语音信号处理实验报告实验一
语音信号处理实验报告.docx
在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~14,这里P取为10。
5.基音周期估计
①自互相关函数法
②短时平均幅度差法
二.实验过程
1. 系统结构
2.仿真结果
(1)时域分析
男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)
某一帧的自相关函数
3.频域分析
①一帧信号的倒谱分析和FFT及LPC分析
②男声和女声的倒谱分析
③浊音和清音的倒谱分析
④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
2.频域分析
这里对信号进行快速傅里叶变换(FFT),可以发现,当窗口函数不同,傅里叶变换的结果也不相同。根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄。汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗。
三.实验结果分析
1.时域分析
实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。这里窗长合适,En能够反应语音信号幅度变化。同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
(完整word版)语音信号处理实验报告实验一
通信工程学院12级1班罗恒2012101032实验一语音信号的低通滤波和短时分析综合实验一、实验要求1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号;2、辨别原始语音信号与滤波器输出信号有何区别,说明原因;3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因;4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响;5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。
二、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。
2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。
三、实验设备1.PC机;2。
MATLAB软件环境;四、实验内容1。
上机前用Matlab语言完成程序编写工作.2。
程序应具有加窗(分帧)、绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5。
改变滤波带宽,辨别与原始信号的区别。
6。
依据曲线对该语音段进行所需要的分析,并且作出结论。
7.改变窗的宽度(帧长),重复上面的分析内容。
五、实验原理及方法利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/T tan(w/2).接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
语音信号处理实验报告1
实验目的:理解和掌握基于能量和过零率的语音端点检测的方法和原理实验原理:语音端点检测就是指从包含语音的一段信号中确定出语音地起始点和结束点。
基于能量和过零率的语音端点检测方法采用两级判决法。
第一级:先根据语音短时能量选取较高门限T1,进行一次粗判,得AB点;然后由背景噪声的平均能量确定一个较低门限T2,并从A点往左、B点往右分别找到短时能量包络与门限T2相交点C与D。
第二级:以短时平均过零率为标准,从C往左、D往右找到短时平均过零率低于门限T3(由背景噪声的平均过零率所确定)的两点E、F,即为语音段的起止点。
实验内容:主程序:clear all;S=wavread('song.wav');%¶ÁÈëÉùÒôÎļþfigure(1);subplot(4,1,1);plot(S);title('Ô-ʼÓïºÅÐźÅ');N=wavread('noise.wav');%¶ÁÈë±³¾°ÔëÉùplot(N);s=fra(100,45,S);%fen zhenLs=length(s);s2=s.^2;soundenergy=sum(s2,2)%ÇóÒ»Ö¡µÄÄÜÁ¿;subplot(4,1,2);plot(soundenergy);title('Ô-ʼÓïÒô¶ÌʱÄÜÁ¿');averagesoundenergy=sum(soundenergy)/Ls;soundzcr=zcro(s);%Çó¹ýÁãÂÊsubplot(4,1,3);plot(soundzcr);title('Ô-ʼÓïÒô¹ýÁãÂÊ');averagesoundzcr=sum(soundzcr)/Ls;n=fra(100,45,N);Ln=length(n);n2=n.^2;noiseenergy=sum(n2,2);averagenoiseenergy=sum(soundenergy)/Ln;noisezcr=zcro(n);averagenoisezcr=sum(noisezcr)/Ln;A=1;B=1;for i=1:Lsif (soundenergy(i)>10*averagenoiseenergy) T1=i;break;endendfor i=Ls:-1:1if (soundenergy(i)>A*averagenoiseenergy) T2=i;break;endendfor i=1:T1if(soundzcr(i)>B*averagenoisezcr)E=i;break;endendfor i=Ls:-1:1if(soundzcr(i)>B*averagenoisezcr)F=i;break;endendE=45*E;F=45*F;duandianjianche=S(E:F,:);subplot(4,1,4);plot(duandianjianche);求过零率函数:function f=zcro(x)f=zeros(size(x,1),1);for i=1:size(x,1)z=x(i,:);for j=1:(length(z)-1);if z(j)*z(j+1)<0f(i)=f(i)+1;endendend分帧函数:function f=fra(len,inc,x)fh=fix(((size(x,1)-len)/inc)+1); f=zeros(fh,len);i=1;n=1;while i<=fhj=1;while j<=lenf(i,j)=x(n);j=j+1;n=n+1;endn=n-len+inc;i=i+1;end实验结果:结果为:实验总结:。
语音信号处理试验报告
---------------------考试---------------------------学资学习网---------------------押题------------------------------语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2学时)短时能量)1.(1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32');elseif(i==3), legend('N=64');elseif(i==4) ,legend('N=128');elseif(i==5) ,legend('N=256');elseif(i==6) ,legend('N=512');endend10-100.511.522.534x 104 20 N=3232.51.5200.514x 10 50 N=6431.50.51022.54x 10 1050 N=12831.5202.50.514x 10 20100 N=256322.50.511.504x 10 40200 N=5123100.51.522.54x 10(2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*NEn求短时能量函数En=conv(h,a.*a);%subplot(6,1,i),plot(En);if(i==2), legend('N=32');elseif(i==3), legend('N=64');elseif(i==4) ,legend('N=128');elseif(i==5) ,legend('N=256');elseif(i==6) ,legend('N=512');endend10-100.511.522.534x 102 10 N=3232.51.5020.514x 10 420 N=64311.522.50.504x 10 420 N=12831.5202.50.514x 10 1050 N=25631.522.500.514x 10 20100 N=512322.50.5011.54x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0b(i)= 1;elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; %每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;10-100.511.522.534x 102010000.511.522.534x 100.500204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.50-0.5-1-1.5050100150200250分析语音信号频域特征MATLAB基于实验二1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱');gridoriginal signal10.50-0.5-100.511.522.534x 10谱时短10.5000.20.40.60.811.21.41.61.822)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间(s)');ylabel('频率(Hz)'););'语谱图'title(语谱图50004000)3000zH(率频2000100000.511.52(s)时间3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title('加矩形窗时的倒谱')subplot(2,1,2)) '加矩形窗时的复倒谱'plot(c);title(加矩形窗时的倒谱10-1-2050100150200250300加矩形窗时的复倒谱1050-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title('加汉明窗时的倒谱')subplot(2,1,2)) '加汉明窗时的复倒谱'plot(c);title(加汉明窗时的倒谱10-1-2-3050100150200250300加汉明窗时的复倒谱1050-5-10050100150200250300实验三基于MATLAB的LPC分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length,N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input('请键入想要处理的帧位置= ');% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input('请键入预测器阶数= '); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧vs.预测后语音帧') subplot(2,1,2),plot(err);grid;title('误差');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱')%% Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱'); subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title('LPC谱');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%% find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));% not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);% direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title('原始语音帧倒谱(直接调用函数)');subplot(212),plot(pitch);grid;title('预测误差倒谱(直接调用函数)');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱(根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱(根据定义编);)'写,去除高频分量原始语音帧vs.预测后语音帧0.40.20-0.2-0.4050100150200250300差误0.20.10-0.1-0.2300250100050150200短时谱500-50-100010203040506070谱LPC100806040010203040506070原始语音帧倒谱(直接调用函数)0.50-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.50-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.20-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.10-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.20-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.10-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.20-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.10-0.1-0.2-0.3050100150200250300实验四基于VQ的特定人孤立词语音识别研究1、mfcc.mccc = mfcc(x)function);'m'bank=melbankm(24,256,8000,0,0.5,bank=full(bank); bank=bank/max(bank(:));k=1:12for n=0:23; dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80); i=1:size(xx,1)for y = xx(i,:); s = y' .*hamming(256); t = abs(fft(s)); t = t.^2; c1=dctcoef * log(bank * t(1:129));c2 = c1.*w'; m(i,:)=c2';enddtm = zeros(size(m)); i=3:size(m,1)-2for dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);end dtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.m[x1,x2] = vad(x)function x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;% 6*10ms = 30ms maxsilence = 8;% 15*10ms = 150ms minlen = 15;status = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)),2);amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0; n=1:length(zcr)for goto = 0; status switch{0,1} caseif amp(n) > amp1x1 = max(n-count-1,1); status = 2; silence = 0; count = count + 1;... amp(n) > amp2 | elseif zcr(n) > zcr2status = 1; count = count + 1;else status = 0; count = 0;end2, caseamp(n) > amp2 | ...if zcr(n) > zcr2 count = count + 1; elsesilence = silence+1; if silence < maxsilencecount = count + 1; count < minlen elseifstatus = 0; silence = 0; count = 0;elsestatus = 3;endend3, case; break endcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear; xchushi= codebook(m)function[a,b]=size(m);[m1,m2]=szhixin(m); [m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4); chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7); chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10); chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;(k<=1000)while sum=ones(1,16); p=1:a fori=1:16 for d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d); sumd(k)=sumd(k)+dmin;i=1:16ford(i)==dmin if xchushi(i,:)=xchushi(i,:)+m(p,:); sum(i)=sum(i)+1;end endendi=1:16forxchushi(i,:)=xchushi(i,:)/sum(i);endk>1if dela=abs(sumd(k)-sumd(k-1))/sumd(k);end k=k+1; chushi=xchushi; end return4、testvq.mclear;)这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中'disp(')正在训练您的语音模版指令,请稍后...'disp(' i=1:10for,i-1);\\ú.wav'海儿的声音 fname =sprintf('D:\\matlab\\work\\dtw1\\ x = wavread(fname); [x1 x2] = vad(x); m = mfcc(x); m = m(x1:x2-5,:);ref(i).code=codebook(m);end)?''语音指令训练成功,恭喜!disp()...''正在测试您的测试语音指令,请稍后disp( i=1:10for,i-1);海儿的声音\\?.wav'fname = sprintf('D:\\matlab\\work\\dtw1\\ x = wavread(fname);[x1 x2] = vad(x); mn = mfcc(x); mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:) test(i).mfcc = mn;end sumsumdmax=0;sumsumdmin=0;)''对训练过的语音进行测试disp( w=1:10for sumd=zeros(1,10); [a,b]=size(test(w).mfcc);i=1:10forp=1:a for j=1:16 ford(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));dmin=min(d);%×üê§?? sumd(i)=sumd(i)+dmin;end end sumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a; sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;)正在匹配您的语音指令,请稍后...'disp(' i=1:10for (sumd(i)==sumdmin1) if (i) switch 1 case);前'', '您输入的语音指令为:%s; 识别结果为%s\n','前fprintf(' 2 case);', ''后:%s; 识别结果为%s\n','后 fprintf('您输入的语音指令为 3case);', '左识别结果为%s\n','左' fprintf('您输入的语音指令为:%s;4case);''右,'右', 您输入的语音指令为 fprintf('a:%s; 识别结果为%s\n' 5case);''东'东', fprintf('您输入的语音指令为:%s; 识别结果为%s\n', 6case);南'南', ' fprintf('您输入的语音指令为:%s; 识别结果为%s\n',' 7 case);', '西,:%s; 识别结果为%s\n''西' fprintf('您输入的语音指令为 8case);''北,'北', 您输入的语音指令为 fprintf(':%s; 识别结果为%s\n' 9case);上'', ', fprintf('您输入的语音指令为a:%s; 识别结果为%s\n''上 10case);下', '下'',您输入的语音指令为 fprintf('a:%s; 识别结果为%s\n'otherwise); 'error' fprintf(endendend end delamin=sumsumdmin/10;delamax=sumsumdmax/10;)''对没有训练过的语音进行测试disp()正在测试你的语音,请稍后...'disp(' i=1:10for,i-1);fname =sprintf('D:\\matlab\\work\\dtw1\\o£?ùμ?éùò?\\?.wav' x = wavread(fname);[x1 x2] = vad(x); mn = mfcc(x); mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endw=1:10for sumd=zeros(1,10); [a,b]=size(test(w).mfcc); i=1:10forp=1:a for j=1:16ford(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);%×üê§?? sumd(i)=sumd(i)+dmin;end end sumdmin=min(sumd);z=0; i=1:10for (((sumd(i))/a)>delamax)|| if z=z+1;endend)...'disp('正在匹配您的语音指令,请稍后z<=3if i=1:10for (sumd(i)==sumdmin) if (i)switch1case);'前', '前',%s\n'识别结果为:%s; 您输入的语音指令为' fprintf(2 case);'后', ':%s; 识别结果为%s\n','后 fprintf('您输入的语音指令为3case);', '左识别结果为%s\n','左' fprintf('您输入的语音指令为:%s;4case);''右,'右', 识别结果为 fprintf('您输入的语音指令为a:%s; %s\n' 5case);''东'东', fprintf('您输入的语音指令为:%s; 识别结果为%s\n', 6 case);南'南', ' fprintf('您输入的语音指令为:%s; 识别结果为%s\n',' 7 case);', '西西:%s; 识别结果为%s\n','' fprintf('您输入的语音指令为 8case );''北,'北', 识别结果为 fprintf('您输入的语音指令为:%s; %s\n' 9case);上'', '上 fprintf('您输入的语音指令为a:%s; 识别结果为%s\n',' 10case);下'','下', 识别结果为 fprintf('您输入的语音指令为a:%s; %s\n'otherwise ); fprintf('error'endendend else)您输入的语音无效?£?\n'' fprintf(end end。
语音信号处理实验报告
实验一基于 MATLAB 的语音信号时域特征分析操作:报告:一. 实验目的语音信号是一种非平稳的时变信号,它携带着各种信息。
在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。
语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。
语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法,直接对语音信号的时域波形进行分析,提取的特征参数主要有语音的短时能量,短时平均过零率,短时自相关函数等。
本实验要求掌握时域特征分析原理,并利用已学知识,编写程序求解语音信号的短时过零率、短时能量、短时自相关特征,分析实验结果,并能掌握借助时域分析方法所求得的参数分析语音信号的基音周期及共振峰。
二. 实验内容1.窗口的选择通过对发声机理的认识,语音信号可以认为是短时平稳的。
在 5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。
我们将每个短时的语音称为一个分析帧。
一般帧长取 10~30ms。
我们采用一个长度有限的窗函数来截取语音信号形成分析帧。
通常会采用矩形窗和汉明窗。
1.1 给出了这两种窗函数在帧长 N=50图时的时域波形。
这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB),会导致泄漏现象;汉明窗的主瓣宽 8*pi/N ,旁瓣峰值低(-42.7dB),可以有效的克服泄漏现象,具有更平滑的低通特性。
因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。
2. 短时能量由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。
因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。
定义短时能量为:在用短时能量反映语音信号的幅度变化时,不同的窗函数以及相应窗的长短均有影响。
hamming 窗的效果比矩形窗略好。
语音信号处理实验报告
语音信号处理实验报告专业:电子信息工程班级:电子信息二班姓名:学号:指导教师:杨立东目录实验一特征提取 (3)一、实验目的: (3)二、实验原理: (3)三、实验内容 (3)程序: (3)实验二基音周期估计 (9)一、实验目的 (9)二、实验原理 (9)三、实验内容 (10)程序: (10)实验三倒谱的获取与应用 (13)一、实验目的 (13)二、实验原理 (13)三、实验内容 (14)程序 (14)实验四 HMM的训练 (17)一、实验目的 (17)二、实验原理 (17)三、实验内容 (17)程序 (17)实验总结 (20)实验一语音信号的特征提取一、实验目的:1、了解语音信号处理基本知识,语音信号的生成的数学模型。
2、理解和掌握语音信号的特征提取。
二、实验原理:语音信号随时间变化的频谱特性可以用语谱图直观的表示,语谱图的纵坐标对应频率,横坐标对应时间,而图像的黑白度对应于信号的能量。
因此声道的谐振频率在图上就表示成为黑带,浊音部分则以出现条纹图形为其特征,这是因为此时的时域波形有周期性,而在浊音的时间间隔内图形显得很致密。
三、实验内容Matlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘新建文件夹中;3.运行程序;程序:语谱图clear all;[x,sr]=wavread('welcome.wav'); %sr为采样频率if (size(x,1)>size(x,2)) %size(x,1)为x的行数,size(x,2)为x的列数 x=x';ends=length(x);w=round(44*sr/1000); %窗长,取离44*sr/100最近的整数n=w; %fft的点数ov=w/2; %50%的重叠h=w-ov;% win=hanning(n)'; %哈宁窗win=hamming(n)'; %哈宁窗c=1;ncols=1+fix((s-n)/h); %fix函数是将(s-n)/h的小数舎去d=zeros((1+n/2),ncols);for b=0:h:(s-n)u=win.*x((b+1):(b+n));t=fft(u);d(:,c)=t(1:(1+n/2))';c=c+1;endtt=[0:h:(s-n)]/sr;ff=[0:(n/2)]*sr/n;imagesc(tt/1000,ff/1000,20*log10(abs(d)));colormap(gray);axis xyxlabel('时间/s');ylabel('频率/kHz');时间/s频率/k H z246810121416x 10-40246810时间/s频率/k H z0246810121416x 10-4246810预加重(高频提取)[x,sr]=wavread('mmm.wav'); %读数据ee=x(200:455); %选取原始文件e 的第200到455点的语音,也可选其他样点 r=fft(ee,1024); %对信号ee 进行1024点傅立叶变换 r1=abs(r); %对r 取绝对值 r1表示频谱的幅度值 pinlv=(0:1:255)*8000/512 %点和频率的对应关系 yuanlai=20*log10(r1) %对幅值取对数signal(1:256)=yuanlai(1:256);%取256个点,目的是画图的时候,维数一致 [h1,f1]=freqz([1,-0.98],[1],256,4000);%高通滤波器 pha=angle(h1); %高通滤波器的相位 H1=abs(h1); %高通滤波器的幅值 r2(1:256)=r(1:256)u=r2.*h1' % 将信号频域与高通滤波器频域相乘 相当于在时域的卷积 u2=abs(u) %取幅度绝对值 u3=20*log10(u2) %对幅值取对数un=filter([1,-0.98],[1],ee) %un 为经过高频提升后的时域信号 figure(1);subplot(211);plot(f1,H1);title('高通滤波器的幅频响应'); xlabel('频率/Hz'); ylabel('幅度');subplot(212);plot(pha);title('高通滤波器的相位响应'); xlabel('频率/Hz');ylabel('角度/radians');figure(2);subplot(211);plot(ee);title('原始语音信号'); xlabel('样点数'); ylabel('幅度');axis([0 256 -0.1 0.1]);subplot(212);plot(real(un)); title('经高通滤波后的语音信号'); xlabel('样点数'); ylabel('幅度'); axis([0 256 -1 1]);figure(3);subplot(211);plot(pinlv,ee);title('原始语音信号频谱'); xlabel('频率/Hz'); ylabel('幅度/dB');subplot(212);plot(pinlv,u3);title('经高通滤波后的语音信号频谱'); xlabel('频率/Hz'); ylabel('幅度/dB');05001000150020002500300035004000-50510x 10-3原始语音信号频谱频率/Hz幅度/d B05001000150020002500300035004000-80-60-40-20经高通滤波后的语音信号频谱频率/Hz幅度/d B50100150200250-0.1-0.0500.050.1原始语音信号样点数幅度50100150200250-1-0.500.51经高通滤波后的语音信号样点数幅度05001000150020002500300035004000-50510x 10-3原始语音信号频谱频率/Hz幅度/d B05001000150020002500300035004000-80-60-40-20经高通滤波后的语音信号频谱频率/Hz幅度/d B短时能量[x,sr]=wavread('welcome.wav'); %读入语音文件 %计算N=50,帧移=50时的语音能量 s=fra(50,50,x);s2=s.^2; %一帧内各样点的能量 energy=sum(s2,2); %求一帧能量subplot(2,2,1) %定义画图数量和布局plot(energy); %画N=50时的语音能量图xlabel('帧数') %横坐标ylabel('短时能量 E') %纵坐标legend('N=50') %曲线标识axis([0,1500,0,2*10]) %定义横纵坐标范围%计算N=100,帧移=100时的语音能量s=fra(100,100,x);s2=s.^2;energy=sum(s2,2);subplot(2,2,2)plot(energy) %画N=100时的语音能量图xlabel('帧数')ylabel('短时能量 E')legend('N=100')axis([0,600,0,4*10]) %定义横纵坐标范围%计算N=400,帧移=400时的语音能量s=fra(400,400,x);s2=s.^2;energy=sum(s2,2);subplot(2,2,3)plot(energy) %画N=400时的语音能量图xlabel('帧数')ylabel('短时能量 E')legend('N=400')axis([0,150,0,1.5*10^2]) %定义横纵坐标范围%计算N=800,帧移=800时的语音能量s=fra(800,800,x);s2=s.^2;energy=sum(s2,2);subplot(2,2,4)plot(energy) %画N=800时的语音能量图xlabel('帧数')ylabel('短时能量 E')legend('N=800')axis([0,95,0,3*10^2]) %定义横纵坐标范围定义fra()function f=fra(len,inc,x)fh=fix(((size(x,1)-len)/inc)+1);f=zeros(fh,len);i=1;n=1;while i<=fhj=1;while j<=lenf(i,j)=x(n); j=j+1;n=n+1; endn=n-len+inc; i=i+1; end5001000150005101520帧数短时能量 EN=50200400600010203040帧数短时能量 EN=100050100150050100150帧数短时能量 EN=400204060800100200300帧数短时能量 EN=800短时平均过零率clear all[x1,sr]=wavread('welcome.wav'); %读入语音文件 x=awgn(x1,15,'measured');%加入15dB 的噪声 s=fra(220,110,x);%分帧,帧移110 zcr=zcro(s);%求过零率 figure(1); subplot(2,1,1) plot(x);title('原始信号'); xlabel('样点数'); ylabel('幅度');axis([0,300,-2*10,2*10]); subplot(2,1,2) plot(zcr);xlabel('帧数'); ylabel('过零次数');title('原始信号的过零率');axis([0,360,0,200]); 定义zcro()function f=zcro(x)f=zeros(size(x,1),1); %生成全零矩阵 for i=1:size(x,1)z=x(i,:); %提取一行数据 for j=1:(length(z)-1); if z(j)*z(j+1)<0; f(i)=f(i)+1; end end end50100150200250300-20-1001020原始信号样点数幅度50100150200250300350050100150200帧数过零次数原始信号的过零率实验二 基音周期估计一、实验目的在理论学习的基础上,进一步的理解和掌握基音周期估计中两种最基本的方法:基于短时自相关法和基于短时平均幅度差法。
语音信号处理实验一报告
语⾳信号处理实验⼀报告实验⼀语⾳信号的采集及预处理⼀、实验⽬的在理论学习的基础上,进⼀步地理解和掌握语⾳信号预处理及短时加窗的意义及基于matlab的实现⽅法。
⼆、实验原理及内容1、语⾳信号的录⾳、读⼊、放⾳等:练习matlab中⼏个⾳频处理函数,利⽤函数wavread对语⾳信号进⾏采样,记住采样频率和采样点数,给出以下语⾳的波形图(2.wav),wavread的⽤法参见mablab帮助⽂件。
利⽤wavplay或soundview 放⾳。
也可以利⽤wavrecord⾃⼰录制⼀段语⾳,并进⾏以上操作(需要话筒)。
I=wavread('2.wav');Fs=115200;soundview(I,Fs) %波形图如图1所⽰图1 2.wav的波形图利⽤wavplay函数,在佩戴⽿机的情况下可以清晰的听到所要播放于⼼的消息。
2、语⾳信号的分帧:对语⾳信号进⾏分帧,可以利⽤voicebox⼯具箱中的函数enframe。
voicebox⼯具箱是基于GNU协议的⾃由软件,其中包含了很多语⾳信号相关的函数。
voicebox⼯具箱安装⽅法:(1)把⼯具箱拷贝⼊C:\Program Files\MATLAB\R2006b\toolbox⽬录下;(2)菜单file-set path-"Add folder" 导⼊voicebox;图2 Set Path(3)菜单file-Preference-General-"Updata Toolbox Path Cache图3 Preferencesy=enframe(I,256,128);whos y I实验结果为:Name Size Bytes Class AttributesI 9000x1 72000 doubley 69x256 141312 doubleI=wavread('2.wav');t=enframe(I,256,128);plot(t)图4 分帧后的波形图3、语⾳信号的加窗:本步要求利⽤window函数设计窗⼝长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利⽤wvtool函数观察其时域波形图及频谱特性,⽐较得出结论。
语音信号处理实验报告
语⾳信号处理实验报告语⾳信号处理实验报告【实验⼀】⼀、实验题⽬Short time analysis⼆、实验要求Write a MA TLAB program to analyze a speech and simultaneously, on a single page, plot the following measurements:1. the entire speech waveform2. the short-time energy, En3. the short-time magnitude, Mn4. the short-time zero-crossing, Zn5. the narrowband spectrogram6. the wideband spectrogramUse both the speech waveforms in the wznjdx_normal.wav. Choose appropriate window sizes, window shifts, and window for the analysis. Explain your choice of these parameters.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);N=320;subplot(4,1,1);plot(x);h=linspace(1,1,N);En=conv(h,x.*x);subplot(4,1,2);plot(En);Mn=conv(h,abs(x));subplot(4,1,3);plot(Mn);for i=1:n-1if x(i)>=0 y(i)=1;else y(i)=-1;endif x(i+1)>=0 y(i+1)=1;else y(i+1)=-1;endw(i)=abs(y(i+1)-y(i));endk=1;j=0;while (k+N-1)Zm(k)=0;for i=0:N-1Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2;endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N);endsubplot(4,1,4);plot(Q);grid;figure(2);subplot(2,1,1);spectrogram(x,h,256,200,0.0424*fs); subplot(2,1,2);spectrogram(x,h,256,200,0.0064*fs);四、实验结果语谱图:(Matlab 7.0 ⽤不了spectrogram)【实验⼆】⼀、实验题⽬Homomorphic analysis⼆、实验要求Write a MATLAB program to compute the real cepstrums of a section of voiced speech and unvoiced speech. Plot the signal, the log magnitude spectrum, the real cepstrum, and the lowpass liftered log magnitude spectrum.三、实验程序nfft=256;[x,fs] = wavread('wznjdx_normal.wav');fx=x;Xvm=log(abs(fft(fx,nfft)));xhv=real(ifft(Xvm,nfft));lifter=zeros(1,nfft);lifter(1:30)=1;lifter(nfft-28:nfft)=1;fnlen=0.02*fs; % 20mswin=hamming(fnlen);%加窗n=fnlen;%窗宽度赋给循环⾃变量nnoverlap=0.5*fnlen;while(n<=length(x)-1)fx=x(n-fnlen+1:n).*win;n=n+noverlap;endxhvp=xhv.*lifter';figure;subplot(4,1,1)plot(lifter);title('倒谱滤波器');subplot(4,1,2)plot(x);title('语⾳信号波形');subplot(4,1,3)plot(Xvm);title('Xvm');subplot(4,1,4)plot(xhv);title('xhv');四、实验结果【实验三】⼀、实验题⽬LP analysis⼆、实验要求Write a MATLAB program to convert from a frame of speech to a set of linear prediction coefficients. Plot the LPC spectrum superimposed on the corresponding STFT.三、实验程序clear;[x,fs]=wavread('wznjdx_normal.wav');fx=x(4000:4160-1);p=10;[a,e,k]=aryule(fx,p);G=sqrt(e*length(fx));f=log(abs(fft(fx)));h0=zeros(1,160);h=log(G)-log(abs(fft(a,160)));figure(1);subplot(211);plot(fx);subplot(212);plot(f);hold on;plot((0:160-1),h,'r');四、实验结果【实验四】⼀、实验题⽬Pitch estimation⼆、实验内容Write a program to implement the pitch estimation and the voiced/unvoiced decision using the LPC-based method.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);Q = x';NFFT=512;N = 256;Hamm = hamming(N);frame = 30;M = Q(((frame -1) * (N / 2) + 1):((frame - 1) * (N / 2) + N)); Frame = M .* Hamm';% lowpass filter[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,Frame); % filter% residual[a,e] = lpc(speech2,20);errorlp=filter(a,1,speech2); % residual% Short-term autocorrelation.re = xcorr(errorlp);% Find max autocorrelation for lags in the interval minlag to maxlag. minlag = 17; % F0: 450Hzmaxlag =160; % F0: 50Hz[remax,idx] = max(re(fnlen+minlag:fnlen+maxlag));figuresubplot(3,1,1);plot(Frame);subplot(3,1,2);plot(speech2);subplot(3,1,3);plot(re);text(500,0,'idx');idx=idx-1+minlagremax四、实验结果【实验五】⼀、实验题⽬Speech synthesis⼆、实验内容Write a program to analyze a speech and synthesize it using the LPC-based method.三、实验程序主程序clear;[x,sr] = wavread('wznjdx_normal.wav');p=[1 -0.9];x=filter(p,1,x);N=256;inc=128;y=lpcsyn(x,N,inc);wavplay(y,sr);⼦程序lpcsynfunction y=lpcsyn(x,N,inc)%[x,sr] = wavread('wznjdx_normal.wav');%pre = [1 -0.97];%x = filter(pre,1,x);%N=256;%inc=128;fn=floor(length(x)/inc);y=zeros(1,50000);for (i=1:fn)x(1:N,i)=x((i-1)*inc+1:(i+1)*inc);[A(i,:),G(i),P(i),fnlen,fnshift] = lpcana(x(1:N,i),order); if (P(i)) % V oiced frame.e = zeros(N,1);e(1:P(i):N) = 1; % Impulse-train excitation.else % Unvoiced frame.e = randn(N,1); % White noise excitation.endyt=filter(G(i),A(i,:),e);j=(i-1)*inc+[1:N];y(j) = y(j)+yt';end;end⼦程序lpcanafunction [A,G,P,fnlen,fnshift] = lpcana(x,order) fnlen=256;fnshift=fnlen/2;n=length(x);[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,x);[A,e]=lpc(speech2,order);errorlp=filter(A,1,speech2);re=xcorr(errorlp);G=sqrt(e*length(speech2));minlag=17;maxlag=160;[remax,idx]=max(re(n+minlag:n+maxlag));P=idx-1+minlag;end四、实验结果【实验六】⼀、实验题⽬Speech enhancement⼆、实验内容Write a program to implement the basic spectral magnitude subtraction.三、实验程序clear[speech,fs,nbits]=wavread('wznjdx_normal.wav');%读⼊数据alpha=0.04;%噪声⽔平winsize=256;%窗长size=length(speech);%语⾳长度numofwin=floor(size/winsize);%帧数hamwin=zeros(1,size);%定义汉明窗长度enhanced=zeros(1,size);%定义增强语⾳的长度ham=hamming(winsize)';%%产⽣汉明窗x=speech'+alpha*randn(1,size);%信号加噪声noisy=alpha*randn(1,winsize);%噪声估计N=fft(noisy);nmag=abs(N);%噪声功率谱%分帧for q=1:2*numofwin-1frame=x(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2);%对带噪语⾳帧间重叠⼀半取值hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+ham;%加窗y=fft(frame.*ham);mag=abs(y);%带噪语⾳功率谱phase=angle(y);%带噪语⾳相位%幅度谱减for i=1:winsizeif mag(i)-nmag(i)>0clean(i)=mag(i)-nmag(i);else clean(i)=0;endend%频域中重新合成语⾳spectral=clean.*exp(j*phase);%反傅⾥叶变换并重叠相加enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+real(ifft(spectral));endfigure(1);subplot(3,1,1);plot(speech);xlabel('样点数');ylabel('幅度');title('原始语⾳波形'); subplot(3,1,2);plot(x);xlabel('样点数');ylabel('幅度');title('语⾳加噪波形'); subplot(3,1,3);plot(enhanced);xlabel('样点数');ylabel('幅度');title('增强语⾳波形');四、实验结果。
语音信号处理 实验报告
实验一、语音信号采集与分析一、实验目的:1)了解语音信号处理基本知识:语音信号的生成的数学模型。
2)在理论学习的基础上,进一步地理解和掌握语音信号的读入、回放、波形显示。
语音信号时域和频域分析方法。
二、实验原理一定时宽的语音信号,其能量的大小随时间有明显的变化。
其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。
短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。
这在语音识别中有重要意义。
FFT在数字通信、语音信号处理、图像处理、匹配滤波以及功率谱估计、仿真、系统分析等各个领域都得到了广泛的应用。
本实验通过分析加噪的语音信号频谱,可以作为分离信号和噪声的理论基础。
三、实验内容:Matlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘中;3.在Command Window窗中输入文件名,运行程序;程序一、用MATLAB对原始语音信号进行时域分析,分析短时平均能量及短时平均过零数。
程序二、用MATLAB对原始语音信号进行频域分析,画出它的时域波形和频谱给原始的语音信号加上一个高频余弦噪声,频率为5kHz。
画出加噪后的语音信号时域和频谱图。
程序1.a=wavread(' D:\II.wav'); %读取语音信号的数据,赋给变量x1,这里的文件的全路径和文件名由个人设计n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);%形成一个矩形窗,长度为NEn=conv(h,a.*a);%求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0b(i)= 1;elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)=-1;endw(i)=abs(b(i+1)-b(i));end%求出每相邻两点符号的差值的绝对值k=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+160; %每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/640;%短时平均过零率endsubplot(3,1,3),plot(Q);实验结果打印粘贴到右侧:程序2:fs=22050; %语音信号采样频率为22050x1=wavread('D:\II.wav'); %读取语音信号的数据,赋给变量x1sound(x1,22050); %播放语音信号f=fs*(0:511)/1024;t=0:1/22050:(size(x1)-1)/22050; %将所加噪声信号的点数调整到与原始信号相同Au=0.03;d=[Au*cos(2*pi*5000*t)]'; %噪声为5kHz的余弦信号x2=x1+d;sound(x2,22050); %播放加噪声后的语音信号y2=fft(x2,1024); %对信号做1024点FFT变换figure(1)subplot(2,1,1);plot(x1) %做原始语音信号的时域图形title('原始语音信号');xlabel('time n');ylabel('幅值 n');subplot(2,1,2);plot(t,x2)title('加噪后的信号');xlabel('time n');ylabel('幅值 n');figure(2)subplot(2,1,1);plot(f,abs(x1(1:512)));title('原始语音信号频谱');xlabel('Hz');ylabel('幅值');subplot(2,1,2);plot(f,abs(y2(1:512)));title('加噪后的信号频谱');xlabel('Hz'); ylabel('幅值');实验结果打印粘贴到右侧:050010001500200025003000350040004500原始语音信号time n幅值 n加噪后的信号time n幅值 n020004000600080001000012000原始语音信号频谱Hz幅值加噪后的信号频谱Hz幅值四、实验分析加入噪声后音频文件可辨性下降,波形的平缓,频谱图上看,能量大部分集中在2000HZz到4000Hz之间。
语音信号信号处理实验报告
实验一 语音信号的端点检测一、实验目的1、掌握短时能量的求解方法2、掌握短时平均过零率的求解方法3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。
二、仪器设备HP 计算机、Matlab 软件三、实验原理3.1、短时能量3.1.1、原理:语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。
语音信号的短时能量定义:3.1.2、短时能量序列反映了语音振幅或能量随着时间缓慢变化的规律。
从原始语音信号图中可以看到语音信号幅度随时间有相当大的变化,特别是清音段的幅度一般比浊音段的幅度小很多,语音信号的短时能量给出了反映这些幅度变化的一个合适的描述方法。
3.1.3、短时平均幅度函数和能量函数的作用(1)区分清/浊音。
En 、Mn 大,对应浊音; En 、Mn 小,对应清音。
其中Mn 是短时幅度差。
(2)在信噪比高的情况下,能进行有声/无声判决。
无声时,背景噪声的En 、Mn 小;有声时,En 、Mn 显著增大。
判决时可设置一个门限。
(3)大致能定出浊音变为清音的时刻,或反之。
3.2、短时过零率:3.2.1、定义:过零就是信号通过零值。
连续语音信号,考察其时域波形通过时间轴的情况;离散时间信号,相邻的 值改变符号则称为过零。
12()n N n w m nE x m +-==∑()()()01w x n w n x n m N =⋅≤≤-101() 0n N w n ≤≤-⎧=⎨⎩其它窄带信号,平均过零数作为信号频率的一种简单度量是很精确的,语音信号序列是宽带信号, 则不能简单用上面的公式,但是可以用短时平均过零数来得到频谱的粗略估计。
3.2.2、短时过零分析的意义:(1)、可以区分清音与浊音:浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。
(2)、利用它可以从背景噪声中找出语音信号,可用于判断寂静无语音和有语音的起点和终点位置。
(3)、在背景噪声较小时用平均能量识别较为有效,而在背景噪声较大时用平均过零数识别较为有效。
语音信号处理实验报告
实验报告一、 实验目的、要求(1)掌握语音信号采集的方法(2)掌握一种语音信号基音周期提取方法(3)掌握短时过零率计算方法(4)了解Matlab 的编程方法二、 实验原理基本概念:(a )短时过零率:短时内, 信号跨越横轴的情况, 对于连续信号, 观察语音时域波形通过横轴的情况;对于离散信号, 相邻的采样值具有不同的代数符号, 也就是样点改变符号的次数。
对于语音信号, 是宽带非平稳信号, 应考察其短时平均过零率。
其中sgn[.]为符号函数⎪⎩⎪⎨⎧<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n))短时平均过零的作用1.区分清/浊音:浊音平均过零率低, 集中在低频端;清音平均过零率高, 集中在高频端。
2.从背景噪声中找出是否有语音, 以及语音的起点。
(b )基音周期基音是发浊音时声带震动所引起的周期性, 而基音周期是指声带震动频率的倒数。
基音周期是语音信号的重要的参数之一, 它描述语音激励源的一个重要特征, 基音周期信息在多个领域有着广泛的应用, 如语音识别、说话人识别、语音分析与综合以及低码率语音编码, 发音系统疾病诊断、听觉残障者的语音指导等。
因为汉语是一种有调语言, 基音的变化模式称为声调, 它携带着非常重要的具有辨意作用的信息, 有区别意义的功能, 所以, 基音的提取和估计对汉语更是一个十分重要的问题。
由于人的声道的易变性及其声道持征的因人而异, 而基音周期的范围又很宽, 而同—个人在不同情态下发音的基音周期也不同, 加之基音周期还受到单词∑--=-=10)]1(sgn[)](sgn[21N m n n n m x m x Z发音音调的影响, 因而基音周期的精确检测实际上是一件比较困难的事情。
基音提取的主要困难反映在: ①声门激励信号并不是一个完全周期的序列, 在语音的头、尾部并不具有声带振动那样的周期性, 有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。
《语音信号处理》实验1-端点检测
华南理工大学《语音信号处理》实验报告实验名称:端点检测姓名:学号:班级:10级电信5班日期:2013年5 月9日1.实验目的1.语音信号端点检测技术其目的就是从包含语音的一段信号中准确地确定语音的起始点和终止点,区分语音和非语音信号,它是语音处理技术中的一个重要方面。
本实验的目的就是要掌握基于MATLAB编程实现带噪语音信号端点检测,利用MATLAB对信号进行分析和处理,学会利用短时过零率和短时能量,对语音信号的端点进行检测。
2. 实验原理1、短时能量语音和噪声的区别可以体现在它们的能量上,语音段的能量比噪声段能量大,语音段的能量是噪声段能量叠加语音声波能量的和。
在信噪比很高时,那么只要计算输入信号的短时能量或短时平均幅度就能够把语音段和噪声背景区分开。
这是仅基于短时能量的端点检测方法。
信号{x(n)}的短时能量定义为:语音信号的短时平均幅度定义为:其中w(n)为窗函数。
2、短时平均过零率短时过零表示一帧语音信号波形穿过横轴(零电平)的次数。
过零分析是语音时域分析中最简单的一种。
对于连续语音信号,过零意味着时域波形通过时间轴;而对于离散信号,如果相邻的取样值的改变符号称为过零。
过零率就是样本改变符号次数。
信号{x(n)}的短时平均过零率定义为:式中,sgn为符号函数,即:过零率有两类重要的应用:第一,用于粗略地描述信号的频谱特性;第二,用于判别清音和浊音、有话和无话。
从上面提到的定义出发计算过零率容易受低频干扰,特别是50Hz交流干扰的影响。
解决这个问题的办法,一个是做高通滤波器或带通滤波,减小随机噪声的影响;另一个有效方法是对上述定义做一点修改,设一个门限T,将过零率的含义修改为跨过正负门限。
于是,有定义:3、检测方法利用过零率检测清音,用短时能量检测浊音,两者配合。
首先为短时能量和过零率分别确定两个门限,一个是较低的门限数值较小,对信号的变化比较敏感,很容易超过;另一个是比较高的门限,数值较大。
语音信号处理实验报告
语音信号处理实验报告实验一:语音信号的端点检测学院:电子与信息学院专业:11级信息工程姓名:学号:提交日期:实验一:语音信号的端点检测1、实验内容语音信号端点检测技术其目的就是从包含语音的一段信号中准确地确定语音的起始点和终止点,区分语音和非语音信号,它是语音处理技术中的一个重要方面。
本实验的目的就是要掌握基于MATLAB编程实现带噪语音信号端点检测,利用MATLAB对信号进行分析和处理,学会利用短时过零率和短时能量,对语音信号的端点进行检测。
2、实验方法本实验中,端点检测的方法有两种:短时能量和短时过零率。
语音和噪声的区别可以体现在它们的能量上,语音段的能量比噪声段能量大,语音段的能量是噪声段能量叠加语音声波能量的和。
在信噪比很高时,那么只要计算输入信号的短时能量或短时平均幅度就能够把语音段和噪声背景区分开。
这是仅基于短时能量的端点检测方法。
信号{x(n)}的短时能量定义为:短时过零表示一帧语音信号波形穿过横轴(零电平)的次数。
过零分析是语音时域分析中最简单的一种。
对于连续语音信号,过零意味着时域波形通过时间轴;而对于离散信号,如果相邻的取样值的改变符号称为过零。
过零率就是样本改变符号次数。
信号{x(n)}的短时平均过零率定义为:2.2、检测方法利用过零率检测清音,用短时能量检测浊音,两者配合。
首先为短时能量和过零率分别确定两个门限,一个是较低的门限数值较小,对信号的变化比较敏感,很容易超过;另一个是比较高的门限,数值较大。
低门限被超过未必是语音的开始,有可能是很短的噪声引起的,高门限被超过并且接下来的自定义时间段内的语音超过低门限,意味着信号开始。
此时整个端点检测可分为四段:静音段、过渡段、语音段、结束。
实验时使用一个变量表示当前状态。
静音段,如果能量或过零率超过低门限,就开始标记起始点,进入过渡段。
过渡段当两个参数值都回落到低门限以下,就将当前状态恢复到静音状态。
而如果过渡段中两个参数中的任一个超过高门限,即被认为进入语音段。
语音信处理实验报告
语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性.贯穿语音分析全过程的是“短时分析技术”.因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内一般认为在0~30ms的时间内,其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性.所以要将语音信号分帧来分析其特征参数,帧长一般取为0ms~30ms.二.实验过程2.仿真结果(1) 时域分析男声及女声蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率 某一帧的自相关函数3. 频域分析一帧信号的倒谱分析和FFT 及LPC 分析050100150200250300-1-0.500.510510152025303540-50050100150050100150200250300-1-0.500.5100.51 1.52 2.53 3.5-40-2002040②男声和女声的倒谱分析③浊音和清音的倒谱分析④浊音和清音的FFT 分析和LPC 分析红色为FFT 图像,绿色为LPC 图像三. 实验结果分析 1. 时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变对应的倒谱系数:,,……对应的LPC 预测系数:,,,,,……原语音一帧语音波形一帧语音的倒化起着决定性影响.这里窗长合适,En能够反应语音信号幅度变化.同时,从图像可以看出,En可以作为区分浊音和清音的特征参数.短时过零率表示一帧语音中语音信号波形穿过横轴零电平的次数.从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大.从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低.从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率.2.频域分析这里对信号进行快速傅里叶变换FFT,可以发现,当窗口函数不同,傅里叶变换的结果也不相同.根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄.汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗.为了使频域信号的频率分辨率较高,所取的DFT及相应的FFT点数应该足够多,但时域信号的长度受到采样率和和短时性的限制,这里可以采用补零的办法,对补零后的序列进行FFT变换.从实验仿真图可以看出浊音的频率分布比清音高.3.倒谱分析通过实验可以发现,倒谱的基音检测与语音加窗的选择也是有关系的.如果窗函数选择矩形窗,在许多情况下倒谱中的基音峰将变得不清晰,窗函数选择汉明窗较为合理,可以发现,加汉明窗的倒谱基音峰较为突出.在典型的浊音清音倒谱对比中,理论上浊音倒谱基音峰应比较突出,而清音不出现这种尖峰,只是在倒谱的低时域部分包含声道冲激响应的信息.实验仿真的图形不是很理想.4.线性预测分析从实验中可以发现,LPC谱估计具有一个特点,在信号能量较大的区域即接近谱的峰值处,LPC谱和信号谱很接近;而在信号能量较低的区域即接近谱的谷底处,则相差比较大.在浊音清音对比中,可以发现,对呈现谐波特征的浊音语音谱来说这个特点很明显,就是在谐波成分处LPC谱匹配信号谱的效果要远比谐波之间好得多.在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~4,这里P取为0.5.基音周期估计自互相关函数法②短时平均幅度差法③倒谱分析法共偏移92+32=24个偏移点6000/24=可以发现,上面三种方法计算得到的基音周期基本相同.。
语音信号处理实验报告.doc
语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
语音信号处理实验报告
语音信号处理实验报告 The Standardization Office was revised on the afternoon of December 13, 2020语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性。
贯穿语音分析全过程的是“短时分析技术”。
因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内(一般认为在10~30ms的时间内),其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性。
所以要将语音信号分帧来分析其特征参数,帧长一般取为10ms~30ms。
二.实验过程男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)某一帧的自相关函数3.频域分析①一帧信号的倒谱分析和FFT及LPC分析②男声和女声的倒谱分析对应的倒谱系数:,,……对应的LPC预测系数:1,,,,,……原语音波形一帧语音波形一帧语音的倒谱③浊音和清音的倒谱分析④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)三.实验结果分析1.时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。
这里窗长合适,En能够反应语音信号幅度变化。
同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。
从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。
从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
语音信号处理实验
3 实验过程
1)读语音数 wavread 2)听语音 sound 3)写语音 wavwrite 4)对语音信号进行分帧处理 5)对语音信号进行预加重
分帧处理流程
1 读语音数据。 2 求语音长度。 3 确定帧长和帧移。 4 确定可以分多少帧 5 for 循环实现各帧信号的取出。先确定各帧信号的起点和终点坐标,然后利 用矩阵操作函数将各帧信号取出。
[x,fs,bits]=wavread(' c:\windows\media\dig.wav '); x=x(:,1); x=x'; len=length(x); N=256; M=128; Fn=fix((len-N)/M+1); y=[]; for i=1:Fn
实验一 语音信号的预处理
1 实验目的
通过 Matlab 编程掌握语音信号的预处理方法,包括对信号进行分帧、预加 重,加窗处理。
2 实验原理
由于语音信号从整体上来看是一个非平稳过程,但是在一个短的时间内,其 特性保持相对不变,所以语音信号具有短时平稳性,对语音信号的分析和处理必 须建立在“短时”的基础上,将信号分为一段一段来分析其特征参数。
down=1+(i-1)*M; up=down+N-1; temp=x(down:up); y=[y;temp]; end % K=100; M=[]; for i=1:Fn temp=sum(abs(y(i,:)),2)
1
M=[M,temp]; end plot(M)
%短时过零率 [x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav'); x=x(:,1); x=x'; len=length(x); N=256; M=128; Fn=fix((len-N)/M+1); y=[]; for i=1:Fn
语音信号处理基础实验
语音信号处理基础实验(一)实验目的:掌握MATLAB采集语音信号、创建语音文件、读写等的原理及常用命令。
掌握语音信号线性叠加的方法,熟悉语音信号卷积原理,熟悉语音信号升采样/降采样方法。
实验原理:指导书摘选。
仪器与材料:微机,Matlab软件,U盘,记录用的笔和纸。
实验步骤:1打开MATLAB软件,File→New→script2读取录制好的语音文件,并使用plot函数显示出来。
要求:横轴和纵轴带有标注。
横轴的单位为秒(S), 纵轴显示归一化后的数值。
3读取一段语音并归一化。
然后生成一段随机信号(长度与语音信号相同),归一化后幅度乘以0.01。
最后线性叠加两端语音,用plot函数显示三种信号。
要求:横轴和纵轴带有标注。
横轴单位为秒(s),纵轴显示的为归一化后的数值。
4将读取的语音信号与随机信号进行卷积,并用plot函数显示该信号,并对比线性叠加信号的区别。
然后使用wavplay函数播放两种信号,并比较区别。
5改变读取的语音信号的采样频率,使用plot函数进行显示。
然后采用wavplay函数播放,比较采样频率对改变语音信号的影响。
注:实验报告字写小一点,手写程序在实验报告上,打印实验波形图粘贴在实验报告上,程序和波形图要一一对应。
实验程序:1.读取语音信号fs=1600;[x,fs]=audioread('C2_1_y.wav');sound(x,fs);N=length(x);time=(0:N-1)/fs;plot(time,x);axis([0 2 -1 1]);xlabel('time/s');ylabel('amplitude');结果:2.语音信号叠加clcclear all[x,fs]=audioread('C2_2_y.wav'); s=1:length(x);t=s/fs;xmax=max(abs(x));x=x/xmax;y=randn(size(x));ymax=max(abs(y));y=y/ymax;z=x+y;zmax=max(abs(z));z=z/zmax;figure(1)subplot(311)plot(t,x);xlabel('时间/s');ylabel('归一化幅值')title('(a)原始信号')subplot(312)plot(t,y);xlabel('时间/s');ylabel('归一化幅值')title('(b)随机序列')subplot(313)plot(t,z);xlabel('时间/s');ylabel('归一化幅值')title('(c)线性叠加')3.语音信号卷积clcclear all[x,fs]=audioread('C2_2_y.wav'); %读取s=1:length(x);t=s/fs;xmax=max(abs(x));x=x/xmax; %归一化y=randn(size(x)); %产生同x相同长度的随机序列ymax=max(abs(y));y=y/ymax; %随机序列归一化z=conv(x,y); %卷积计算zmax=max(abs(z));z=z/zmax;t2=(1:length(z))/fs;figure(1)subplot(311)plot(t,x);xlabel('时间/s');ylabel('归一化幅值');title('(a)原始信号');subplot(312)plot(t,y);xlabel('时间/s');ylabel('归一化幅值');title('(b)随机序列');subplot(313)plot(t2,z);xlabel('时间/s');ylabel('归一化幅值');title('(c)信号卷积');4.语音信号采样频率变换clcclear all[x,fs1]=audioread('C2_2_y.wav'); s1=1:length(x);t1=s1/fs1;xmax=max(abs(x));x=x/xmax;figure(1)subplot(311)plot(t1,x);xlabel('时间/s');ylabel('归一化幅值');title('(a)原始信号');p=2;q=1;x1=resample(x,p,q);x1max=max(abs(x1));x1=x1/x1max;fa=fs1*p/q;ta=(1:length(x1))/fa;subplot(312)plot(ta,x1);xlabel('时间/s'); ylabel('归一化幅值'); title('(b)2倍采样率'); p=1;q=2;x2=resample(x,p,q);x2max=max(abs(x2)); x2=x2/x2max;fb=fs1*p/q;tb=(1:length(x2))/fb; subplot(313)plot(tb,x2);xlabel('时间/s'); ylabel('归一化幅值'); title('(c)1/2倍采样率');运行结果:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信工程学院12级1班罗恒2012101032
实验一语音信号的低通滤波和短时分析综合实验
一、实验要求
1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号;
2、辨别原始语音信号与滤波器输出信号有何区别,说明原因;
3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因;
4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响;
5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。
二、实验目的
1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。
2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。
三、实验设备
1.PC机;
2.MATLAB软件环境;
四、实验内容
1.上机前用Matlab语言完成程序编写工作。
2.程序应具有加窗(分帧)、绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5. 改变滤波带宽,辨别与原始信号的区别。
6.依据曲线对该语音段进行所需要的分析,并且作出结论。
7.改变窗的宽度(帧长),重复上面的分析内容。
五、实验原理及方法
利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/T tan(w/2)。
接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。
一定时宽的语音信号,其能量的大小随时间有明显的变化。
其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。
短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。
这在语音识别中有重要意义。
六、程序及结果
%起始清空
close all;
clear all;
clc
duration = 5; %录音时间
%语音录入段
fprintf('Press any key to start %g seconds of recording... \n',duration);
pause;
fprintf('Recording...\n');
mysound=wavrecord(duration*8000,8000,1);
fprintf('Finished recording.\n');
%语音存储段
wavwrite(mysound,8000,'C:\Users\ML\Desktop\语音信号');
%语音读取及显示分析图表
fprintf('Press any key to play the recording and show the analyzing pictures... \n');
pause;
mysoundinPC=wavread('C:\Users\ML\Desktop\语音信号');
%---信号处理、分析并出图
subplot(2,1,1);
mysoundinPC=mysound(:,1);
mysoundinPC1=mysoundinPC(1:16000);
siglength1=length(mysoundinPC1);
t1=(0:siglength1-1)/8000;
plot(t1,mysoundinPC1);
xlabel('Time(s)');
title('截取信号序列');
%声音播放段
wavplay(mysoundinPC,8000);
%读取WAV音频文件“beifeng.wav”
aa=wavread('C:\Users\ML\Desktop\语音信号');
[B1 A1] = LowPassF(200,300);
aa1 = filter(B1,A1,aa); %对信号aa进行滤波
wavplay(aa1,8000); %声音播放
subplot(2,1,2);
ma1=aa1(1:16000);
siglength1=length(ma1);
t1=(0:siglength1-1)/8000;
plot(t1,ma1);
xlabel('Time(s)');
title('滤波后截取信号序列');
%%
%短时傅里叶变换
aa=wavread('C:\Users\ML\Desktop\语音信号');
aa1=aa(1:16000);
e=fra(256,128,aa1);
ee=e(10,:);
%%
subplot(311)
ee1=ee/max(ee);
plot(ee1);xlabel('样点数');ylabel('幅度');title('原始语音第十帧'); axis([1,256,-1,1]);
%%
% 矩形窗傅里叶变换
N=256; pinLv=(0:255)*(8000/2)/256;
b1=fft(ee,N);
y1=20*log(abs(b1)); % 短时傅里叶变换
subplot(312);
plot(pinLv,y1);title('加矩形窗短时谱分析');
xlabel('频率/Hz');ylabel('对数幅度');
%%
%汉明窗傅里叶变换
b2=ee'.*hamming(length(ee));
b2=fft(b2,N);
y2=20*log(abs(b2)); % 短时傅里叶变换
subplot(313);
plot(pinLv,y2);title('加汉明窗的短时谱分析');
xlabel('频率/Hz');ylabel('对数幅度');
五、结果分析及心得体会
信号的频谱分析就是计算机信号的傅里叶变换。
连续信号与系统的傅里叶分析显然不便于用计算机进行计算,使其应用受到限制。
而FFT是一种时域和频域均离散化的变换,适合数值运算,成为用计算机分析离散信号和系统的有力工具。
对连续信号和系统,可以通过时域采样,应用DFT进行近似谱分析。
实验中利用双线性变换法设计IIR数字滤波器,利用窗函数设计FIR数字滤波器,可以是低通、高通和带通滤波器的设计,此次试验中选用的是低通滤波器,而低通滤波器是基于Butterworth滤波器来设计的,通过设计的滤波器对语音信号进行滤波,再对得出的频谱图进行分析。
在实验中遇到一些困难,在设计数字滤波器的时候,通带频率和阻带频率的选取要满足低通的要求,以及通带允许的最大衰减和阻带应达到的最小衰减。
在这次的综合实验中,总的来说并不是很辛
苦,实验将上课所学的理论知识运用到实践中。
通过这次应用Matlab对语音信号进行频谱分析及滤波的综合实验,让我对Matlab的应用以及数字滤波器的设计有了更深层次的理解,每个程序中的语句表示什么意思也有了很清楚的了解。
在实践中增强了我的动手能力,以及增强了我的团队意识,并提高了我的综合能力,使自身得到了很大的锻炼。
最后要感谢老师的悉心指导和帮助。