定。

Dmin=Dmax/[(1-Dmax)*k+Dmax]其中:k=Vin(max)/Vin(min)Vin(max)=260V*1.4-0V(直流涟波)=364V,若允许10%误差,Vin(max)=400V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档