空间几何体表面积与体积公式大全

合集下载

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S)(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:hS S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

空间几何体表面积和体积公式

空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。

体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。

还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。

2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。

体积可以表示为:V = c ×d。

3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。

其中n表示正多边形的边数。

4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。

其中π是圆周率,r表示几何体的半径。

这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。

了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h 10、空心圆柱R-外圆半径,r-圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面的判定(1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面.(2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面一点与这条直线平行的直线必在这个平面,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面,则它们所成的角是0°的角.(2)取值围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面,那么这条直线上的所有的点都在这个平面.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面的两条直线或既不平行也不相交.异面直线判定定理:用平面一点与平面外一点的直线,与平面不经过该点的直线是异面直线.两异面直线所成的角:围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面、与平面相交、与平面平行①直线在平面——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面,所成的角为0°角由此得直线和平面所成角的取值围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。

几何体积表面积公式

几何体积表面积公式

几何体积表面积公式
一、正方体。

1. 体积公式。

- 设正方体的棱长为a,正方体的体积V = a^3。

2. 表面积公式。

- 正方体的表面积S=6a^2。

二、长方体。

1. 体积公式。

- 设长方体的长、宽、高分别为a、b、c,则体积V = abc。

2. 表面积公式。

- 表面积S = 2(ab + bc+ac)。

三、圆柱。

1. 体积公式(人教版)
- 设圆柱底面半径为r,高为h,圆柱的体积V=π r^2h。

2. 表面积公式(人教版)
- 圆柱的表面积S = 2π r^2+2π rh。

四、圆锥。

1. 体积公式(人教版)
- 设圆锥底面半径为r,高为h,圆锥的体积V=(1)/(3)π r^2h。

2. 表面积公式(人教版)
- 设圆锥底面半径为r,母线长为l,圆锥的表面积S=π r^2+π rl。

五、球。

1. 体积公式(人教版)
- 设球的半径为r,球的体积V = (4)/(3)π r^3。

2. 表面积公式(人教版)
- 球的表面积S=4π r^2。

空间几何体的表面积与体积公式大全定稿版

空间几何体的表面积与体积公式大全定稿版

空间几何体的表面积与体积公式大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积)1、柱体① 棱柱② 圆柱2、锥体① 棱锥:h c S ‘底棱锥侧21= ② 圆锥:l c S 底圆锥侧21= 3、台体① 棱台:h c c S )(21‘下底上底棱台侧+= ② 圆台:l c c S )(21下底上底棱台侧+=4、球体① 球:r S 24π=球② 球冠:略③ 球缺:略二、 体积1、柱体① 棱柱② 圆柱2、锥体① 棱锥② 圆锥3、台体① 棱台② 圆台4、球体① 球:r V 334π=球② 球冠:略③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:h S V (==圆柱 圆柱侧面积:h c S =圆柱侧因此:球体体积:r V 3232π=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下 高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS hS h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

空间几何体的表面积及体积公式大全.doc

空间几何体的表面积及体积公式大全.doc

空间几何体的表面积及体积公式大全.doc
几何体的表面积和体积是初中几何学中一大重要内容,各类几何体都有自己独特的表面积和体积公式,学习这些公式对于便于更快更好地解决几何图形问题是至关重要的。

平面图形的表面积:
1. 三角形的表面积:S=(底×高)/2
3. 圆形的表面积:S=π×半径×半径
4. 平行四边形的表面积:S=(水平边的长度×垂直边的长度)/2
1. 正方体的表面积公式:S=6×边长×边长;体积公式:V=边长×边长×边长
2. 球体的表面积公式:S=4πr2;体积公式:V=4/3πr3
以上是几何体的表面积及体积公式,掌握这些公式能够帮助我们快速准确地解决各式几何图形的问题。

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。

面积体积表面积公式大全

面积体积表面积公式大全

面积体积表面积公式大全一、平面图形面积公式。

1. 长方形。

- 面积公式:S = ab(其中a为长,b为宽)。

2. 正方形。

- 面积公式:S=a^2(其中a为边长)。

3. 三角形。

- 面积公式:S=(1)/(2)ah(其中a为底边长,h为这条底边对应的高)。

- 已知三角形三边a、b、c,还可以用海伦公式S = √(p(p - a)(p - b)(p - c)),其中p=(a + b+ c)/(2)。

4. 平行四边形。

- 面积公式:S = ah(其中a为底边长,h为这条底边对应的高)。

5. 梯形。

- 面积公式:S=((a + b)h)/(2)(其中a、b为梯形的上底和下底,h为梯形的高)。

6. 圆。

- 面积公式:S=π r^2(其中r为圆的半径)。

- 扇形面积公式:S=frac{nπ r^2}{360}(其中n为扇形圆心角的度数,r为扇形所在圆的半径)。

二、立体图形体积公式。

1. 长方体。

- 体积公式:V=abc(其中a、b、c分别为长方体的长、宽、高)。

2. 正方体。

- 体积公式:V = a^3(其中a为正方体的边长)。

3. 圆柱。

- 体积公式:V=π r^2h(其中r为圆柱底面半径,h为圆柱的高)。

4. 圆锥。

- 体积公式:V=(1)/(3)π r^2h(其中r为圆锥底面半径,h为圆锥的高)。

5. 球。

- 体积公式:V=(4)/(3)π r^3(其中r为球的半径)。

三、立体图形表面积公式。

1. 长方体。

- 表面积公式:S = 2(ab+bc + ac)(其中a、b、c分别为长方体的长、宽、高)。

2. 正方体。

- 表面积公式:S = 6a^2(其中a为正方体的边长)。

3. 圆柱。

- 表面积公式:S = 2π r^2+2π rh(其中r为圆柱底面半径,h为圆柱的高)。

4. 圆锥。

- 侧面积公式:S_侧=π rl(其中r为圆锥底面半径,l为圆锥的母线长)。

- 表面积公式:S=π r^2+π rl。

5. 球。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、柱体--------------------S w= c h2、锥体①棱锥:s梭惟侧#%②圆锥雷附詁川J3、台体①棱台•S梭台側=㊁(C」:底+c卜底)力[②圆台:S梭台侧= *(Ci.底+cQZ J4、球体①球:S球=4兀/②球冠:略③球缺:略二、体积1、柱体①棱柱②圆柱2、锥体①棱锥]--------- : ---②圆S全= S±+S删+S下s SS S①棱台I卩台冷+JS上S F +S卜•)②圆台丿V同台(厂;+&"八+总)4、球体①球:V球=专“②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的侧面积计算时使用母线/计算。

三、拓展提高1、祖瀬原理:(祖呃:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的土。

3分析:圆柱体积:V-,m = S h =(^r2)x2r = 2^r3圆柱侧面积:Szm = C h = (2加•)X 2r = 4兀厂‘ 因此:球体体积:V球=? x 2;r = — 7V Y球体表面积:s t.R= 4;r r通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷力①上+应瓦订卜-)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD o延长两侧棱相交于一点/> 0P设台体上底面积为Si,下底面积为s下高为/? °易知:MDCs MAB,设 PE = h「则 PF = h*由相似三角形的性质得:去=芈AB PF(相似比等于面积比的算术平方根)整理得:牯应"又因为台体的体积二大锥体体积一小锥体体积• • V台飞s下% + 力=即:匕广丸瓦力(\瓦+ \瓦)+罷必4/7(S:+(瓦乐+s』4、球体体积公式推导分析:将半球平行分成相同高度的若干层(〃层)5越大,每一层越近似于圆柱WT+S 时,每一层都可以看作是一个圆柱。

高中数学公式大全立体形的表面积与体积公式

高中数学公式大全立体形的表面积与体积公式

高中数学公式大全立体形的表面积与体积公式高中数学公式大全:立体形的表面积与体积公式在高中数学学习中,几何部分是我们需要掌握的重要内容之一。

而几何中的立体形状的表面积与体积是我们经常需要计算的一项内容。

在本文中,我们将为大家整理一份高中数学公式大全,涵盖了各种立体形的表面积与体积的公式,以帮助大家更好地应对数学学习和问题解答。

下面是各个立体形状的表面积与体积公式:一、立方体:表面积公式:S = 6a^2其中,S表示立方体的表面积,a表示立方体的边长。

体积公式:V = a^3其中,V表示立方体的体积,a表示立方体的边长。

二、长方体:表面积公式:S = 2(ab + bc + ac)其中,S表示长方体的表面积,a、b、c表示长方体的三条边长。

体积公式:V = abc其中,V表示长方体的体积,a、b、c表示长方体的三条边长。

三、正方体:表面积公式:S = 6a^2其中,S表示正方体的表面积,a表示正方体的边长。

体积公式:V = a^3其中,V表示正方体的体积,a表示正方体的边长。

四、圆柱体:表面积公式:S = 2πrh + 2πr^2其中,S表示圆柱体的表面积,π取3.14或3.14159,r表示圆柱体的底面半径,h表示圆柱体的高。

体积公式:V = πr^2h其中,V表示圆柱体的体积,同样需要确定半径r和高h。

五、圆锥体:表面积公式:S = πr(r + l)其中,S表示圆锥体的表面积,π取3.14或3.14159,r表示圆锥体的底面半径,l表示圆锥体的斜高。

体积公式:V = (1/3)πr^2h其中,V表示圆锥体的体积,同样需要确定半径r和高h。

六、球体:表面积公式:S = 4πr^2其中,S表示球体的表面积,π取3.14或3.14159,r表示球体的半径。

体积公式:V = (4/3)πr^3其中,V表示球体的体积,r表示球体的半径。

通过以上给出的几何立体形状的表面积与体积公式,我们可以更方便地进行计算和解答相关习题。

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。

对于这一类学生有以下几点建议。

空间几何体的表面积和体积公式大全

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。

三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。

3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。

易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。

立体几何体积与表面积公式

立体几何体积与表面积公式

立体几何体积与表面积公式一、棱柱。

1. 长方体。

- 设长方体的长、宽、高分别为a、b、c。

- 体积V = abc。

- 表面积S=2(ab + bc+ac)。

2. 正方体(特殊的长方体,a = b = c)- 设棱长为a。

- 体积V=a^3。

- 表面积S = 6a^2。

3. 棱柱(底面积为S_底,高为h)- 体积V=S_底h。

- 表面积S = S_侧+2S_底,其中直棱柱的侧面积S_侧=Ch(C为底面多边形的周长)。

二、棱锥。

1. 三棱锥(四面体)- 设三棱锥的底面积为S_底,高为h。

- 体积V=(1)/(3)S_底h。

- 表面积S = S_侧+S_底,三棱锥的侧面是三个三角形,S_侧为三个侧面三角形面积之和。

2. 棱锥(底面积为S_底,高为h)- 体积V=(1)/(3)S_底h。

- 表面积S = S_侧+S_底,其中正棱锥的侧面积S_侧=(1)/(2)Ch^′(C为底面多边形的周长,h^′为斜高)。

三、圆柱。

1. 设圆柱底面半径为r,高为h- 体积V=π r^2h。

- 表面积S = 2π r^2+2π rh(两个底面圆的面积2π r^2加上侧面展开矩形的面积2π rh)。

四、圆锥。

1. 设圆锥底面半径为r,母线长为l,高为h(h=√(l^2)-r^{2})- 体积V=(1)/(3)π r^2h=(1)/(3)π r^2√(l^2)-r^{2}。

- 表面积S=π r^2+π rl(底面圆面积π r^2加上侧面展开扇形的面积π rl)。

五、球。

1. 设球的半径为R- 体积V=(4)/(3)π R^3。

- 表面积S = 4π R^2。

空间几何体地表格面积和体积公式大全

空间几何体地表格面积和体积公式大全

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴hS S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、柱体①棱柱②圆柱2、锥体①棱锥:②圆锥:3、台体①棱台:②圆台:4、球体①球:②球冠:略③球缺:略二、体积1、柱体①棱柱②圆柱2、锥体①棱锥②圆锥3、台体①棱台②圆台4、球体①球:②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。

三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积:圆柱侧面积:因此:球体体积:球体表面积:通过上述分析,我们可以得到一个很重要的关系(如图)+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:证明:如图过台体的上下两底面中心连线的纵切面为梯形。

延长两侧棱相交于一点。

设台体上底面积为,下底面积为高为。

易知:∽,设,则由相似三角形的性质得:即:(相似比等于面积比的算术平方根)整理得:又因为台体的体积=大锥体体积—小锥体体积∴代入:得:即:∴4、球体体积公式推导分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。

这些圆柱的高为,则:每个圆柱的体积=半球的体积等于这些圆柱的体积之和。

……∴半球体积为:===当时,∴∴球体积为:5、球体表面积公式推导分析:球体可以切割成若干()近似棱锥,当时,这些棱锥的高为球体半径,底面积为球面面积的,则每一个棱锥的体积,则所有的小棱锥体积之和为球体体积。

即有:∴6、正六面体(正方体)与正四面体(1)体积关系如图:正方体切下四个三棱锥后,剩下的部分为正四面体设正方体棱长为,则其体积为:四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:这样一个正方体可以分成四个三棱锥与中间一个正四面体即:(2)外接球正方体与其体内最大的正四面体有相同的外接球。

(理由:过不共面的四点确定一个球。

)正方体与其体内最大的正面体有四个公共顶点。

所以它们共球。

回顾:①两点定线②三点定面③三点定圆④四点定球如图:(a)正方体的体对角线=球直径(b)正四面体的外接球半径=高(c)正四面体的棱长=正方体棱长(d)正方体体积:正四面体体积=3:1(e)正方体外接球半径与正四面体外接球半径相等(3)正方体的内切球与正四面体的关系(a)正方体内切球直径=正方体棱长(b)正方体内切球与正四面体的四条棱相切。

(c)与正四面体四条棱相切的球半径=正方体棱长的一半(d)设正四面体棱长为,则与其棱都相切的球半径为有:7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为,截面高度均为,倒圆锥的截面半径为,半球截面半径为,则:挖去圆锥后的组合体的截面为:半球截面面积为:∵倒圆锥的底面半径与高相等,由相似三角形易得:在半球内,由勾股定理易得:∴即:,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。

由祖暅原理可得:所以半球体积:即,球体体积:8、正方体与球(1)正方体的内切球正方体的棱长球体的直径(2)正方体的外接球正方体的体对角线球体的直径(3)规律:①正方体的内切球与外接球的球心为同一点;②正方体的内切球与外接球的球心在体对角线上;③正四面体的内切球与外接球的的半径之比为:④正四面体内切球与外接球体积之比为:1:3⑤正四面体内切球与外接球表面积之比为:1:3⑥正方体外接球半径、正方体棱长、内切球半径比为::2:⑦正四面体外接球、正四面体、内切球体积比为:⑧正四面体外接球、正四面体、内切球表面积比为:9、正四面体与球(1)正四面体的内切球解题关键:利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径。

利用体积关系得:所以:,其中为正四面体的高。

由相关计算得:∴即:∴(2)正四面体的外接球外接球的半径==∴(3)规律:①正四面体的内切球与外接球的球心为同一点;②正四面体的内切球与外接球的球心在高线上;③正四面体的内切球与外接球的的半径之和等于高;④正四面体的内切球与外接球的半径之比等于1:3⑤正四面体内切球与外接球体积之比为:1:27⑥正四面体内切球与外接球表面积之比为:1:9⑦正四面体外接球半径、正四面体棱长、内切球半径比为::12:⑧正四面体外接球、正四面体、内切球体积比为:⑨正四面体外接球、正四面体、内切球表面积比为:10、圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)圆柱高=底面直径=球的直径球体体积=圆柱体积球面面积=圆柱侧面积(2)球容圆柱球体直径、圆柱的高、圆柱底面直径构成直角三角形。

设球体半径为,圆柱高为,底面半径为则有:即:四、方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为,求它的内切球和外接球的半径思路:先分析球心的位置。

因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。

且是正四面体的高线交点。

再分析球心与一些特殊的点、线、面的位置、数量关系。

在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。

方法1:展平分析:(最重要的方法)如图:取立体图形中的关键平面图形进行分析!连接DO并延长交平面ABC于点G,连接G连接D并延长交BC于点E,则A、G在平面AED中,由相似知识可得:∴且∴△GO∽△DOA ∴即:方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD的内切球球心为,连接AO、BO、CO、DO,则正四面体被分成四个完全一样的三棱锥。

设内切球半径为,正四面体的棱长为则正面四体的高为:则:4个完全一样的三棱锥体积=正四面体体积 AO DBACDEG O有:∴∴方法3:方程分析:(最常见的做法)如图:显然AO、DO是外接球半径,O在Rt△DO中,由勾股写得可得以下方程:其中:代入方程解得:、方法4:补形分析(最巧妙的思考)把正四面体补成正方体进行分析。

如图:此时,正四面体与正方体有共同的外接球。

正四面体的棱长为,则正方体棱长BACDO为:正方体的外接球直径为其体对角线 ∴∴正四面体的外接球半径为:内切球半径为:方法5:坐标分析(最意外的解法) 建立如图所示的空间直角坐标系:则A (0,0,),B (0, ,0),C (,,0),D (,,0),设球心位置为O (,,,)由得:即:=解得:, ,即:,∴主要方法:一、统一思想1、公式的统一对于每个几何形体的面积与体积公式,我们很想找出一个万能公式全部适用于所有形体,但是这只是一个理想状况,实际上不可能,最多只可能适用于一部分而已。

即使是这样,也只减小我们对公式的记忆难度,增强学习的灵活性。

(1)梯形的面积公式:,同样适用于三角形、平行四边形、长方形、正方形、扇形的面积计算。

只是在使用时作微调而已。

在分析三角形时,上底变为0;分析长方形、正方形、平行四边形时,上下底变成一样;在分析扇形时,上底变为0,下底变成弧长,高为半径。

(2)台体的侧面积公式:,同样适用于圆柱、棱柱、圆锥、棱锥、球的侧面积计算。

只是在使用时作微调而已。

在分析圆柱、棱柱时,上下底周长变成一样;在分析棱锥时,上底周长变为0;在分析圆锥时,上底周长变为0,斜高变成母线;在分析球体的面积时,上下底都取最大圆的周长,高取直径,即:(3)台体的体积公式:,同样适用于圆柱、棱柱、圆锥、棱锥、球的体积计算。

只是在使用时作微调而已。

在分析圆柱、棱柱时,上下底面积变成一样;在分析棱锥时,上底面积变为0;在分析圆锥时,上底面积变为0;在分析球体的体积时,上底面积取0,下底取最大圆面积的2倍,高取直径,即:2、字母的统一在进行分析时,一般要把字母统一,这样便于进行比较!3、关系的统一注意相似的关系:面积比等于相似比的平方,体积比等于相似比的立方。

球体、正方体、正多面体相似!二、转换思想1、平面与立体的转换这是立体几何的一种重要思想,即把立体的问题交给平面来解决。

但是要在特殊的面中进行,有时还要把面与面的关系交给线与线来分析。

如二面角的大小研究,通常会作垂直于两面的交线的直线来分析。

异面直线的有关系也要平移到同一面中研究。

在立体与平面的转换中平移是一种很实用的手段。

通过平移不在同一平面内的可转换为同一平面内,不垂直的可转换为垂直来分析!2、位置的转换3、形体的转换三、特殊思想1、特殊点(1)中点:特殊的线的中点是解题的钥匙!特别要关注!(2)顶点:几何体的顶点也是重要的点,其连线在分析时很有作用。

(3)垂足:高与面交点是比较特殊的点,解题时也要注意!2、特殊线(1)高线(2)中线(3)角平分线3、特殊面(1)平行的面(2)垂直的面(3)二面角特殊的面4、特殊关系(1)相似关系(2)比值关系四、标准化思想1、三视图的规则2、斜二测画法的规则3、空间直角坐标规则。

相关文档
最新文档