高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

合集下载

高考数学大一轮复习配套课时训练:第七篇 立体几何 第1节 空间几何体的结构及三视图和直观图(含答案)

高考数学大一轮复习配套课时训练:第七篇 立体几何 第1节 空间几何体的结构及三视图和直观图(含答案)

第七篇立体几何(必修2)第1节空间几何体的结构及三视图和直观图课时训练练题感提知能【选题明细表】A组一、选择题1.(2013山东烟台模拟)如图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧(左)视图的面积为( C )(A)8π(B)6π(C)4+(D)2+解析:该组合体的侧(左)视图为其中正方形的边长为2,三角形为边长为2的三角形,所以侧(左)视图的面积为22+×22×=4+,故选C.2.(2013山东莱州模拟)一个简单几何体的正(主)视图,侧(左)视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是( C )(A)①(B)② (C)③ (D)④解析:当该几何体的俯视图为圆时,由三视图知,该几何体为圆柱,此时,正(主)视图和侧(左)视图应相同,所以该几何体的俯视图不可能是圆,其余都有可能.故选C.3.(2013韶关市高三调研)某几何体的三视图如图所示,根据图中标出的数据,可得这个几何体的表面积为( B )(A)4+4 (B)4+4(C) (D)12解析:由三视图知该几何体为正四棱锥P ABCD,底面边长为2,高PO=2,如图所示,取CD的中点E,连接OE、PE,则PE==,因此几何体的表面积为2×2+×2×4×=4+4,故选B.4.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( A )(A)2+(B)(C)(D)1+解析:由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+,所以原图上、下底分别为1,1+,高为2的直角梯形.所以面积S=(1++1)×2=2+.故选A.5.(2013北京东城区模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( D )(A)1 (B)2 (C)3 (D)4解析:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示,利用长方体模型可知,此三棱锥A BCD的四个面中,全部是直角三角形.故选D.6.(2013广州市毕业班测试(二))一个圆锥的正(主)视图及其尺寸如图所示,若一个平行于圆锥底面的平面将此圆锥截成体积之比为1∶7的上、下两部分,则截面的面积为( C )(A)π(B)π (C)π(D)4π解析:由题意知,该几何体是底面半径为3,高为4的圆锥.由截面性质知截面圆半径为×3=,故截面的面积为π·()2=,故选C.7.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若过两个相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中真命题为( D )(A)①②(B)①③(C)②③(D)②④解析:对于①,平行六面体的两个相对侧面与底面垂直且互相平行,而另两个相对侧面可能与底面不垂直,则不是直棱柱,故①假;对于②,两截面的交线平行于侧棱,且垂直于底面,故②真;对于③,作正四棱柱的两个平行菱形截面,可得满足条件的斜四棱柱(如图(1)所示),故③假;对于④,四棱柱一个对角面的两条对角线,恰为四棱柱的对角线,故对角面为矩形,于是侧棱垂直于底面的一条对角线,同样侧棱也垂直于底面的另一条对角线,故侧棱垂直于底面,故④真.故选D.二、填空题8.如图所示的Rt△ABC绕着它的斜边AB旋转一周得到的图形是.解析:过Rt△ABC的顶点C作线段CD⊥AB,垂足为D,所以Rt△ABC绕着它的斜边AB旋转一周后应得到的是以CD作为底面圆的半径的两个圆锥的组合体.答案:两个圆锥的组合体9.一个几何体的正(主)视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:显然①②⑤均有可能;当三棱柱放倒时,其正(主)视图可能是三角形,所以③有可能,④不可能.答案:①②③⑤10.如图,点O为正方体ABCD A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(填出所有可能的序号).解析:空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现投影为④的情况.答案:①②③11.(2013山东烟台模拟)如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正(主)视图是边长为2的正方形,俯视图为正三角形,则侧(左)视图的面积为.解析:因为俯视图为正三角形,所以俯视图的高为,侧视图为两直角边分别为2、的矩形,所以侧(左)视图的面积为2.答案:2三、解答题12.(2013西工大附中模拟)已知四棱锥P ABCD的三视图如图所示,求此四棱锥的四个侧面的面积中最大值.解:由三视图可知该几何体是如图所示的四棱锥,顶点P在底面的射影是底面矩形的顶点D.底面矩形边长分别为3,2,△PDC是直角三角形,直角边为3与2,所以S△PDC=×2×3=3.△PBC是直角三角形,直角边长为2,,三角形的面积为×2×=.△PAB是直角三角形,直角边长为3,2;其面积为×3×2=3.△PAD也是直角三角形,直角边长为2,2,三角形的面积为×2×2=2. 所以四棱锥P ABCD的四个侧面中面积最大的是前面三角形的面积为3.13.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.解:圆台的轴截面如图.设圆台的上、下底面半径分别为x cm和3x cm,延长AA1交OO1的延长线于点S.在Rt△SOA中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x,OO1=2x.又×(6x+2x)×2x=392,解得x=7.所以圆台高OO母线长l=OO1=14 cm,底面半径分别为7 cm和21 cm.B组14.(2013广州高三调研)已知四棱锥P ABCD的三视图如图所示,则四棱锥P ABCD的四个侧面中面积最大的是( C )(A)3 (B)2(C)6 (D)8解析:四棱锥如图所示,PM=3,×4×=2,S△PDC=S△PAB=×4×3=6,S△PBC=S△PAD=×2×3=3,故四个侧面中面积最大的是6.15.(2013北京西城检测)三棱锥D ABC及其三视图中的正视图和侧视图如图所示,则棱BD的长为.解析:取AC的中点E,连结BE,DE,由正(主)视图可知BE⊥AC,BE⊥DE.DC⊥平面ABC且DC=4,BE=2,AE=EC=2.所以BC====4,即BD====4.答案:416.三棱锥V ABC的底面是正三角形,顶点在底面ABC上的射影为正△ABC的中心,其三视图如图所示:(1)画出该三棱锥的直观图;(2)求出侧(左)视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC=2,作AM⊥BC于M,连结VM,过V作VO⊥AM于O,过O作EF∥BC交AB,AC于F、E,则△VEF即侧(左)视图.由=,得EF=.又VA=4,AM==3.则AO=2,VO===2.××2=4.所以S即侧(左)视图的面积为4.。

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版

2020届高考数学一轮复习第七篇立体几何与空间向量第1节空间几何体的结构、三视图和直观图课件理新人教A版
返回导航
【教材导读】 1.平行投影和中心投影的区别和联系? 提示:中心投影与人们感官的视觉效果是一致的,它常用来进行绘 画;平行投影中,与投影面平行的平面图形留下的影子,与这个平面图 形的形状和大小完全相同.
返回导航
2.两面平行,其余各面都是平行四边形的几何体就 是棱柱吗?
提示:不是,其余各面中相邻两面的公共边不一定都平行,如图几何 体就不是棱柱.
返回导航
D 解析:A 错误,如图(1),由两个结构相同的三棱锥叠放在一起构 成的几何体,各面都是三角形,但它不是三棱锥.
返回导航
B 错误,如图(2)(3),若△ABC 不是直角三角形或是直角三角形,但 旋转轴不是直角边所在直线,所得的几何体都不是圆锥.
C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形. 由几何图形知,若以正六边形为底面,则侧棱长必然要大于底面边长. D 正确.
返回导航
2.一个正方体的展开图如图所示,A,B,C,D 为原正方体的顶点, 则在原来的正方体中( )
(A)AB∥CD (C)AB⊥CD 答案:D
返回导航
(B)AB 与 CD 相交 (D)AB 与 CD 所成的角为 60°
3.下图中的几何体是由下面哪个平面图形旋转得到的( )
答案:A
返回导航
4.(2018 全国Ⅰ卷)某圆柱的高为 2,底面周长为 16,其三视图如 右图.
返回导航
第 1 节 空间几何体的结构、三视图和直观图
最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描 述现实生活中简单物体的结构. 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的 三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们 的直观图. 3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形 的不同表示形式. 4.会画某些建筑物的三视图和直观图(在不影响图形特征的基础上,尺寸 线条等不作严格要求)

高考数学一轮总复习第七章立体几何7_1简单几何体的结构三视图和直观图课件理新人教A版

高考数学一轮总复习第七章立体几何7_1简单几何体的结构三视图和直观图课件理新人教A版
图形改变
2.“三不变”平 与等 x轴性平不行变的线段长度不变 相对位置不变
跟踪训练 (1)若本例4条件不变,试求原图形的面积. 解析:原图为菱形,底边长为6,高为OD=4 2, ∴S=6×4 2=24 2(cm2).
(2)若本例4中直观图为如图所示的一个边长为1 cm的正方形,则原图形的周长是 多少?
(3)由正视图得该锥体的高是h= 22-12= 3,因为该锥体的体积为233,所以该
23 23
锥体的底面面积是S=
3 13h

3 3
=2,A项的正方形的面积是2×2=4,B项的圆的
3
面积是π×12=π,C项的大三角形的面积是
1 2
×2×2=2,D项不可能是该锥体的俯
视图,故选C.
[答案] (1)B (2)D (3)C
棱柱等的简单组合体)的三视图,能识别简单组合体 根据几何体的三视图求其
的三视图所表示的立体模型,会用斜二测画法画出它 体积与表面积.对空间几
们的直观图.
何体的结构特征、三视
3.会用平行投影方法画出简单空间图形的三视图与 图、直观图的考查,以选
直观图,了解空间图形的不同表示形式.
择题和填空题为主.
[基础梳理] 1.多面体的结构特征 (1)棱柱的侧棱都互相平行,上下底面是 全等 的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由 平行于底面 的平面截棱锥得到,其上下底面是相似多边形.
大小 是完全相同的; ②名称:三视图包括 正视图 、 侧视图 、 俯视图 .
(2)三视图的画法: ①在画三视图时,重叠的线只画一条,挡住的线要画成 虚线 . ②三视图的正视图、侧视图、俯视图分别是从几何体的 正前方、 正左方、

高考数学一轮复习第7章立体几何7.2空间几何体的表面积与体积课件文

高考数学一轮复习第7章立体几何7.2空间几何体的表面积与体积课件文

A.π2+1 B.π2+3 C.32π+1 D.32π+3
还原几何体,分清组合体构成部分.
解析 由几何体的三视图可知,该几何体是一个底面 半径为 1,高为 3 的圆锥的一半与一个底面为直角边长是 2 的等腰直角三角形,高为 3 的三棱锥的组合体,
∴该几何体的体积 V=13×π2×12×3+13×12× 2× 2×3=π2+1. 故选 A.
角度 2 根据几何体的直观图计算体积
典例 中国古代数学名著《九章算术》中记载:“今 有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.” 现有一个羡除如图所示,四边形 ABCD、ABFE、CDEF 均 为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10, EF 到平面 ABCD 的距离为 3,CD 与 AB 间的距离为 10,则这 个羡除的体积是( )
A.18+36 5 C.90
B.54+18 5 D.81
解析 由三视图可知,该几何体的底面是边长为 3 的 正方形,高为 6,侧棱长为 3 5的平行六面体,则该几何体 的表面积 S=2×32+2×3×3 5+2×3×6=54+18 5.故 选 B.
题型 2 空间几何体的体积 角度 1 根据几何体的三视图计算体积 典例 (2017·浙江高考)某几何体的三视图如图所示 (单位:cm),则该几何体的体积(单位:cm3)是( )
解析 由几何体的三视图可得该几何体的直观图如图 所示.该几何体由两个完全相同的长方体组合而成,其中 AB=BC=2 cm,BD=4 cm,所以该几何体的体积 V= 2×2×4×2=32 cm3,表面积 S=(2×2×3+2×4×3)×2 =36×2=72 cm2.
经典题型冲关
题型 1 空间几何体的侧面积与表面积 典例 (2016·全国卷Ⅱ)下图是由圆柱与圆锥组合而 成的几何体的三视图,则该几何体的表面积为( )

高考数学第七章立体几何第一节空间几何体的结构特征及表面积与体积课件

高考数学第七章立体几何第一节空间几何体的结构特征及表面积与体积课件

5.柱、锥、台、球的表面积和体积❻
几何体
名称
表面积
体积
柱体(棱柱和圆柱) S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥) S表面积=S侧+S底
V=13Sh
台体(棱台和圆台) S表面积=S侧+S上+S下
V=13(S上+S下+ S上S下)h

S=4πR2
V=43πR3
[熟记常用结论]
1.特殊的四棱柱
圆柱、圆锥、圆台的侧面积公式间的联系: S圆柱侧=2πrl―r―′―=―r→S圆台侧=π(r+r′)l―r′―― =→0 S圆锥侧=πrl.
4.圆柱、圆锥、圆台的侧面展开图及侧面积公式❺
圆柱
圆锥
圆台
侧面展 开图
侧面积 公式 S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
柱体、锥体、台体的体积公式间的联系: V柱体=Sh―S′――=→S V台体=13(S′+ S′S+S)hS―′―=→0V锥体=13Sh.
直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱
长一定相等.其中正确命题的个数是
A.0
B.1
C.2
D.3
( B)
解析:①错误,只有这两点的连线平行于轴时才是母线;②正
确;③错误,棱台的上、下底面是相似且对应边平行的多边形,
各侧棱延长线交于一点,但是侧棱长不一定相等.故正确命题
的个数是 1.
3.下列命题正确的是
四棱柱
底面为平 ―行―四―边―形→
平行六面体
侧棱垂直 ―于―底――面→
直平行六面体
底面为 ―矩―形→
长方体
底面边 ―长―相―等→
正四棱柱
侧棱与底面 ―边―长――相―等→

新高考数学一轮教师用书:第7章 第1节 空间几何体的结构及其表面积、体积

新高考数学一轮教师用书:第7章 第1节 空间几何体的结构及其表面积、体积
全国卷五年考情图解
高考命题规律把握 1.考查形式 高考在本章一般命制 2 道小题、1 道解答题,分值约 占 22 分. 2.考查内容 (1)小题主要考查三视图、几何体体积与表面积计算, 此类问题属于中档题目;对于球与棱柱、棱锥的切接 问题,知识点较整合,难度稍大. (2)解答题一般位于第 18 题或第 19 题的位置,常设计 两问:第(1)问重点考查线面位置关系的证明;第(2) 问重点考查空间⻆,尤其是二面⻆、线面⻆的计算.属 于中档题目. 3.备考策略 从 2019 年高考试题可以看出,高考对三视图的考查 有所降温;对空间几何体的展开、平面图形的折叠、 解题中的补体等传统几何思想有所加强.
轴的线段在直观图中保持原⻓度不变,平行于 y 轴的线段在直观图中⻓度为原来的
一半.
4.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式
S 圆柱侧=2πrl
S 圆锥侧=πrl
5.柱体、锥体、台体和球的表面积和体积
几何体
名称
表面积
S 圆台侧=π(r1+r2)l 体积
柱体(棱柱和圆柱)
(对应学生用书第 114 ⻚)
1.简单多面体的结构特征
(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形;
(2)棱锥的底面是任意多边形,侧面是有一个公共点的三⻆形;
(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上、下底面是相似多边形.
2.旋转体的形成
几何体
旋转图形
旋转轴
圆柱
矩形
任一边所在的直线
四边形,但不一定全等;(2)正确,若三棱锥的三条侧棱两两垂直,
则三个侧面构成的三个平面的二面⻆都是直二面⻆;(3)正确,因

2021届高考数学一轮温习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业

2021届高考数学一轮温习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业

第一节空间几何体的结构特征及三视图与直观图课时作业A组——基础对点练1.如图所示,四面体ABCD的四个极点是长方体的四个极点(长方体是虚拟图形,起辅助作用),则四面体ABCD的正视图、侧视图、俯视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为①;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为②;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为③,故选B.答案:B2.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A.8 B.43C.4 2 D.4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S=3×4=4 3.答案:B3.某几何体的三视图如图所示,则该几何体中最长的棱长为( )A.3 3 B.2 6C.21 D.2 5解析:由三视图得,该几何体是四棱锥P­ABCD,如图所示,ABCD为矩形,AB=2,BC=3,平面PAD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.答案:B4.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.答案:D5.已知某几何体的三视图如图所示,则该几何体的表面积是( )A .(25+35)πB .(25+317)πC .(29+35)πD .(29+317)π解析:由三视图可知该几何体的直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+2×π×2×4+4π×222=π+317π+16π+8π=(25+317)π,故选B.答案:B6.(2021·长沙模拟)某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,故选A. 答案:A7.(2021·石家庄市模拟)某几何体的三视图如图所示,则其体积为( )A.3π4B .π+24C.π+12D .3π+24解析:由几何体的三视图知,该几何体的一部份是以腰长为1的等腰直角三角形为底面,高为3的三棱锥,另一部份是底面半径为1,高为3的圆锥的四分之三.所以几何体的体积为13×3π4×3+13×12×1×1×3=3π4+12=3π+24,故选D. 答案:D8.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:由三视图恢复的几何体是一个长方体与半个圆柱的组合体,如图.其中长方体的长、宽、高别离是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积V 1=4×2×2=16, 半个圆柱的体积V 2=12×22×π×4=8π.∴这个几何体的体积是16+8π. 答案:A9.一个半径为2的球体通过切割以后所得几何体的三视图如图所示,则该几何体的表面积为( )A .16πB .12πC .14πD .17π解析:按照三视图可知几何体是一个球体切去四分之一,则该几何体的表面是四分之三球面和两个截面(半圆). 由题意知球的半径是2,∴该几何体的表面积S =34×4π×22+π×22=16π.答案:A10.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.72 m 3 B .92 m 3 C.73m 3 D .94m 3 解析:由三视图可知,几何体为如图所示的几何体,其体积为3个小正方体的体积加三棱柱的体积,所以V =3+12=72(m 3),故选A.答案:A11.球面上有A ,B ,C 三点,球心O 到平面ABC 的距离是球半径的13,且AB =22,AC ⊥BC ,则球O 的表面积是( ) A .81π B .9π C.81π4D .9π4解析:由题意可知,AB 为△ABC 的外接圆的直径,设球O 的半径为R ,则R 2=(R3)2+(2)2,可得R =32,则球的表面积S =4πR 2=9π.故选B.答案:B12.某几何体的三视图如图所示,则该几何体的体积为________.解析:将三视图还原成直观图,取得如图所示几何体,设BC 的中点为G ,连接AG ,DG ,△ABC 是一个边长为2的等边三角形,其高AG = 3.该几何体可以看成一个三棱锥与一个四棱锥组合而成.∴该几何体的体积V =V三棱锥D ­ABG+V四棱锥A ­DECG=13×S △ABG ×DG +13×S 四边形DECG×AG =13×12×1×3×2+13×2×1×3= 3.答案: 313.某空间几何体的三视图如图所示,则该几何体的体积为________.解析:由题意取得几何体的直观图如图,即从四棱锥P ABCD 中挖去了一个半圆锥.其体积V =13×2×2×2-12×13×π×12×2=8-π3.答案:8-π314.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm 的圆(包括圆心),则该零件的体积是________.解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为12×4π3×23-13×π×22×1=4π(cm 3).答案:4π cm 3B 组——能力提升练1.若三棱锥S ­ABC 的底面是以AB 为斜边的等腰直角三角形,AB =SA =SB =SC =2,则该三棱锥的外接球的表面积为( ) A.16π3B .8π3C.43π3D .4π3解析:在等腰直角三角形ABC 中,AB 是斜边且AB =2,取AB 的中点D ,连接CD ,SD .∴CD =AD =BD =1.又SA =SB =SC =2,∴SD ⊥AB ,且SD =3,在△SCD 中,SD 2+CD 2=SC 2,∴SD ⊥CD ,∴SD ⊥平面ABC .∴三棱锥S ­ABC 的外接球球心在SD 上,记为O ,设球半径为R ,连接OA ,则SO =OA =R ,∴在Rt △AOD 中,AD =1,OD =3-R ,AO =R ,∴12+(3-R )2=R 2⇒R =233,∴三棱锥S ­ABC 的外接球的表面积S =4πR 2=4π×(233)2=16π3.故选A.答案:A2.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.答案:D3.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45°,过圆柱的轴的平面截该几何体所得的四边形ABB ′A ′为矩形,若沿AA ′将其侧面剪开,其侧面展开图的形状大致为( )解析:过AB 作平行于底面的半平面α,如图,取截面边界上任一点P ,过P 作PP ′垂直于半平面α,垂足为P ′,延长PP ′交圆柱底面于点P 1,过P作PM ⊥AB ,垂足为M ,连接MP ′,则MP ′⊥AB ,∠PMP ′就是截面与底面所成的角,∠PMP ′=45°,设AB 的中点为O ,连接OP ′.设l AP ′=x ,则∠AOP ′=x1=x ,在Rt △PP ′M 中,PP ′=MP ′,在Rt △OP ′M 中,MP ′=OP ′sin∠MOP ′=sin x ,∴PP ′=sin x ,PP 1=AA ′+sin x ,故选A.答案:A4.如图是一个几何体的三视图,则该几何体任意两个极点间距离的最大值是( )A .4B .5C .3 2D .3 3解析:作出直观图如图所示,通过计算可知AF 最长且|AF |=|BF |2+|AB |2=3 3.答案:D5.高为4的直三棱柱被削去一部份后取得一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( ) A.34 B .14 C.12D .38解析:由侧视图、俯视图知该几何体是高为二、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C.答案:C6.(2021·昆明市检测)我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“幂”是截面面积,“势”是几何体的高.意思是:若两个等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现有一旋转体D (如图1所示),它是由抛物线y =x 2(x ≥0),直线y =4及y 轴围成的封锁图形绕y 轴旋转一周形成的几何体,旋转体D 的参照体的三视图如图2所示,利用祖暅原理,则旋转体D 的体积是( )A.16π3B .6πC .8πD .16π解析:由三视图知参照体是一个直三棱柱,其体积V =12×4×4×π=8π,故旋转体D 的体积为8π,故选C. 答案:C7.如图,某三棱锥的正视图、侧视图和俯视图别离是直角三角形、等腰三角形和等边三角形.若该三棱锥的极点都在同一个球面上,则该球的表面积为( )A .27πB .48πC .64πD .81π 解析:由三视图可知该几何体为三棱锥,该棱锥的高VA =4,棱锥底面ABC 是边长为6的等边三角形,作出直观图如图所示.因为△ABC 是边长为6的等边三角形,所之外接球的球心D 在底面ABC 上的投影为△ABC 的中心O ,过D 作DE ⊥VA 于E ,则E 为VA 的中点,连接OD ,OA ,DA ,则DE =OA=23×33=23,AE =12VA =2,DA 为外接球的半径,所以DA =DE 2+AE 2=4,所以外接球的表面积S =4πr 2=64π.故选C. 答案:C8.(2021·天津测试)若一个几何体的表面积和体积相同,则称这个几何体为“同积几何体”.已知某几何体为“同积几何体”,其三视图如图所示,则a =( )A.14+223B .8+223C.12+223D .8+2 2解析:按照几何体的三视图可知该几何体是一个四棱柱,如图所示,可得其体积为12(a +2a )·a ·a =32a 3,其表面积为12·(2a +a )·a ·2+a 2+a 2+2a ·a +2a ·a =7a 2+2a 2,所以7a 2+2a 2=32a 3,解得a =14+223,故选A.答案:A9.(2021·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高别离为22,22,4的长方体,则该长方体外接球的半径r =222+222+422=22,则所求外接球的表面积为4πr 2=32π.答案:C10.某几何体的三视图如图所示,则该几何体的表面积为( )A .18+2πB .20+πC .20+π2D .16+π 解析:由三视图可知,这个几何体是一个棱长为2的正方体割去了两个半径为一、高为1的14圆柱,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π,故选B. 答案:B11.(2021·南昌模拟)某四棱锥的三视图如图所示,则该四棱锥最长的一条侧棱的长度是________.解析:由题意可知该几何体是一个底面为直角梯形的四棱锥,梯形的两底边长别离为4,2,高为3,棱锥的高为2,所以最长侧棱的长度为22+32+42=29.答案:2912.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积别离为22,32,62,则该三棱锥外接球的表面积为________.解析:设彼此垂直的三条侧棱AB ,AC ,AD 别离为a ,b ,c ,则12ab =22,12bc =32,12ac =62,解得a =2,b =1,c = 3.所以三棱锥A BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π.答案:6π13.一个直三棱柱被削去一部份后的几何体ABCDE 及其侧视图、俯视图如图所示,其中侧视图是直角梯形,俯视图是等腰直角三角形.设M 是BD 的中点,点N 在棱DC 上,且MN ⊥平面BDE ,则CN =_____________________________.解析:由题意可得,DC ⊥平面ABC ,所以DC ⊥CB .若MN ⊥平面BDE ,则MN ⊥BD .又因为∠MDN =∠CDB ,所以△DMN ∽△DCB ,所以DN DB =DM DC ,故DN 26=64,解得DN =3,所以CN =CD -DN =1.答案:114.(2021·武汉市模拟)棱长均相等的四面体ABCD 的外接球半径为1,则该四面体的棱长为________.解析:将棱长均相等的四面体ABCD 补成正方体,设正方体的棱长为a ,则正四面体ABCD 的棱长为2a ,正方体的体对角线长为3a ,由3a =2⇒a =233,则2a =263. 答案:263。

2022届新教材高考数学一轮复习第7章7.1基本立体图形直观图表面积和体积课件新人教A版

2022届新教材高考数学一轮复习第7章7.1基本立体图形直观图表面积和体积课件新人教A版
体叫做棱锥
记作棱锥 S-ABCD 记作棱台 ABCD-A'B'C'D'
名称 棱柱
底面:两个互相平行
的面;
侧面:底面以外的其
相关 余各面;
概念 侧棱:相邻侧面的公
共边;
顶点:侧面与底面的
公共顶点
棱锥
棱台
底面:多边形面; 上底面:平行于原棱锥底
侧面:有公共顶
面的截面;
点的各个三角
下底面:原棱锥的底面;
④过任意两条母线
的截面是矩形
圆锥
①圆锥有无数条母线,
它们有公共点即圆锥
的顶点,且长度相等.
②平行于底面的截面
都是圆.
③过轴的截面是全等
的等腰三角形.
④过任意两条母线的
截面是等腰三角形
圆台
①圆台有无数条母
线,且长度相等,延
长后相交于一点.
②平行于底面的截
面是圆.
③过轴的截面是全
等的等腰梯形.
④过任意两条母线
2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建
S 圆锥侧=πrl
S 圆台侧=π(r1+r2)l
6.柱、锥、台、球的表面积与体积公式
几何体
表面积
柱体(棱柱和圆柱)
S 表面积=S 侧+2S 底
锥体(棱锥和圆锥)
台体(棱台和圆台)

体积
V= Sh
1
Sh
3
S 表面积=S 侧+S 底
V=
S 表面积=S 侧+S 上+S 下
1
V= (S
3
S= 4πR
2
V=
吗?
不一定,因为“其余各面都是平行四边形”并不等价于“相邻两个四边形的

高三数学一轮总复习第七章立体几何7.2空间几何体的表面积和体积课件

高三数学一轮总复习第七章立体几何7.2空间几何体的表面积和体积课件
第二节 空间几何体的表面积和体积
课前学案 基础诊断
课堂学案 考点通关
高考模拟 备考套餐
1
考 纲 了解球体、柱体、锥体、台体的表面积和体积的计算公式(不要求 导 学 记忆公式)。
2
课前学案 基础诊断
夯基固本 基础自测
3
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
□ □ □ S圆柱侧= 1 _2_π_r_l__ S圆锥侧= 2 _π_r_l _ S圆台侧= 3 _π_(r_+__r_′__)l
3 17 A. 2
B.2 10
13 C. 2
D.3 10
(2)若一个正四面体的表面积为S1,其内切球的表面积为S2,则SS12=__________。
解析:(1)如图,由球心作平面ABC的垂线,则垂足为BC的中点M。又AM=
1 2
BC
=52,OM=12AA1=6,所以球O的半径R=OA=
522+62=123。
1 2
+4×2×2=8π+
16,故选A。
答案:(1)A (2)A
20
►名师点拨 空间几何体体积问题的常见类型及解题策略 (1)求简单几何体的体积。若所给的几何体为柱体、锥体或台体,则可直接利用 公式求解。 (2)求组合体的体积。若所给定的几何体是组合体,不能直接利用公式求解,则 常用转换法、分割法、补形法等进行求解。 (3)求以三视图为背景的几何体的体积。应先根据三视图得到几何体的点拨 以三视图为载体的几何体的表面积问题的求法 (1)恰当分析给出的三视图。 (2)找准几何体中各元素间的位置关系及数量关系。 (3)注意组合体的表面积问题中重合部分的处理。
17
通关特训1 一个空间几何体的三视图及其相关数据如图所示,则这个空间几 何体的表面积是( )

推荐-高考数学一轮总复习第7章立体几何7.2空间几何体的表面积和体积课件理

推荐-高考数学一轮总复习第7章立体几何7.2空间几何体的表面积和体积课件理
(3)与各条棱都相切的球:球心是正方体中心;半径 r

2 2 a(a
为正方体的棱长).
3.正四面体的外接球与内切球(正四面体可以看作是正
方体的一部分)
(1)外接球:球心是正四面体的中心;半径
r=
6 4 a(a

正四面体的棱长);
(2)内切球:球心是正四面体的中心;半径
r=
6 12 a(a

正四面体的棱长).
2.求几何体体积时,要选择适当的底面和高.
满分策略
1.利用三视图求表面积和体积时,要正确地把它们还原 成直观图,从三视图中得到几何体的相关量,再计算.
2.求不规则的几何体的表面积和体积时,把它们分成基 本的简单几何体再求.
3.台体:V=_13_h_(_S_+___S_S_′ __+ __S_′ __)_ (S,S′分别为上、
下底面面积,h 为高), 特别地,V 圆台=_13_π_h_(_r2_+ __r_r_′__+__r′ __2_)_; 4.球:V=___43_π_R_3_____ (R 为半径).
[必会结论]
该不规则几何体的体积为(
)
A.4-π2 C.8-π
B.8-43π D.8-2π
[解析] 由祖暅原理可知,该不规则几何体的体积与已 知三视图的几何体体积相等.根据题设所给的三视图,可知 图中的几何体是从一个正方体中挖去一个半圆柱,正方体的
体积为 23=8,半圆柱的体积为12×(π×12)×2=π,因此该不 规则几何体的体积为 8-π,故选 C.
1.长方体的外接球 (1)球心:体对角线的交点; (2)半径:r= a2+2b2+c2(a,b,c 为长方体的长、宽、 高).
2.正方体的外接球、内切球及与各条棱相切的球

新教材高考数学一轮复习第7章立体几何第1节空间几何体及其表面积体积学案含解析新人教B版

新教材高考数学一轮复习第7章立体几何第1节空间几何体及其表面积体积学案含解析新人教B版

立体几何课程标准命题解读1.认识柱、锥、台、球及简单组合体的结构特征,知道球、棱柱、棱锥、棱台的表面积和体积的计算公式.2.了解空间中直线与直线、直线与平面、平面与平面的平行和垂直的关系,掌握有关判定定理和性质定理.3.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示.4.运用向量的方法研究空间基本图形的位置关系和度量关系.5.运用向量方法解决简单的数学问题和实际问题,感悟向量是研究几何问题的有效工具.考查形式:一般为两个客观题,一个解答题.考查内容:空间几何体的结构特征、体积与表面积的计算、空间点线面的位置关系,直线、平面的平行、垂直关系,及三种角(异面直线所成的角、线面角、二面角)的计算.备考策略:(1)了解几何体的结构特征,熟练应用体积、表面积公式.(2)重视对定理的记忆,注意对空间几何体的位置关系分析.(3)熟练掌握向量法解决立体几何问题.核心素养:直观想象、数学运算.第1节空间几何体及其表面积、体积一、教材概念·结论·性质重现1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(1)要掌握棱柱、棱锥各部分的结构特征,计算问题往往转化到三角形中进行解决.(2)台体可以看成是由锥体截得的,但一定要知道截面与底面平行.2.旋转体的结构特征名称圆柱圆锥圆台球图形母线平行、相等且垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环旋转体要抓住“旋转”这一特点,弄清底面、侧面及展开图的形状.3.空间几何体的直观图为了使直观图具有立体感,常使用斜二测画法来作直观图,其规则是:(1)“斜”:直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴(或重合)的线段,在直观图中保持原长度不变,平行于y轴(或重合)的线段,在直观图中长度为原来的一半,平行于z轴(或重合)的线段画长度不变.画直观图要注意平行、长度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l 表面积体积柱体(棱柱S表面积=S侧+2S底V=S底·h和圆柱) 锥体(棱锥 和圆锥) S 表面积=S 侧+S 底V =13S 底·h台体(棱台 和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解决.(2)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. (3)求几何体的体积时,要注意利用分割、补形与等积法. 6.常用结论(1)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.(2)几个与球有关的切、接常用结论 ①正方体的棱长为a ,球的半径为R , (ⅰ)若球为正方体的外接球,则2R =3a ; (ⅱ)若球为正方体的内切球,则2R =a ; (ⅲ)若球与正方体的各棱相切,则2R =2a .②若长方体的同一顶点处的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.③正四面体的外接球与内切球的半径之比为3∶1. 二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( × )(4)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( × ) (5)菱形的直观图仍是菱形.( × ) (6)锥体的体积等于底面积与高之积.( × )(7)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( √ ) 2.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分EB ′F -HC ′G ,其中EH ∥A ′D ′,则剩下的几何体是( )A .棱台B .四棱柱C .五棱柱D .简单组合体C 〖解 析〗由几何体的结构特征知,剩下的几何体为五棱柱. 3.下列说法不正确的是( ) A .棱柱的侧棱长都相等 B .棱锥的侧棱长都相等C .三棱台的上、下底面是相似三角形D .有的棱台的侧棱长都相等B 〖解 析〗根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.4.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cmD .32cmB 〖解 析〗因为S 表=πr 2+πrl =πr 2+πr ×2r =3πr 2=12π,所以r 2=4,所以r =2 cm. 5.利用斜二测画法得到的以下结论中,正确的是________.(填序号)①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆.①②④ 〖解 析〗①正确;由原图形中平行的线段在直观图中仍平行可知②正确;原图形中垂直的线段在直观图中可能不垂直,故③错;④正确.考点1 空间几何体的结构特征与直观图——基础性1.(多选题)下列命题中正确的是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC〖解析〗A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;D不正确,棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.2.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C′D′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形C〖解析〗如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD =C′D′=2 cm.所以OC=OD2+CD2=(42)2+22=6(cm).所以OA=OC.所以四边形OABC是菱形.3.下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确的是________.(填序号)③⑤〖解析〗若这条边是直角三角形的斜边,则得不到圆锥,故①错;若这条腰不是垂直于两底的腰,则得到的不是圆台,故②错;圆柱、圆锥、圆台的底面显然都是圆面,故③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,故④错;只有球满足任意截面都是圆面,故⑤正确.4.有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题是________.(填序号)①④〖解析〗命题①符合平行六面体的定义,故命题①是真命题的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是假命题;因为直四棱柱的底面不一定是平行四边形,故命题③是假命题;由棱台的定义知命题④是真命题.1.解决空间几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析.2.用斜二测画法画直观图的技巧在原图中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.考点2空间几何体的表面积和体积——综合性(1)在△ABC中,AC=2,BC=2,∠ACB=120°.若△ABC绕直线BC旋转一周,则所形成的几何体的表面积是()A.(6+23)πB.2πC.(9+23)πD.23πA〖解析〗△ABC绕直线BC旋转一周,所形成的几何体是一个大圆锥去掉一个小圆锥.因为AC=2,BC=2,∠ACB=120°,所以OA=3,AB=2 3.所以所形成的几何体的表面积是π×3×(2+23)=(6+23)π.故选A.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π〖解析〗圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′=OQ2-O′Q2=52-42=3.据此可得圆台的体积V=1π×3×(52+5×4+42)=61π.3(3)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高为1.8米,体积为0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米.若气体每立方米1 000元,则气体的费用最少为()A.4 500元B.4 000元C.2 880元D.2 380元B〖解析〗因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以底面正方形的边长为0.9+2×0.3=1.5(米).又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2米,所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米).因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元).故选B.空间几何体表面积、体积的求法(1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)体积可用公式法、转换法、分割法、补形法等求解.1.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6 2C.8 2 D.8 3C〖解析〗如图,连接AC1,BC1,AC.因为AB⊥平面BB1C1C,所以∠AC1B为直线AC1与平面BB1C1C所成的角,所以∠AC1B=30°.又AB=BC=2,=4;在Rt△ABC1中,AC1=2sin 30°在Rt△ACC1中,CC1=AC21-AC2=42-(22+22)=2 2.所以V长方体=AB×BC×CC1=2×2×22=8 2.2.(2020·全国卷Ⅱ)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A . 3B .32C .1D .32C 〖解 析〗设球O 的半径为R ,则4πR 2=16π,解得R =2. 设△ABC 外接圆的半径为r ,边长为a . 因为△ABC 是面积为934的等边三角形,所以12a 2×32=934,解得a =3.所以r =23×a 2-a 24=23×9-94= 3. 所以球心O 到平面ABC 的距离d =R 2-r 2=4-3=1.3.如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A .3B .4C .6D .12B 〖解 析〗因为S △BCD =12S 四边形ABCD ,CE =23CC 1,VABCD -A 1B 1C 1D 1=S 四边形ABCD ·CC 1=36,所以V E -BCD =13S △BCD ·CE =13×12S 四边形ABCD ·23CC 1=19×36=4.故选B.4.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.12 〖解 析〗设正六棱锥的高为h ,斜高为h ′.由题意,得13×6×12×2×3×h =23,所以h =1.所以斜高h ′=12+(3)2=2,所以S 侧=6×12×2×2=12.考点3 与球有关的切、接问题——应用性考向1“相接”问题(2019·全国卷Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.86πB.46πC.26π D.6πD〖解析〗(方法一)因为P A=PB=PC,△ABC是边长为2的等边三角形,所以P-ABC为正三棱锥,所以PB⊥AC.又E,F分别为P A,AB的中点,所以EF∥PB,所以EF⊥AC.又EF⊥CE,CE∩AC=C,所以EF⊥平面P AC,所以PB⊥平面P AC,所以∠APB=90°,所以P A=PB=PC=2,,所以P-ABC为正方体的一部分,2R=2+2+2=6,即R=62所以V=4πR3=43π×668=6π.3(方法二)设P A=PB=PC=2x.因为E,F分别为P A,AB的中点,所以EF∥PB,且EF=12PB=x.因为△ABC是边长为2的等边三角形,所以CF= 3.又∠CEF=90°,所以CE=3-x2,AE=12P A=x.在△AEC 中,由余弦定理, 得cos ∠EAC =x 2+4-(3-x 2)2×2×x .作PD ⊥AC 于点D ,因为P A =PC , 所以D 为AC 的中点. 所以cos ∠EAC =AD P A =12x .所以x 2+4-3+x 24x =12x ,解得x =22或x =-22(舍). 所以P A =PB =PC = 2.又AB =BC =AC =2,所以P A ,PB ,PC 两两垂直. 所以2R =2+2+2= 6.所以R =62. 所以V =43πR 3=43π×668=6π.在三棱锥P -ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A .4π3B .4πC .8πD .20πC 〖解 析〗由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球.因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =P A2=1.所以外接球的半径R =r 2+d 2= 2.所以三棱锥外接球的表面积S =4πR 2=8π.处理“相接”问题,要抓住空间几何体“外接”的特点,即球心到多面体的顶点的距离等于球的半径.考向2 “相切”问题已知正四面体P -ABC 的表面积为S 1,此四面体的内切球的表面积为S 2.所以S 1S 2=________.63π 〖解 析〗设正四面体的棱长为a ,则正四面体的表面积为S 1=4×34×a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.本例中若把“正四面体”改为“棱长为4的正方体”,则此正方体外接球的体积为________,内切球的体积为________.323π32π3〖解 析〗由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.处理“相切”问题,要找准切点,通过作截面来解决,注意截面过球心.1.在三棱锥P -ABC 中,P A =PB =PC =2,AB =AC =1,BC =3,则该三棱锥的外接球的表面积为( )A .8πB .163πC .43πD .32327πB 〖解 析〗如图,过点P 作PG ⊥平面ABC ,垂足为G ,由P A =PB =PC =2,知G 为三角形ABC 的外心.在△ABC 中,由AB =AC =1,BC =3,可得∠BAC =120°. 由正弦定理可得3sin 120°=2AG ,即AG =1,所以PG =P A 2-AG 2= 3.取P A 中点H ,作HO ⊥P A 交PG 于点O ,则点O 为该三棱锥外接球的球心. 由△PHO ∽△PGA ,可得PH PO =PG P A ,则PO =PH ·P A PG =1×23=233,即该棱锥外接球的半径为233.所以该三棱锥外接球的表面积为4π×⎝⎛⎭⎫2332=16π3.故选B.2.(2020·全国卷Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为2π2.如图,已知多面体ABC -DEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为________.〖四字程序〗读想算思多面体的体积? 平面ABC ∥平面DEFG , 平面BEF ∥平面ADGC ,AB =AD =DG =2, AC =EF =1多面体的体积公式,不规则几何体的体积求法将不规则几何体的体积用规则几何体的体积表示转化与化归, 三棱柱的体积公式,正方体的体积公式思路参考:分割几何体,转化为三棱柱的体积.4 〖解 析〗因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于点H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =⎝⎛⎭⎫12×2×1×2=2,V 三棱柱BEF -CHG =S △BEF ·DE =⎝⎛⎭⎫12×2×1×2=2.故所求几何体的体积为V 多面体ABC -DEFG =2+2=4.思路参考:将几何补成正方体.4 〖解 析〗因为几何体有两对相对面互相平行,如图所示,可将多面体补成棱长为2的正方体.显然所求多面体的体积为该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8,故所求几何体的体积为V 多面体ABC -DEFG =12×8=4.思路参考:将几何体分割成棱柱、三棱锥与四棱锥.4 〖解 析〗取DG 中点M ,连接CM ,AM ,FM ,则这个多面体的体积可以表示为棱柱BEF -ADM 与三棱锥C -FMG 及四棱锥C -ABFM 的和.V BEF -ADM =S △BEF ·AB =2,V C -FMG =13×S △CMG ·MF =23,V C -ABFM =43,所以V 多面体ABC -DEFG =2+23+43=4.1.本题考查不规则几何体的体积求解问题,基本的解题策略是将不规则几何体通过“分割”或“补形”的方法转化为规则简单几何体的体积,利用体积公式求解.2.解答本题需要熟练掌握读图能力、运算求解能力,体现了空间想象、数学运算的核心素养,试题的解答过程展现了数学思维的魅力.3.通过对不规则几何体的割补,将问题转化为熟悉的规则几何体求解的模型,规则几何体的体积公式体现基础性,问题的转化过程体现综合性.如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.求此几何体的体积.解:(方法一)如图,取CM =AN =BD ,连接DM ,MN ,DN ,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.所以V 几何体=V 三棱柱+V 四棱锥.由题意知三棱柱ABC -NDM 的体积为V 1=12×8×6×3=72.四棱锥D -MNEF 的体积为V 2=13×S 梯形MNEF ·DN =13×12×(1+2)×6×8=24.所以几何体的体积V =V 1+V 2=72+24=96.(方法二)用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.。

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何全国卷五年考情图解高考命题规律把握1.考查形式高考在本章一般命制2道小题、1道解答题,分值约占22分.2.考查内容(1)小题主要考查三视图、几何体体积与表面积计算,此类问题属于中档题目;对于球与棱柱、棱锥的切接问题,知识点较整合,难度稍大.(2)解答题一般位于第18题或第19题的位置,常设计两问:第(1)问重点考查线面位置关系的证明;第(2)问重点考查空间角,尤其是二面角、线面角的计算.属于中档题目.空间几何体的结构及其表面积、体积〖考试要求〗 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面长度相等且相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等直观图斜二测画法:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度为原来的一半.5.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l6.柱体、锥体、台体和球的表面积和体积名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[常用结论]1.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系: S 直观图=24S 原图形,S 原图形=22S 直观图. 2.多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =a 2,外接球半径R =32a .(2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R =a 2+b 2+c 22. (3)设正四面体的棱长为a ,则它的高为H =63a ,内切球半径r =14H =612a ,外接球半径R =34H =64a .一、易错易误辨析(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. ( ) (3)菱形的直观图仍是菱形.( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( )〖答案〗 (1)× (2)× (3)× (4)× 二、教材习题衍生1.如图所示,长方体ABCD -A ′B ′C ′D ′中被截去一部分,其中EH ∥A ′D ′,则剩下的几何体是( )A .棱台B .四棱柱C .五棱柱D .简单组合体C 〖由几何体的结构特征知,剩下的几何体为五棱柱.〗2.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .323π C .8π D .4πA 〖由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A .〗3.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cmD .32cmB 〖S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4, ∴r =2(cm).〗4.已知某几何体的三视图如图所示,则该几何体的体积为 .163π 〖由三视图可知,该几何体是一个圆柱挖去了一个同底等高的圆锥,其体积为π×22×2-13π×22×2=163π.〗考点一 空间几何体的三视图、直观图和展开图1.三视图画法的基本原则长对正,高平齐,宽相等;画图时看不到的线画成虚线. 2.由三视图还原几何体的步骤3.直观图画法的规则:斜二测画法.4.通常利用空间几何体的表面展开图解决以下问题:(1)求几何体的表面积或侧面积;(2)求几何体表面上任意两个点的最短表面距离.三视图〖典例1-1〗 (1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A B C D(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()A B C D(3)(2020·全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H(1)A(2)C(3)A〖(1)由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.(2)过点A,E,C1的截面如图所示,由图可知该剩余几何体的侧视图为C.(3)由三视图知,该几何体是由两个长方体组合而成的,其直观图如图所示,由图知该端点在侧视图中对应的点为E,故选A.〗点评:画三视图时,可先找出各个顶点在投影面上的投影,然后再确定连线在投影面上的虚实.直观图〖典例1-2〗已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2D〖法一:如图①②所示的实际图形和直观图,由图②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.法二:S△ABC=12×a×a sin 60°=34a2,又S直观图=24S原图=24×34a2=616a2.故选D.〗点评:直观图的面积问题常常有两种解法:一是利用斜二测画法求解,注意“斜”及“二测”的含义;二是直接套用等量关系:S直观图=24S原图形.展开图〖典例1-3〗如图,在直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1=3,F为棱AA1上的一动点,则当BF+FC1最小时,△BFC1的面积为.152〖将直三棱柱ABC-A1B1C1沿棱AA1展开成平面,连接BC1(图略),与AA1的交点即为满足BF+FC1最小时的点F,∵直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1=3,再结合棱柱的性质,可得A 1F =13AA 1=1,故AF =2.由图形及棱柱的性质,可得BF =4+4=22,FC 1=1+1=2,BC 1=3+9=23,cos ∠BFC 1=BF 2+FC 21-BC 212×BF ×FC 1=8+2-122×22×2=-14.故sin ∠BFC 1=1-116=154, ∴△BFC 1的面积为 S =12×BF ×FC 1×sin ∠BFC 1 =12×22×2×154=152.〗 点评:本题在探求BF +FC 1最小时,采用了化曲为直的策略,将空间问题平面化,在解决空间折线段最短问题时可适当考虑其展开图.[跟进训练]1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2B 〖先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图1所示.图1 图2圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图2所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.故选B.〗2.某几何体的正视图和侧视图如图①所示,它的俯视图的直观图是矩形O1A1B1C1,如图②,其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.128C〖由题意可知俯视图的直观图面积为2×6=12,故俯视图的面积为24 2.又由三视图可知该几何体为直四棱柱,且高为4,底面为边长为6的菱形.所以几何体的侧面积为6×4×4=96.故选C.〗考点二空间几何体的表面积与体积1.空间几何体表面积的求法(1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量.2.空间几何体体积问题的常见类型及解题策略(1)直接利用公式进行求解.(2)用转换法、分割法、补形法等方法进行求解.(3)以三视图的形式给出的应先得到几何体的直观图.空间几何体的表面积〖典例2-1〗(1)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.48+π B.48-πC.48+2π D.48-2π(2)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122π B.12π C.82π D.10π(3)(2020·全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64π B.48π C.36π D.32π(1)A(2)B(3)A〖(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.(3)如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,=2r,解得AB=23,故OO1=23,所以R2解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.〗点评:解答本题T(1)时易误认为几何体的上底面不存在,导致计算错误.空间几何体的体积求空间几何体的体积的常用方法〖典例2-2〗 (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A .3B .32C .1D .32(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(3)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为 .(1)C (2)B (3)13 〖(1)(直接法)如题图,在正三角形ABC 中,D 为BC 中点,则有AD =32AB =3, 又∵平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,(2)法一(分割法):由题意知,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 1=π×32×4=36π.上半部分是一个底面半径为3,高为6的圆柱的一半, 其体积V 2=12×π×32×6=27π.所以该组合体的体积V =V 1+V 2=36π+27π=63π.法二(补形法):由题意知,该几何体是一圆柱被一平面截去一部分后所得的几何体,在该几何体上方再补上一个与其相同的几何体,让截面重合,则所得几何体为一个圆柱,故圆柱的底面半径为3,高为10+4=14,该圆柱的体积V 1=π×32×14=126π.故该几何体的体积为圆柱体积的一半, 即V =12V 1=63π.法三(估值法):由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π<V 几何体<90π.观察选项可知只有63π符合.(3)(等体积法)如图,∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,∴S △ANM =12×1×1=12,∴V A -NMD 1=V D 1-AMN =13×12×2=13.〗 点评:处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法; (3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.[跟进训练]1.(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324B 〖由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为⎝ ⎛⎭⎪⎫2+62×3+4+62×3×6=162.故选B .〗 2.若正四棱锥的底面边长和高都为2,则其表面积为 .4+45 〖如图.由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=45,∴S 表=2×2+45=4+4 5.〗考点三 与球有关的切、接问题与球有关的切、接问题的解法(1)旋转体的外接球:常用的解题方法是过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)多面体的外接球:常用的解题方法是将多面体还原到正方体和长方体中再去求解. ①若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体,利用2R =a 2+b 2+c 2求R .②一条侧棱垂直底面的三棱锥问题:可补形成直三棱柱.先借助几何体的几何特征确定球心位置,然后把半径放在直角三角形中求解.〖典例3〗 (1)(2020·全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .(2)(2020·福建十校联考)已知三棱锥P -ABC 的三条侧棱两两互相垂直,且AB =5,BC =7,AC =2,则此三棱锥的外接球的体积为( )A .83πB .823πC .163πD .323π(3)已知直三棱柱ABC -A 1B 1C 1的各顶点都在以O 为球心的球面上,且∠BAC =3π4,AA 1=BC =2,则球O 的体积为( )A .43πB .8πC .12πD .20π (1)23π (2)B (3)A 〖(1)易知半径最大的球即为该圆锥的内切球.圆锥PE 及其内切球O 如图所示,设内切球的半径为R ,则sin ∠BPE =R OP =BE PB =13,所以OP =3R ,所以PE =4R=PB 2-BE 2=32-12=22,所以R =22,所以内切球的体积V =43πR 3=23π,即该圆锥内半径最大的球的体积为23π.(2)∵AB =5,BC =7,AC =2,∴P A =1,PC =3,PB =2.以P A ,PB ,PC 为过同一顶点的三条棱,作长方体如图所示,则长方体的外接球同时也是三棱锥P -ABC 的外接球. ∵长方体的体对角线长为1+3+4=22, ∴球的直径为22,半径R =2,因此,三棱锥P -ABC 外接球的体积是43πR 3=43π×(2)3=823π.故选B .(3)在底面△ABC 中,由正弦定理得底面△ABC 所在的截面圆的半径为r =BC2sin ∠BAC =22sin3π4=2,则直三棱柱ABC -A 1B 1C 1的外接球的半径为R =r 2+⎝⎛⎭⎫AA 122=(2)2+12=3,则直三棱柱ABC -A 1B 1C 1的外接球的体积为43πR 3=43π.故选A .〗〖母题变迁〗1.若将本例(3)的条件“∠BAC =3π4,AA 1=BC =2”换为“AB =3,AC =4,AB ⊥AC ,AA 1=12”,则球O 的半径为 .132〖如图所示,过球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径 R =OA =⎝⎛⎭⎫522+62=132.〗2.若将本例(3)的条件改为“正四面体的各顶点都在以O 为球心的球面上”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为 .63π 〖设正四面体棱长为a ,则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.〗 3.若将本例(3)的条件改为“侧棱和底面边长都是32的正四棱锥的各顶点都在以O 为球心的球面上”,则其外接球的半径为 .3 〖依题意,得该正四棱锥底面对角线的长为32×2=6,高为(32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.〗点评:通过本例(3)及母题变迁训练,我们可以看出构造法、补形法等是处理“外接”问题的主要方法,其关键是找到球心,借助勾股定理求球的半径.(1)锥体的外接球问题,解决这类问题的关键是抓住外接球的特点,即球心到各个顶点的距离等于球的半径.(2)柱体的外接球问题,其解题关键在于确定球心在多面体中的位置,找到球的半径或直径与多面体相关元素之间的关系,结合原有多面体的特性求出球的半径,然后再利用球的表面积和体积公式进行正确计算.[跟进训练]1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .543 B 〖由等边△ABC 的面积为93, 可得34AB 2=93,所以AB =6, 所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.〗2.(2020·南宁模拟)已知三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,则三棱锥P -ABC 的外接球的体积为( )A .27π2B .273π2C .273πD .27πB 〖∵三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,∴△P AB ≌△PBC ≌△P AC . ∵P A ⊥PB ,∴P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.∵正方体的体对角线长为32+32+32=33,∴其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=273π2.〗核心素养5 用数学眼光观察世界——巧解简单几何体的外接球与内切球问题简单几何体外接球与内切球问题是立体几何中的难点,也是历年高考重要的考点,几乎每年都要考查,重在考查考生的直观想象能力和逻辑推理能力.此类问题实质是解决球的半径长或确定球心O 的位置问题,其中球心的确定是关键. 下面从六个方面分类阐述该类问题的求解策略.利用长方体的体对角线探索外接球半径[素养案例1] 已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6πC 〖连接BC (图略),由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.〗 〖评析〗 若几何体存在三条两两垂直的线段或者三条线有两条垂直,可构造墙角模型(如下图),直接用公式(2R )2=a 2+b 2+c 2求出R .[素养培优](2020·河北重点中学6月联考)阿基米德是伟大的古希腊数学家,他和高斯、牛顿并称为世界三大数学家.他的一个重要数学成就是“圆柱容球”定理,即在带盖子的圆柱形容器(容器的厚度忽略不计)里放一个球,该球与圆柱形容器的两个底面和侧面都相切,则球的体积是圆柱形容器的容积的23,并且球的表面积也是圆柱形容器的表面积的23.则该圆柱形容器的容积与它的外接球的体积之比为( )A .328B .24C .23D .23A 〖设容器里所放球的半径为R ,则圆柱形容器的底面半径为R ,设圆柱形容器的高为h ,由题意知h =2R ,圆柱形容器的外接球的半径为⎝⎛⎭⎫2R 22+R 2=2R . 圆柱形容器的容积V =πR 2·2R =2πR 3, V 外接球=43π(2R )3=823πR 3,所以V V 外接球=2πR 3823πR 3=328,故选A .〗利用长方体的面对角线探索外接球半径[素养案例2] 三棱锥S -ABC 中,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为 .14π 〖如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC=AB=a2+b2=10,SA=BC=b2+c2=13,SB=AC=a2+c2= 5.从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.〗〖评析〗三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径.[素养培优](2019·全国卷Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC 是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.86π B.46π C.26π D.6πD〖因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎫623=6π,故选D.〗利用底面三角形与侧面三角形的外心探索球心[素养案例3] 平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD .若四面体A ′BCD 的顶点在同一球面上,则该球的体积为( )A .32π B .3π C .23π D .2π A 〖如图,设BD ,BC 的中点分别为E ,F .因点F 为底面直角△BCD 的外心,知三棱锥A ′­BCD 的外接球球心必在过点F 且与平面BCD 垂直的直线l 1上.又点E 为底面直角△A ′BD 的外心,知外接球球心必在过点E 且与平面A ′BD 垂直的直线l 2上.因而球心为l 1与l 2的交点.又FE ∥CD ,CD ⊥BD 知FE ⊥平面A ′BD .从而可知球心为点F .又A ′B =A ′D =1,CD =1知BD =2,球半径R =FD =BC 2=32.故V =43π⎝⎛⎭⎫323=32π.〗〖评析〗 三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径.[素养培优](2020·广州模拟)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A .23πB .234πC .64πD .643πD 〖如图,设O ′为正△P AC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面P AC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.〗利用直棱柱上下底面外接圆圆心的连线确定球心[素养案例4] 一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .4π3 〖设正六棱柱底面边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则a =12,底面积为S =6·34·⎝⎛⎭⎫122=338,V柱=Sh =338h =98,∴h =3,R 2=⎝⎛⎭⎫322+⎝⎛⎭⎫122=1,R =1,球的体积为V =4π3.〗〖评析〗 直棱柱的外接球、圆柱的外接球模型如图:其外接球球心就是上下底面外接圆圆心连线的中点. [素养培优](2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4B 〖设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B .〗锥体的内切球问题(1)题设:如图①,三棱锥P -ABC 是正三棱锥,求其内切球的半径.图①第一步:先画出内切球的截面图,E ,H 分别是两个三角形的外心; 第二步:求DH =13CD ,PO =PH -r ,PD 是侧面△ABP 的高;第三步:由△POE ∽△PDH ,建立等式:OE DH =POPD,解出r .(2)题设:如图②,四棱锥P -ABCD 是正四棱锥,求其内切球的半径.图②第一步:先画出内切球的截面图,P ,O ,H 三点共线; 第二步:求FH =12BC ,PO =PH -r ,PF 是侧面△PCD 的高;第三步:由△POG ∽△PFH ,建立等式:OG HF =POPF ,解出r .(3)题设:三棱锥P -ABC 是任意三棱锥,求其内切球半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -P AB +V O -P AC +V O -PBC ⇒V P -ABC=13S △ABC ·r +13S △P AB ·r +13S △P AC ·r +13S △PBC ·r =13(S △ABC +S △P AB +S △P AC +S △PBC )·r ; 第三步:解出r =3V P -ABC S △ABC +S △P AB +S △P AC +S △PBC.[素养案例5] (1)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π(2)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,P A =PC =2m ,若在这个四棱锥内放一个球,则此球的最大半径是 .(1)B (2)12(2-2)m 〖(1)半径为3,圆心角为2π3的扇形弧长为2π,故其围成的圆锥母线长为3,底面圆周长为2π,得其底面半径为1,如图,MB =1,AB =3, ∴AM =22,由相似可得ON MB =AOAB ,得ON =22, ∴S 球=4π×12=2π.故选B .(2)由PD ⊥底面ABCD 得PD ⊥AD .又PD =m ,P A =2m ,则AD =m .设内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V P -ABCD =V O -ABCD +V O -P AD +V O -P AB +V O -PBC +V O -PCD ,即13·m 2·m =13m 2R +13×12m 2R +13×12×2m 2·R +13×12×2m 2·R +13×12m 2R ,解得R =12(2-2)m ,所以此球的最大半径是12(2-2)m .〗〖评析〗 结合本题(2)的条件,采用体积分割法求解本题,即利用体积相等建立等量关系.[素养培优]有一个倒圆锥形容器,它的轴截面是顶角的余弦值为12的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为 .315r 〖如图,作出轴截面,因为轴截面是顶角的余弦值为12的等腰三角形,所以顶角为π3,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π(3r )2·3r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝⎛⎭⎫33h 2h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .〗柱体的内切球问题[素养案例6] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3B 〖由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V ma x =43π⎝⎛⎭⎫323=92π.故选B .〗〖评析〗 解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题. [素养培优]体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为 .63 〖设球的半径为R ,由4π3R 3=4π3,得R =1,所以正三棱柱的高h =2.设底面边长为a ,则13×32a =1,所以a =2 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章立体几何全国卷五年考情图解高考命题规律把握1.考查形式高考在本章一般命制2道小题、1道解答题,分值约占22分.2.考查内容(1)小题主要考查三视图、几何体体积与表面积计算,此类问题属于中档题目;对于球与棱柱、棱锥的切接问题,知识点较整合,难度稍大.(2)解答题一般位于第18题或第19题的位置,常设计两问:第(1)问重点考查线面位置关系的证明;第(2)问重点考查空间角,尤其是二面角、线面角的计算.属于中档题目.空间几何体的结构及其表面积、体积[考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面长度相等且相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等直观图斜二测画法:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度为原来的一半.5.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[常用结论]1.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系: S 直观图=24S 原图形,S 原图形=22S 直观图. 2.多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =a 2,外接球半径R =32a .(2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R =a 2+b 2+c 22.(3)设正四面体的棱长为a ,则它的高为H =63a ,内切球半径r =14H =612a ,外接球半径R =34H =64a .一、易错易误辨析(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. ( ) (3)菱形的直观图仍是菱形.( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( )[答案] (1)× (2)× (3)× (4)× 二、教材习题衍生1.如图所示,长方体ABCD -A ′B ′C ′D ′中被截去一部分,其中EH ∥A ′D ′,则剩下的几何体是( )A .棱台B .四棱柱C .五棱柱D .简单组合体C [由几何体的结构特征知,剩下的几何体为五棱柱.]2.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .323π C .8π D .4πA [由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A .]3.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cmD .32cmB [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4, ∴r =2(cm).]4.已知某几何体的三视图如图所示,则该几何体的体积为 .163π [由三视图可知,该几何体是一个圆柱挖去了一个同底等高的圆锥,其体积为π×22×2-13π×22×2=163π.]考点一 空间几何体的三视图、直观图和展开图1.三视图画法的基本原则长对正,高平齐,宽相等;画图时看不到的线画成虚线. 2.由三视图还原几何体的步骤3.直观图画法的规则:斜二测画法.4.通常利用空间几何体的表面展开图解决以下问题:(1)求几何体的表面积或侧面积;(2)求几何体表面上任意两个点的最短表面距离.三视图[典例1-1] (1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A B C D(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()A B C D(3)(2020·全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H(1)A(2)C(3)A[(1)由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.(2)过点A,E,C1的截面如图所示,由图可知该剩余几何体的侧视图为C.(3)由三视图知,该几何体是由两个长方体组合而成的,其直观图如图所示,由图知该端点在侧视图中对应的点为E,故选A.]点评:画三视图时,可先找出各个顶点在投影面上的投影,然后再确定连线在投影面上的虚实.直观图[典例1-2]已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2D[法一:如图①②所示的实际图形和直观图,由图②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.法二:S△ABC=12×a×a sin 60°=34a2,又S直观图=24S原图=24×34a2=616a2.故选D.]点评:直观图的面积问题常常有两种解法:一是利用斜二测画法求解,注意“斜”及“二测”的含义;二是直接套用等量关系:S直观图=24S原图形.展开图[典例1-3]如图,在直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1=3,F 为棱AA1上的一动点,则当BF+FC1最小时,△BFC1的面积为.152[将直三棱柱ABC-A1B1C1沿棱AA1展开成平面,连接BC1(图略),与AA1的交点即为满足BF+FC1最小时的点F,∵直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1=3,再结合棱柱的性质,可得A 1F =13AA 1=1,故AF =2.由图形及棱柱的性质,可得BF =4+4=22,FC 1=1+1=2,BC 1=3+9=23,cos ∠BFC 1=BF 2+FC 21-BC 212×BF ×FC 1=8+2-122×22×2=-14.故sin ∠BFC 1=1-116=154, ∴△BFC 1的面积为 S =12×BF ×FC 1×sin ∠BFC 1 =12×22×2×154=152.] 点评:本题在探求BF +FC 1最小时,采用了化曲为直的策略,将空间问题平面化,在解决空间折线段最短问题时可适当考虑其展开图.[跟进训练]1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2B [先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图1所示.图1 图2圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图2所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.故选B.]2.某几何体的正视图和侧视图如图①所示,它的俯视图的直观图是矩形O1A1B1C1,如图②,其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.128C[由题意可知俯视图的直观图面积为2×6=12,故俯视图的面积为24 2.又由三视图可知该几何体为直四棱柱,且高为4,底面为边长为6的菱形.所以几何体的侧面积为6×4×4=96.故选C.]考点二空间几何体的表面积与体积1.空间几何体表面积的求法(1)旋转体的表面积问题注意其侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量.2.空间几何体体积问题的常见类型及解题策略(1)直接利用公式进行求解.(2)用转换法、分割法、补形法等方法进行求解.(3)以三视图的形式给出的应先得到几何体的直观图.空间几何体的表面积[典例2-1](1)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.48+π B.48-πC.48+2π D.48-2π(2)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122π B.12π C.82π D.10π(3)(2020·全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64π B.48π C.36π D.32π(1)A(2)B(3)A[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.(3)如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,解得r=2,又AB=BC=AC=OO1,所以ABsin 60°=2r,解得AB=23,故OO1=23,所以R2=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.]点评:解答本题T(1)时易误认为几何体的上底面不存在,导致计算错误.空间几何体的体积求空间几何体的体积的常用方法[典例2-2] (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A .3B .32C .1D .32(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(3)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为 .(1)C (2)B (3)13 [(1)(直接法)如题图,在正三角形ABC 中,D 为BC 中点,则有AD =32AB =3, 又∵平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,(2)法一(分割法):由题意知,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 1=π×32×4=36π.上半部分是一个底面半径为3,高为6的圆柱的一半, 其体积V 2=12×π×32×6=27π.所以该组合体的体积V =V 1+V 2=36π+27π=63π.法二(补形法):由题意知,该几何体是一圆柱被一平面截去一部分后所得的几何体,在该几何体上方再补上一个与其相同的几何体,让截面重合,则所得几何体为一个圆柱,故圆柱的底面半径为3,高为10+4=14,该圆柱的体积V 1=π×32×14=126π.故该几何体的体积为圆柱体积的一半, 即V =12V 1=63π.法三(估值法):由题意,知12V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π<V 几何体<90π.观察选项可知只有63π符合.(3)(等体积法)如图,∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,∴S △ANM =12×1×1=12,∴V A -NMD 1=V D 1-AMN =13×12×2=13.] 点评:处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法; (3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.[跟进训练]1.(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324B [由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为⎝ ⎛⎭⎪⎫2+62×3+4+62×3×6=162.故选B .] 2.若正四棱锥的底面边长和高都为2,则其表面积为 .4+45 [如图.由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=45,∴S 表=2×2+45=4+4 5.]考点三 与球有关的切、接问题与球有关的切、接问题的解法(1)旋转体的外接球:常用的解题方法是过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)多面体的外接球:常用的解题方法是将多面体还原到正方体和长方体中再去求解. ①若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体,利用2R =a 2+b 2+c 2求R .②一条侧棱垂直底面的三棱锥问题:可补形成直三棱柱.先借助几何体的几何特征确定球心位置,然后把半径放在直角三角形中求解.[典例3] (1)(2020·全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .(2)(2020·福建十校联考)已知三棱锥P -ABC 的三条侧棱两两互相垂直,且AB =5,BC =7,AC =2,则此三棱锥的外接球的体积为( )A .83πB .823πC .163πD .323π(3)已知直三棱柱ABC -A 1B 1C 1的各顶点都在以O 为球心的球面上,且∠BAC =3π4,AA 1=BC =2,则球O 的体积为( )A .43πB .8πC .12πD .20π (1)23π (2)B (3)A [(1)易知半径最大的球即为该圆锥的内切球.圆锥PE 及其内切球O 如图所示,设内切球的半径为R ,则sin ∠BPE =R OP =BE PB =13,所以OP =3R ,所以PE =4R=PB 2-BE 2=32-12=22,所以R =22,所以内切球的体积V =43πR 3=23π,即该圆锥内半径最大的球的体积为23π.(2)∵AB =5,BC =7,AC =2,∴P A =1,PC =3,PB =2.以P A ,PB ,PC 为过同一顶点的三条棱,作长方体如图所示,则长方体的外接球同时也是三棱锥P -ABC 的外接球. ∵长方体的体对角线长为1+3+4=22, ∴球的直径为22,半径R =2,因此,三棱锥P -ABC 外接球的体积是43πR 3=43π×(2)3=823π.故选B .(3)在底面△ABC 中,由正弦定理得底面△ABC 所在的截面圆的半径为r =BC2sin ∠BAC =22sin3π4=2,则直三棱柱ABC -A 1B 1C 1的外接球的半径为R =r 2+⎝⎛⎭⎫AA 122=(2)2+12=3,则直三棱柱ABC -A 1B 1C 1的外接球的体积为43πR 3=43π.故选A .][母题变迁]1.若将本例(3)的条件“∠BAC =3π4,AA 1=BC =2”换为“AB =3,AC =4,AB ⊥AC ,AA 1=12”,则球O 的半径为 .132[如图所示,过球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.]2.若将本例(3)的条件改为“正四面体的各顶点都在以O 为球心的球面上”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为 .63π [设正四面体棱长为a ,则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.] 3.若将本例(3)的条件改为“侧棱和底面边长都是32的正四棱锥的各顶点都在以O 为球心的球面上”,则其外接球的半径为 .3 [依题意,得该正四棱锥底面对角线的长为32×2=6,高为(32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.]点评:通过本例(3)及母题变迁训练,我们可以看出构造法、补形法等是处理“外接”问题的主要方法,其关键是找到球心,借助勾股定理求球的半径.(1)锥体的外接球问题,解决这类问题的关键是抓住外接球的特点,即球心到各个顶点的距离等于球的半径.(2)柱体的外接球问题,其解题关键在于确定球心在多面体中的位置,找到球的半径或直径与多面体相关元素之间的关系,结合原有多面体的特性求出球的半径,然后再利用球的表面积和体积公式进行正确计算.[跟进训练]1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .543 B [由等边△ABC 的面积为93, 可得34AB 2=93,所以AB =6, 所以等边△ABC 的外接圆的半径为r =33AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.]2.(2020·南宁模拟)已知三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,则三棱锥P -ABC 的外接球的体积为( )A .27π2B .273π2C .273πD .27πB [∵三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,∴△P AB ≌△PBC ≌△P AC . ∵P A ⊥PB ,∴P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.∵正方体的体对角线长为32+32+32=33,∴其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=273π2.]核心素养5 用数学眼光观察世界——巧解简单几何体的外接球与内切球问题简单几何体外接球与内切球问题是立体几何中的难点,也是历年高考重要的考点,几乎每年都要考查,重在考查考生的直观想象能力和逻辑推理能力.此类问题实质是解决球的半径长或确定球心O 的位置问题,其中球心的确定是关键. 下面从六个方面分类阐述该类问题的求解策略.利用长方体的体对角线探索外接球半径[素养案例1] 已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6πC [连接BC (图略),由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.] [评析] 若几何体存在三条两两垂直的线段或者三条线有两条垂直,可构造墙角模型(如下图),直接用公式(2R )2=a 2+b 2+c 2求出R .[素养培优](2020·河北重点中学6月联考)阿基米德是伟大的古希腊数学家,他和高斯、牛顿并称为世界三大数学家.他的一个重要数学成就是“圆柱容球”定理,即在带盖子的圆柱形容器(容器的厚度忽略不计)里放一个球,该球与圆柱形容器的两个底面和侧面都相切,则球的体积是圆柱形容器的容积的23,并且球的表面积也是圆柱形容器的表面积的23.则该圆柱形容器的容积与它的外接球的体积之比为( )A .328B .24C .23D .23A [设容器里所放球的半径为R ,则圆柱形容器的底面半径为R ,设圆柱形容器的高为h , 由题意知h =2R ,圆柱形容器的外接球的半径为⎝⎛⎭⎫2R 22+R 2=2R . 圆柱形容器的容积V =πR 2·2R =2πR 3, V 外接球=43π(2R )3=823πR 3,所以V V 外接球=2πR 3823πR 3=328,故选A .]利用长方体的面对角线探索外接球半径[素养案例2] 三棱锥S -ABC 中,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为 .14π [如图,在长方体中,设AE =a ,BE =b ,CE =c .则SC=AB=a2+b2=10,SA=BC=b2+c2=13,SB=AC=a2+c2= 5.从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.] [评析]三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径.[素养培优](2019·全国卷Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC 是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.86π B.46π C.26π D.6πD[因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎫623=6π,故选D.]利用底面三角形与侧面三角形的外心探索球心[素养案例3]平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将其沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD.若四面体A′BCD的顶点在同一球面上,则该球的体积为()A .32π B .3π C .23π D .2π A [如图,设BD ,BC 的中点分别为E ,F .因点F 为底面直角△BCD 的外心,知三棱锥A ′­BCD 的外接球球心必在过点F 且与平面BCD 垂直的直线l 1上.又点E 为底面直角△A ′BD 的外心,知外接球球心必在过点E 且与平面A ′BD 垂直的直线l 2上.因而球心为l 1与l 2的交点.又FE ∥CD ,CD ⊥BD 知FE ⊥平面A ′BD .从而可知球心为点F .又A ′B =A ′D =1,CD =1知BD =2,球半径R =FD =BC 2=32.故V =43π⎝⎛⎭⎫323=32π.][评析] 三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径.[素养培优](2020·广州模拟)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A .23πB .234πC .64πD .643πD [如图,设O ′为正△P AC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面P AC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.]利用直棱柱上下底面外接圆圆心的连线确定球心[素养案例4] 一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .4π3 [设正六棱柱底面边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则a =12,底面积为S =6·34·⎝⎛⎭⎫122=338,V柱=Sh =338h =98,∴h =3,R 2=⎝⎛⎭⎫322+⎝⎛⎭⎫122=1,R =1,球的体积为V =4π3.][评析] 直棱柱的外接球、圆柱的外接球模型如图:其外接球球心就是上下底面外接圆圆心连线的中点. [素养培优](2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4B [设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B .]锥体的内切球问题(1)题设:如图①,三棱锥P -ABC 是正三棱锥,求其内切球的半径.图①第一步:先画出内切球的截面图,E ,H 分别是两个三角形的外心; 第二步:求DH =13CD ,PO =PH -r ,PD 是侧面△ABP 的高;第三步:由△POE ∽△PDH ,建立等式:OE DH =POPD,解出r .(2)题设:如图②,四棱锥P -ABCD 是正四棱锥,求其内切球的半径.图②第一步:先画出内切球的截面图,P ,O ,H 三点共线; 第二步:求FH =12BC ,PO =PH -r ,PF 是侧面△PCD 的高;第三步:由△POG ∽△PFH ,建立等式:OG HF =POPF ,解出r .(3)题设:三棱锥P -ABC 是任意三棱锥,求其内切球半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -P AB +V O -P AC +V O -PBC ⇒V P -ABC=13S △ABC ·r +13S △P AB ·r +13S △P AC ·r +13S △PBC ·r =13(S △ABC +S △P AB +S △P AC +S △PBC )·r ; 第三步:解出r =3V P -ABC S △ABC +S △P AB +S △P AC +S △PBC.[素养案例5] (1)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π(2)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,P A =PC =2m ,若在这个四棱锥内放一个球,则此球的最大半径是 .(1)B (2)12(2-2)m [(1)半径为3,圆心角为2π3的扇形弧长为2π,故其围成的圆锥母线长为3,底面圆周长为2π,得其底面半径为1,如图,MB =1,AB =3, ∴AM =22,由相似可得ON MB =AOAB ,得ON =22, ∴S 球=4π×12=2π.故选B .(2)由PD ⊥底面ABCD 得PD ⊥AD .又PD =m ,P A =2m ,则AD =m .设内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V P -ABCD =V O -ABCD +V O -P AD +V O -P AB +V O -PBC +V O -PCD ,即13·m 2·m =13m 2R +13×12m 2R +13×12×2m 2·R +13×12×2m 2·R +13×12m 2R ,解得R =12(2-2)m ,所以此球的最大半径是12(2-2)m .][评析] 结合本题(2)的条件,采用体积分割法求解本题,即利用体积相等建立等量关系. [素养培优]有一个倒圆锥形容器,它的轴截面是顶角的余弦值为12的等腰三角形.在容器内放一个半径为r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为 .315r [如图,作出轴截面,因为轴截面是顶角的余弦值为12的等腰三角形,所以顶角为π3,所以该轴截面为正三角形.根据切线性质知当球在容器内时,水的深度为3r ,水面所在圆的半径为3r ,则容器内水的体积V =13π(3r )2·3r -43πr 3=53πr 3.将球取出后,设容器中水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积V ′=13π⎝⎛⎭⎫33h 2h =19πh 3,由V =V ′,得h =315r ,所以这时容器中水的深度为315r .]柱体的内切球问题[素养案例6] (2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3B [由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V ma x =43π⎝⎛⎭⎫323=92π.故选B .][评析] 解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题. [素养培优]体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为 .63 [设球的半径为R ,由4π3R 3=4π3,得R =1,所以正三棱柱的高h =2.设底面边长为a ,则13×32a =1,所以a =2 3. 所以V =34×(23)2×2=6 3.]。

相关文档
最新文档