空间几何体的表面积与体积公式大全
空间几何体的表面积和体积公式汇总表
空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h 10、空心圆柱R-外圆半径,r-圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面的判定(1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面.(2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面一点与这条直线平行的直线必在这个平面,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面,则它们所成的角是0°的角.(2)取值围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面,那么这条直线上的所有的点都在这个平面.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面的两条直线或既不平行也不相交.异面直线判定定理:用平面一点与平面外一点的直线,与平面不经过该点的直线是异面直线.两异面直线所成的角:围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面、与平面相交、与平面平行①直线在平面——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面,所成的角为0°角由此得直线和平面所成角的取值围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
几何学中的体积与表面积公式整理
几何学中的体积与表面积公式整理几何学是研究空间中图形、形体的性质与变换规律的数学分支。
在几何学中,体积和表面积是两个重要的概念,求解几何体的体积和表面积是很常见的问题。
本文将综合整理常见几何体的体积与表面积公式,以帮助读者更好地理解和应用这些公式。
一、体积公式1. 立方体的体积公式立方体是一种六个面都为正方形的特殊几何体。
其体积公式为:体积 = 边长³或 V = a³,其中 a 为立方体的边长。
2. 正方体的体积公式正方体是一种六个面都为正方形且边长相等的特殊几何体。
其体积公式与立方体相同:体积 = 边长³或 V = a³,其中 a 为正方体的边长。
3. 长方体的体积公式长方体是一种六个面都为矩形且相邻两矩形边长相等的几何体。
其体积公式为:体积 = 长 ×宽 ×高或 V = lwh,其中 l 为长方体的长度,w 为宽度,h 为高度。
4. 圆柱的体积公式圆柱是一种由两个平行且相同大小的圆底面和连接两个圆底面的曲面组成的几何体。
其体积公式为:体积 = 圆底面积 ×高或V = πr²h,其中 r 为圆底面的半径,h 为圆柱的高度。
5. 锥形的体积公式锥形是一种由一个圆锥底面和连接顶点和圆锥底面上各点的直线段组成的几何体。
其体积公式为:体积 = 圆锥底面积 ×高 ÷ 3 或V = πr²h ÷ 3,其中 r 为圆锥底面的半径,h 为锥形的高度。
6. 球体的体积公式球体是一种所有点到中心点距离相等的几何体。
其体积公式为:体积= 4/3 × π × 半径³或V = 4/3 × πr³,其中 r 为球体的半径。
二、表面积公式1. 立方体的表面积公式立方体的表面积公式为:表面积 = 6 ×边长²或 A = 6a²,其中 a 为立方体的边长。
几何体的表面积和体积计算
几何体的表面积和体积计算几何体是指由空间中的点、线、面构成的实体形状,包括常见的球体、立方体、圆柱体等。
在几何学中,表面积和体积是表征几何体大小和形状的重要指标。
本文将介绍几何体表面积和体积的计算方法。
一、球体的表面积和体积计算球体是一种具有无限个相同半径的曲面,其表面积和体积的计算公式如下:表面积公式:S = 4πr²体积公式:V = (4/3)πr³其中,r表示球体的半径,π是一个数学常数(约等于3.14159)。
二、立方体的表面积和体积计算立方体是一种六个面都相等且相互垂直的立方体形状,其表面积和体积的计算公式如下:表面积公式:S = 6a²体积公式:V = a³其中,a表示立方体的边长。
三、圆柱体的表面积和体积计算圆柱体由两个平行且相等的圆面和一个侧面组成,其表面积和体积的计算公式如下:表面积公式:S = 2πr² + 2πrh体积公式:V = πr²h其中,r表示圆柱的底面半径,h表示圆柱的高。
四、其他除了球体、立方体和圆柱体外,还存在许多其他形状的几何体,如圆锥体、棱柱体、正四面体等。
它们的表面积和体积计算方法各不相同,具体的计算公式可以通过几何学原理来推导得到,或者通过公式手册查询获得。
在实际应用中,计算几何体的表面积和体积可以帮助我们求解一些实际问题,例如建筑设计、制造工程、容器容积计算等等。
掌握几何体的计算方法,对于解决各种几何问题非常重要。
总结:几何体的表面积和体积计算是几何学中的重要概念,不同几何体有不同的计算公式。
通过熟练掌握这些计算方法,我们可以准确地计算各种几何体的表面积和体积。
这不仅有助于我们理解几何体的特性和形状,也能够应用到实际问题中。
空间几何体的表面积及体积公式大全.doc
空间几何体的表面积及体积公式大全.doc
几何体的表面积和体积是初中几何学中一大重要内容,各类几何体都有自己独特的表面积和体积公式,学习这些公式对于便于更快更好地解决几何图形问题是至关重要的。
平面图形的表面积:
1. 三角形的表面积:S=(底×高)/2
3. 圆形的表面积:S=π×半径×半径
4. 平行四边形的表面积:S=(水平边的长度×垂直边的长度)/2
1. 正方体的表面积公式:S=6×边长×边长;体积公式:V=边长×边长×边长
2. 球体的表面积公式:S=4πr2;体积公式:V=4/3πr3
以上是几何体的表面积及体积公式,掌握这些公式能够帮助我们快速准确地解决各式几何图形的问题。
空间几何体的表面积与体积公式大全,DOC
空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。
空间几何体的体积与面积的全部公式
空间⼏何体的体积与⾯积的全部公式空间⼏何体的体积与⾯积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体⾼)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其⾼)S=πR²+πR[(h²+R²)的平⽅根]V=πR²h/33、正⽅体(a为边长)S=6a²V=a³4、长⽅体(a为长,b为宽,c为⾼)S=2(ab+ac+bc)V=abc5、棱柱(S为底⾯积,h为⾼)V=Sh6、棱锥(S为底⾯积,h为⾼)V=Sh/37、棱台(S1和S2分别为上、下底⾯积,h为⾼)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为⾼,C为底⾯周长,S底为底⾯积,S侧为侧⾯积,S表为表⾯积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为⾼)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间⼏何体中的⾯积和体积公式的⽅法:1. ⾯积问题:空间⼏何体的⾯积主要分为两类:侧⾯积和表⾯积,其中的重点是旋转体的侧⾯积公式。
对于多⾯体的⾯积,其各个⾯都是多边形,这个在⼩学阶段就研究过了。
其中,只需要记住圆台的侧⾯积公式就够了。
将圆台侧⾯打开,是⼀个扇环,很像⼀个梯形。
所以圆台的侧⾯积就按照梯形来进⾏计算,就很容易理解。
如下图所⽰:圆台侧⾯积公式对于圆柱和圆锥的侧⾯积公式,不需要单独去记忆,只需要将其看成⼀个特殊的圆台就⾏了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上⾯的思路,把柱体和椎体看成⼀个特殊的台体,因此也只需要记住⼀个台体的体积公式就可以啦。
表面积与体积公式
在数学中,表面积和体积是基本的几何概念。
表面积指物体外部所覆盖的空间面积,体积则指物体占据的空间大小。
对于各种形状的物体,我们可以通过不同的公式来计算它们的表面积和体积。
一、常见几何图形的表面积和体积公式1.立方体立方体是一种正六面体,所有六个面都是正方形。
它的表面积和体积公式如下:表面积S = 6a²其中,a为立方体的边长。
体积V = a³2.正方体正方体也是一种正六面体,但是它的所有面都是正方形且相等。
它的表面积和体积公式如下:表面积S = 6a²其中,a为正方体的边长。
体积V = a³3.圆柱体圆柱体是一种由两个平行圆面和一个侧面组成的几何图形。
它的表面积和体积公式如下:表面积S = 2πrh + 2πr²其中,r为圆柱体底面半径,h为圆柱体的高度。
体积V = πr²h4.圆锥体圆锥体是一种由一个圆锥面和一个底面组成的几何图形。
它的表面积和体积公式如下:表面积S = πr√(r²+h²) + πr²其中,r为圆锥底面半径,h为圆锥的高度。
体积V = 1/3πr²h5.球体球体是一种三维的几何图形,由所有与一个特定点的距离相等的点组成。
它的表面积和体积公式如下:表面积S = 4πr²其中,r为球体的半径。
体积V = 4/3πr³二、总结通过以上几种几何图形的表面积和体积公式,我们可以看出它们的计算方式都是基于图形的不同属性进行推导的。
在应用时,我们需要了解图形的性质和特征,然后选择适当的公式进行计算。
掌握这些公式可以帮助我们更好地理解几何概念,同时也方便我们在实际生活和工作中应用数学知识。
空间几何体的表面积与体积公式记忆大全
空间几何体的表面积与体积公式记忆大全(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删
除
空间几何体的表面积与体积公式记忆大全(17公式)
1.几何体的表面积=几何体各个面的面积的和=展开图的面积.
2.特殊几何体表面积公式(c 为底面周长,h 为高,'
h 为斜高,l 为母线) ch
S =直棱柱侧面积 '21ch S =
正棱锥侧面积 ')(2121h c c S +=正棱台侧面积
rh S π2=圆柱侧 , ()l r r S +=π2圆柱表
rl S π=圆锥侧面积, ()
l r r S +=π圆锥表 ()S r R l π=+圆台侧面积, ()22R Rl rl r S +++=π圆台表
3.柱体、锥体、台体的体积公式:
V Sh =柱 13V Sh =锥 '1()3V S S h =台
2V Sh r h
π==圆柱 h r V 231π=圆锥
'2211()()33
V S S h r rR R h π==++圆台 4.球体的表面积和体积公式:34V 3
R π=球 ; S 球面=24R π。
面积体积表面积公式大全
面积体积表面积公式大全一、平面图形面积公式。
1. 长方形。
- 面积公式:S = ab(其中a为长,b为宽)。
2. 正方形。
- 面积公式:S=a^2(其中a为边长)。
3. 三角形。
- 面积公式:S=(1)/(2)ah(其中a为底边长,h为这条底边对应的高)。
- 已知三角形三边a、b、c,还可以用海伦公式S = √(p(p - a)(p - b)(p - c)),其中p=(a + b+ c)/(2)。
4. 平行四边形。
- 面积公式:S = ah(其中a为底边长,h为这条底边对应的高)。
5. 梯形。
- 面积公式:S=((a + b)h)/(2)(其中a、b为梯形的上底和下底,h为梯形的高)。
6. 圆。
- 面积公式:S=π r^2(其中r为圆的半径)。
- 扇形面积公式:S=frac{nπ r^2}{360}(其中n为扇形圆心角的度数,r为扇形所在圆的半径)。
二、立体图形体积公式。
1. 长方体。
- 体积公式:V=abc(其中a、b、c分别为长方体的长、宽、高)。
2. 正方体。
- 体积公式:V = a^3(其中a为正方体的边长)。
3. 圆柱。
- 体积公式:V=π r^2h(其中r为圆柱底面半径,h为圆柱的高)。
4. 圆锥。
- 体积公式:V=(1)/(3)π r^2h(其中r为圆锥底面半径,h为圆锥的高)。
5. 球。
- 体积公式:V=(4)/(3)π r^3(其中r为球的半径)。
三、立体图形表面积公式。
1. 长方体。
- 表面积公式:S = 2(ab+bc + ac)(其中a、b、c分别为长方体的长、宽、高)。
2. 正方体。
- 表面积公式:S = 6a^2(其中a为正方体的边长)。
3. 圆柱。
- 表面积公式:S = 2π r^2+2π rh(其中r为圆柱底面半径,h为圆柱的高)。
4. 圆锥。
- 侧面积公式:S_侧=π rl(其中r为圆锥底面半径,l为圆锥的母线长)。
- 表面积公式:S=π r^2+π rl。
5. 球。
几何体表面积体积公式大全
几何体表面积体积公式大全以下是一些常见的几何体的表面积和体积的公式:
1. 立方体
表面积:6a²
体积:a³
(a为边长)
2. 长方体
表面积:2lw + 2lh + 2wh
体积:lwh
(l为长度,w为宽度,h为高度)
3. 球体
表面积:4πr²
体积:4/3πr³
(r为半径)
4. 圆柱体
表面积:2πr(h + r)
体积:πr²h
(r为底面半径,h为高)
5. 圆锥体
表面积:πr(r + l)
体积:1/3πr²h
(r为底面半径,h为高,l为斜高)
6. 正四面体
表面积:√3a²
体积:a³/6√2
(a为边长)
7. 正六面体(立方体)
表面积:6a²
体积:a³
(a为边长)
8. 正八面体
表面积:2√3a²
体积:a³√2/3
(a为边长)
9. 正十二面体
表面积:3√(25+10√5)a²
体积:(15+7√5)/4 a³
(a为边长)
10. 正二十面体
表面积:5√3a²
体积:5(3+√5)/12 a³
(a为边长)
以上公式都是基于各几何体的特性和性质推导出来的,对于一些不规则的几何体,可能需要采用其他的数学方法来计算其表面积和体积。
几何体的表面积和体积公式
几何体的表面积和体积公式一、柱体。
1. 棱柱。
- 表面积公式:- 直棱柱的表面积S = 2S_底+S_侧,其中S_底为底面多边形的面积,S_侧为侧面积。
若直棱柱底面多边形的边长为a,边数为n,棱柱的高为h,则S_侧=nah。
- 体积公式:V = S_底h,h为棱柱的高。
2. 圆柱。
- 表面积公式:S = 2π r^2+2π rh,其中r为底面半径,h为圆柱的高。
- 体积公式:V=π r^2h。
二、锥体。
1. 棱锥。
- 表面积公式:S = S_底+S_侧,棱锥的侧面积S_侧等于各个侧面三角形面积之和。
若棱锥底面多边形的边长为a,边数为n,斜高(侧面三角形底边上的高)为h',则S_侧=(1)/(2)nah'。
- 体积公式:V=(1)/(3)S_底h,h为棱锥的高。
2. 圆锥。
- 表面积公式:S=π r^2+π rl,其中r为底面半径,l为母线长。
- 体积公式:V = (1)/(3)π r^2h,h为圆锥的高。
三、台体。
1. 棱台。
- 表面积公式:S = S_上底+S_下底+S_侧,棱台的侧面积S_侧=(1)/(2)(n(a + b)h'),其中n为底面边数,a为上底面多边形的边长,b为下底面多边形的边长,h'为斜高。
- 体积公式:V=(1)/(3)h(S_上底+S_下底+√(S_上底)S_{下底}),h为棱台的高。
2. 圆台。
- 表面积公式:S=π r^2+π R^2+π l(R + r),其中r为上底面半径,R为下底面半径,l为母线长。
- 体积公式:V=(1)/(3)π h(r^2+R^2+rR),h为圆台的高。
四、球体。
- 表面积公式:S = 4π R^2,其中R为球的半径。
- 体积公式:V=(4)/(3)π R^3。
空间几何体的表面积和体积公式大全
空间几何体的表面积与体积公式大全全(表)面积(含侧面积)1、柱体①棱柱]----------------A S侧=Ch ■ S全=2S底* S侧②圆柱J _______ ___2、锥体①棱锥:S棱锥侧=^2c底h②圆锥:S圆锥侧=托底l3、台体①棱台:②圆台:S棱台侧S棱台侧_ 1二2(C上底C下底)h_ 1=2 (C上底.C下底)1* S全=S上+ S侧+ S下4、球体①球:S球=4r2②球冠:略③球缺:略S下S下体积1、柱体①棱柱]--------------卜V柱=Sh②圆柱J2、锥体①棱锥r②圆锥」1V柱=3S h3、台体1①棱台]V台=gh (S上NS上S^ +S下)②圆台J V圆台=3兀h (r上+Q r上r下+ r下)4、球体①球:V球=4二r'②球冠:略③球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h计算;而圆锥、圆台的侧面积计算时使用母线I计算。
三、拓展提高1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的-。
3分析:圆柱体积:V圆柱=Sh =(二「2)2r=2^r'圆柱侧面积:S圆柱侧=C h =(2 r) 2r = 4二「因此:球体体积:V球=2 2二J=4二r33 3球体表面积:S球=4 r2即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:V台=1h (S上+ S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 延长两侧棱相交于一点P设台体上底面积为S上,下底面积为S下P 高为h。
易知:PDC s .>PAB ,设PE = h i,则PF =h i h由相似三角形的性质得:CD PEAB PFA整理得:h 1 : =S上hPS 下-VS上又因为台体的体积=大锥体体积一小锥体体积1 11 1 二V台=3S 下(h 1h K3S 上h^3h 1(S下一S上) 下h代入:h= i S 上芬得: V台=3胪L(S下—S"3S 下hJS下3*SrS31 ___ I ------ ------ 1即: V 台=3 S上h (S下S上)3S下人二 V 台=3h (S 上S 上S 下S下)球体体积公式推导即:ShiS 下-h lh (相似比等于面积比的算术平方根)1 ______________=3h (S上S 上S 下S下)4、分析:将半球平行分成相同高度的若干层( n 层),n 越大,每一层越近似于圆柱,n “ •「时,每一层都可以看作是个圆柱。
立体几何体积与表面积公式
立体几何体积与表面积公式一、棱柱。
1. 长方体。
- 设长方体的长、宽、高分别为a、b、c。
- 体积V = abc。
- 表面积S=2(ab + bc+ac)。
2. 正方体(特殊的长方体,a = b = c)- 设棱长为a。
- 体积V=a^3。
- 表面积S = 6a^2。
3. 棱柱(底面积为S_底,高为h)- 体积V=S_底h。
- 表面积S = S_侧+2S_底,其中直棱柱的侧面积S_侧=Ch(C为底面多边形的周长)。
二、棱锥。
1. 三棱锥(四面体)- 设三棱锥的底面积为S_底,高为h。
- 体积V=(1)/(3)S_底h。
- 表面积S = S_侧+S_底,三棱锥的侧面是三个三角形,S_侧为三个侧面三角形面积之和。
2. 棱锥(底面积为S_底,高为h)- 体积V=(1)/(3)S_底h。
- 表面积S = S_侧+S_底,其中正棱锥的侧面积S_侧=(1)/(2)Ch^′(C为底面多边形的周长,h^′为斜高)。
三、圆柱。
1. 设圆柱底面半径为r,高为h- 体积V=π r^2h。
- 表面积S = 2π r^2+2π rh(两个底面圆的面积2π r^2加上侧面展开矩形的面积2π rh)。
四、圆锥。
1. 设圆锥底面半径为r,母线长为l,高为h(h=√(l^2)-r^{2})- 体积V=(1)/(3)π r^2h=(1)/(3)π r^2√(l^2)-r^{2}。
- 表面积S=π r^2+π rl(底面圆面积π r^2加上侧面展开扇形的面积π rl)。
五、球。
1. 设球的半径为R- 体积V=(4)/(3)π R^3。
- 表面积S = 4π R^2。
几何体的体积与表面积
几何体的体积与表面积几何体是指具有一定形状和空间的物体,常见的几何体包括球体、立方体、圆柱体、锥体和棱柱体等。
在几何学中,我们常常需要计算几何体的体积和表面积来解决各种问题。
一、球体的体积与表面积球体是一种最简单的几何体,表面上呈现出完全圆滑的形状。
球体的体积和表面积的计算公式如下:1. 球体的体积公式:V = (4/3)πr³,其中V表示体积,π表示圆周率,r表示球的半径。
2. 球体的表面积公式:S = 4πr²,其中S表示表面积,π表示圆周率,r表示球的半径。
二、立方体的体积与表面积立方体是一种六个面都呈正方形的几何体,具有均匀分布的表面和体积。
立方体的体积和表面积的计算公式如下:1. 立方体的体积公式:V = a³,其中V表示体积,a表示立方体的边长。
2. 立方体的表面积公式:S = 6a²,其中S表示表面积,a表示立方体的边长。
三、圆柱体的体积与表面积圆柱体是由两个平行的圆底和一个侧面围成的几何体。
圆柱体的体积和表面积的计算公式如下:1. 圆柱体的体积公式:V = πr²h,其中V表示体积,π表示圆周率,r表示圆底的半径,h表示圆柱体的高度。
2. 圆柱体的表面积公式:S = 2πrh + 2πr²,其中S表示表面积,π表示圆周率,r表示圆底的半径,h表示圆柱体的高度。
四、锥体的体积与表面积锥体是由一个圆底和一个侧面围成的几何体,侧面呈三角形形状。
锥体的体积和表面积的计算公式如下:1. 锥体的体积公式:V = (1/3)πr²h,其中V表示体积,π表示圆周率,r表示圆底的半径,h表示锥体的高度。
2. 锥体的表面积公式:S = πrl + πr²,其中S表示表面积,π表示圆周率,r表示圆底的半径,l表示锥体的斜高。
五、棱柱体的体积与表面积棱柱体是由两个并列的多边形底面和若干个连接底面的长方形侧面围成的几何体。
棱柱体的体积和表面积的计算公式如下:1. 棱柱体的体积公式:V = Bh,其中V表示体积,B表示底面积,h表示棱柱体的高度。
数学高中知识点笔记梳理
数学高中知识点笔记梳理数学高中知识点笔记梳理空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h 为圆柱体高)。
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。
3、a—边长,S=6a2,V=a3。
4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱锥S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。
11、r—底半径h—高V=πr^2h/3。
12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。
16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。
17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。
数学高中知识点总结归纳(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 +△x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
常见体积表面积公式(3篇)
第1篇一、引言在数学、物理、工程等领域,体积和表面积的计算是基本且重要的。
了解并掌握常见的体积和表面积公式对于解决实际问题具有重要意义。
本文将详细介绍一些常见的体积和表面积公式,以供读者参考。
二、常见体积公式1. 立方体体积公式立方体体积公式为:V = a^3,其中a为立方体的边长。
2. 球体体积公式球体体积公式为:V = (4/3)πr^3,其中r为球体的半径。
3. 圆柱体体积公式圆柱体体积公式为:V = πr^2h,其中r为圆柱体底面半径,h为圆柱体高。
4. 圆锥体体积公式圆锥体体积公式为:V = (1/3)πr^2h,其中r为圆锥体底面半径,h为圆锥体高。
5. 棱柱体积公式棱柱体积公式为:V = Bh,其中B为底面积,h为棱柱高。
6. 棱锥体积公式棱锥体积公式为:V = (1/3)Bh,其中B为底面积,h为棱锥高。
7. 梯形体积公式梯形体积公式为:V = (a+b)h/2,其中a和b为梯形上底和下底,h为梯形高。
8. 三角形体积公式三角形体积公式为:V = (1/2)ah,其中a为底边,h为高。
9. 矩形体积公式矩形体积公式为:V = lwh,其中l、w和h分别为矩形长、宽和高。
长方体体积公式为:V = lwh,其中l、w和h分别为长方体长、宽和高。
三、常见表面积公式1. 立方体表面积公式立方体表面积公式为:S = 6a^2,其中a为立方体的边长。
2. 球体表面积公式球体表面积公式为:S = 4πr^2,其中r为球体的半径。
3. 圆柱体表面积公式圆柱体表面积公式为:S = 2πrh + 2πr^2,其中r为圆柱体底面半径,h为圆柱体高。
4. 圆锥体表面积公式圆锥体表面积公式为:S = πrl + πr^2,其中r为圆锥体底面半径,l为圆锥体斜高。
5. 棱柱表面积公式棱柱表面积公式为:S = 2B + Ph,其中B为底面积,P为侧面积,h为棱柱高。
6. 棱锥表面积公式棱锥表面积公式为:S = πrl + πr^2,其中r为棱锥底面半径,l为棱锥斜高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积)1、柱体① 棱柱② 圆柱 2、锥体① 棱锥:h c S ‘底棱锥侧21=② 圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S )(21‘下底上底棱台侧+=② 圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球② 球冠:略 ③ 球缺:略 二、 体积 1、① 棱柱② 圆柱 2、① 棱锥② 圆锥 3、② 圆台 4、球体① 球:r V 334π=球 ② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。
三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的。
2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。
分析:圆柱体积:h SV 32=圆柱 圆柱侧面积:cS =圆柱侧因此:球体体积:V 232π⨯=球 球体表面积:r S 24π=球 +即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。
延长两侧棱相交于一点P 。
设台体上底面积为S 上,下底面积为S 下高为h 。
易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴hS S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。
这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π 半球的体积等于这些圆柱的体积之和。
……∴半球体积为:(2221r r V V n nr ++⨯⨯==∑π半球=]}......[1{)1()1()0(2222n n n n r n nr -+++-⨯⨯π =]......[222223)1(210nn r n n -++++-π=]6)12)(1(1[])12()1(61[2323n r nr n n n n n n n ---=---ππ 当+∞→n 时,01→n∴=V 半球r r r n n 33332)6211(]6)12)(11(1[πππ=⨯-=--- ∴球体积为:r V 334π=球5、 球体表面积公式推导分析:球体可以切割成若干(个n )近似棱锥,当+∞→n 时,这些棱锥的高为球体半径,底面积为球面面积的n1,则每一个棱锥的体积rS V n 球1311⨯=,则所有的小棱锥体积之和为球体体积。
即有:r r S n n 33431π=⨯球 ∴r S 24π=球 6、正六面体(正方体)与正四面体(1) 体积关系如图:正方体切下四个三棱锥后, 剩下的部分为正四面体 设正方体棱长为a ,则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:aa a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个正方体可以分成四个三棱锥与中间一个正四面体 即:a a a 33331461=+⨯ (2) 外接球正方体与其体内最大的正四面体有相同的外接球。
(理由:过不共面的四点确定一个球。
)正方体与其体内最大的正面体有四个公共顶点。
所以它们共球。
回顾:① 两点定线 ② 三点定面 ③ 三点定圆 ④ 四点定球 如图:(a)正方体的体对角线=球直径 (b)正四面体的外接球半径=43高 (c)正四面体的棱长=正方体棱长⨯2 (d)正方体体积:正四面体体积=3:1 (e)正方体外接球半径与正四面体外接球半径相等 (3) 正方体的内切球与正四面体的关系 (a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。
(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半(d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:a ar 422211=⨯= 7、利用祖暅原理推导球体体积。
构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。
证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。
如图:在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R ,截面高度均为h ,倒圆锥的截面半径为r 1锥,半球截面半径为r1球,则:挖去圆锥后的组合体的截面为:r R S 2121锥ππ-= 半球截面面积为:r S 212球π= ∵倒圆锥的底面半径与高相等,由相似三角形易得:h r =1锥 在半球内,由勾股定理易得:h Rr 221-=球∴h R S 221ππ-=h R S 222ππ-=即:S S 21=,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。
由祖暅原理可得:V V 21=所以半球体积:R R R V Sh Sh Sh 3232323231ππ=⨯⨯==-=⨯半球即,球体体积:RR V 3334322ππ=⨯=球8、 正方体与球(1) 正方体的内切球正方体的棱长=a球体的直径d (2)正方体的外接球正方体的体对角线=a3球体的直径d(3)规律:①正方体的内切球与外接球的球心为同一点;②正方体的内切球与外接球的球心在体对角线上;③正四面体的内切球与外接球的的半径之比为:3:1④正四面体内切球与外接球体积之比为:1:33⑤正四面体内切球与外接球表面积之比为:1:3⑥正方体外接球半径、正方体棱长、内切球半径比为:3:2:1⑦正四面体外接球、正四面体、内切球体积比为:ππ:6:33⑧正四面体外接球、正四面体、内切球表面积比为:ππ:6:39、正四面体与球(1)正四面体的内切球解题关键:利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径r。
利用体积关系得:hara⨯︒⨯=⨯︒⨯⨯)60sin21(31)60sin2131422(所以:hr41=,其中h为正四面体的高。
由相关计算得:aaah36)]321(32[22=-=⨯⨯∴a h r 12641==即:a a r V 33321663434)126(πππ===球 ∴π3:18=V V 球正四机体: (2)正四面体的外接球外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==a aV V 正四面体球 (3)规律:①正四面体的内切球与外接球的球心为同一点; ②正四面体的内切球与外接球的球心在高线上; ③正四面体的内切球与外接球的的半径之和等于高; ④正四面体的内切球与外接球的半径之比等于1:3 ⑤正四面体内切球与外接球体积之比为:1:27 ⑥正四面体内切球与外接球表面积之比为:1:9⑦正四面体外接球半径、正四面体棱长、内切球半径比为:63:12:6 ⑧正四面体外接球、正四面体、内切球体积比为:ππ3:18:327 ⑨正四面体外接球、正四面体、内切球表面积比为:ππ:26:9 10、 圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)圆柱高=底面直径=球的直径 球体体积=32圆柱体积球面面积=圆柱侧面积 (2)球容圆柱球体直径、圆柱的高、圆柱底面直径构成直角三角形。
设球体半径为R ,圆柱高为h ,底面半径为r则有:)2()2(222r h R += 即:2422r hR +=四、 方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为a ,求它的内切球和外接球的半径思路:先分析球心的位置。
因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。
且是正四面体的高线交点。
再分析球心与一些特殊的点、线、面的位置、数量关系。
在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。
方法1:展平分析:(最重要的方法)连接DO 并延长交平面ABC 于点G 连接D O 1并延长交BC 于点E ,则A 、G 在平面AED 中,由相似知识可得: ∴AD G O //1 且311=ADG O∴△GO O 1∽△DOA ∴ 31AOO O 1=即:a a A h O 4636434343AO 1=⨯=⨯== 方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD 的内切球球心为O ,连接AO 、BO 、CO 、DO ,则正四面体被分成四个完全一样的三棱锥。
设内切球半径为r ,正四面体的棱长为a 则正面四体的高为:a a ah 36)2332(22=-=⨯ 则:4个完全一样的三棱锥体积=有:r a a )60sin 21(31])60sin 21(31[422︒⨯=⨯︒⨯⨯∴a r 126=∴ a r V 33216634ππ==内切球 方法3:方程分析:(最常见的做法)如图:显然AO 、DO 是外接球半径,O 在Rt △DO O 1其中:a 2332DO 1⨯= 代入方程解得:a 46DO =、a 126O O 1= 方法4:补形分析(最巧妙的思考) 把正四面体补成正方体进行分析。
如图:此时,正四面体与正方体有共同的外接球。
正四面体的棱长为a ,则正方体棱长为:2a正方体的外接球直径为其体对角线∴a aD 26)2(3=⨯= ∴正四面体的外接球半径为:a D 462= 内切球半径为:a D126312=⨯ 方法5:坐标分析(最意外的解法)建立如图所示的空间直角坐标系:则A (0,0,a 36),B (0, a 33-,0C (a 21,a 63,0),D (a 21-,a 63,0由R ====|OD ||OC ||OB ||OA |得:OA 2=即:=++-)36(222a z y x z a y x 222)33(+++z a y a x 222)36()21(++--= =z a y a x 222)36()21(++-+解得:0==y x ,a z 126=,即:a r 126=,a a a R 4612636=-= ∴a R V 338634ππ==⨯外接球 主要方法:1、 公式的统一对于每个几何形体的面积与体积公式,我们很想找出一个万能公式全部适用于所有形体,但是这只是一个理想状况,实际上不可能,最多只可能适用于一部分而已。