人教版高中数学必修三专题讲义概率综合 课后练习
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
人教版数学高一-人教数学A版必修三】第三章《概率》综合训练(含详细解析)
高中数学-打印版(数学必修)第三章概率☯综合训练组一、选择题同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是()A这100个铜板两面是一样的B这100个铜板两面是不同的C这100个铜板中有50个两面是一样的,另外50个两面是不相同的D这100个铜板中有20个两面是一样的,另外80个两面是不相同的口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )✌ 0.42 0.28 0.3 0.7从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )✌至少有一个黒球与都是黒球至少有一个黒球与都是黒球至少有一个黒球与至少有1个红球恰有1个黒球与恰有2个黒球在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是()A4030 B 4012 C 3012 D 以上都不对先后抛掷骰子三次,则至少一次正面朝上的概率是()✌81 83 85 87设,A B为两个事件,且()3.0=A P ,则当()时一定有()7.0=B P高中数学-打印版✌ A与B互斥 A与B对立CB AD A不包含B二、填空题在200件产品中,192有件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100,其中是必然事件;是不可能事件;是随机事件投掷红、蓝两颗均匀的骰子,观察出现的点数,至多一颗骰子出现偶数点的概率是♉♉♉♉♉在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是♉♉♉♉♉♉♉♉♉♉♉♉♉♉在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是♉♉♉♉♉♉♉♉♉♉♉♉♉三、解答题袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次求:①3只全是红球的概率;② 3只颜色全相同的概率;③3只颜色不全相同的概率高中数学-打印版抛掷2颗质地均匀的骰子,求点数和为8的概率从4名男生和2名女生中任选3人参加演讲比赛①求所选3人都是男生的概率②求所选3人恰有1名女生的概率③求所选3人中至少有1名女生的概率的硬币任意掷在这个平面 平面上画了一些彼此相距2a的平行线,把一枚半径r a上,求硬币不与任何一条平行线相碰的概率数学3(必修) 第三章概率[综合训练B 组]参考答案一、选择题✌ 假设正反两面是不同的,则相同的面100次都朝上的概率为1001111 (2222)⨯⨯⨯= 这个概率太小了,几乎是不可能事件 1(0.420.28)0.3-+= 在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为4012 至少一次正面朝上的对立事件的概率为31117,12888=-= 对立事件二、填空题③④②①34其对立事件为都出现奇数点,11113,122444⨯=-= 512 556212= 0.004 20.004500=三、解答题解:①每次抽到红球的概率为11111,22228P =⨯⨯= ②每次抽到红球或黄球111884P =+=③颜色不全相同是全相同的对立,13144P =-=解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,因此同时掷两颗骰子的结果共有6636⨯=,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2),共5种,所以,所求事件的概率为365解:基本事件的总数为3620C =①所选3人都是男生的事件数为34414,205C P === ②所选3人恰有1女生的事件数为214212312,205C C P ⨯===③所选3人恰有2女生的事件数为1242414,205C C P ⨯===所选3人中至少有1名女生的概率为314555+=解:把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM ,垂足为M,如图所示,这样线段OM 长度(记作OM)的取值范围就是[0,]a只有当r OM a<≤时硬币不与平行线相碰,所以所求事件A的概率就是(,]()[0,]r a P A a =的长度的长度ara -。
高中数学必修三讲义:第三章 3.4 概率的应用 Word版含答案
概率的应用概率在决策中的应用[典例]查.100个人接受了调查,要求他们在赞成调整、反对调整、对这次调整不发表看法中任选一项.调查结果如下表所示:男女总计赞成18927反对122537不发表看法201636总计5050100[解]用A表示事件“对这次调整表示反对”,B表示“对这次调整不发表看法”,由互斥事件的概率加法公式,得P(A∪B)=P(A)+P(B)=37100+36100=73100=0.73,因此随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率是0.73.概率在决策问题中的应用(1)由于概率反映了随机事件发生的可能性的大小,概率是频率的近似值与稳定值,所以可以用样本出现的频率近似地估计总体中该结果出现的概率.(2)实际生活与生产中常常用随机事件发生的概率来估计某个生物种群中个别生物种类的数量、某批次的产品中不合格产品的数量等.[活学活用]某食品公司因新产品上市拟举办促销活动以促进销量,方法是买一份糖果摸一次彩.公司准备了一些黄、白两色乒乓球,这些乒乓球的大小与质地完全相同,另有一个棱长约为30厘米密封良好且不透光的长方体木箱(木箱上方可容一只手伸入).该公司拟按1%的中奖率设置大奖,其余99%则为小奖,大奖的奖品价值400元,小奖的奖品价值2元.请你按公司的要求设计一个摸彩方案.解:可以提出如下2个方案(答案不唯一).(方案1)在箱内放置100个乒乓球,其中1个为黄球,99个为白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中小奖.(方案2)在箱内放置25个乒乓球,其中3个为黄球,22个为白球,顾客一次摸出2个乒乓球,摸到2个黄球中大奖,否则中小奖.概率在整体估计中的应用[典例] 为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮到这种动物1 200只作好标记后放回,经过一星期后,又逮到这种动物1 000只,其中作过标记的有100只,按概率的方法估算,保护区内有多少只该种动物.[解] 设保护区内这种野生动物有x 只,假定每只动物被逮到的可能性是相同的,那么从这种野生动物中任逮一只,设事件A ={带有记号的动物},则由古典概型可知,P (A )=1 200x.第二次被逮到的1 000只中,有100只带有记号,即事件A 发生的频数m =100,由概率的统计定义可知P (A )≈1001 000=110,故1 200x ≈110,解得x ≈12 000. 所以,保护区内约有12 000只该种动物.利用频率与概率的关系求未知量的步骤(1)抽出m 个样本进行标记,设总体为未知量n ,则标记概率为mn . (2)随机抽取n 1个个体,出现其中m 1个被标记,则标记频率为m 1n 1.(3)用频率近似等于概率,建立等式m n ≈m 1n 1.(4)求得n ≈m ·n 1m 1.[活学活用]若10个鸡蛋能孵化出8只小鸡,根据此情况,估计某小鸡孵化厂20 000个鸡蛋能孵化出多少只小鸡.解:假定每个鸡蛋能孵化出小鸡的可能性是相等的,从中任选一个,记事件A ={鸡蛋能孵化出小鸡},此试验为古典概型,则P (A )=810①设20 000个鸡蛋能孵化出小鸡m 只,则P(A)≈m20 000,②由①②得m20 000≈810,解得m≈16 000.所以20 000个鸡蛋大约能孵化出小鸡16 000只.[层级一 学业水平达标]1.若经检验,某厂的产品合格率为98%,估算该厂8 000件产品中的次品件数为( ) A .7 840 B .160 C .16D .784解析:选B 在8 000件产品中,合格品约有8 000×98%=7 840件,故次品约有8 000-7 840=160(件).2.如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积为( )A.34B.43C.23D .无法计算解析:选B 在正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形=13,又因为S 正方形=4,所以S 阴影=43,故选B.3.设有外形完全相同的两个箱子,甲箱中有99个白球1个黑球,乙箱中有1个白球99个黑球.随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,我们可以认为这球是从__________箱中取出的.解析:甲箱中有99个白球1个黑球,故随机地取出一球,得到白球的可能性是99100,乙箱中有1个白球99个黑球,从中任取一球,得到白球的可能性是1100.由此可知,这一白球从甲箱中取出的概率比从乙箱中取出的概率大得多,既然在一次抽样中抽到白球,当然可以认为是由概率大的箱子中取出的,所以我们可以认为该球是从甲箱中取出的.答案:甲4.为了检测山上某个森林内松鼠的数量,可以使用以下方法:先从山上捕捉松鼠100只,在每只松鼠的尾巴上作上记号,然后再把它放回森林.经过半年后,再从森林中捕捉50只,尾巴上有记号的松鼠共5只,试根据上述数据,估计此森林内松鼠的数量.解:假定每只松鼠被捕捉的可能性是相等的,从山上任捕一只,设事件A 为“带有记号的松鼠”,则由古典概型可知P (A )=100n .①第二次从山上捕捉50只,有记号的松鼠共有5只,即事件A 发生的频数m =5,由此知P (A )≈550=110,②由①②可得100n ≈110,所以n ≈1 000.所以,森林内约有松鼠1 000只.[层级二 应试能力达标]1.“今天北京的降雨概率是60%,上海的降雨概率是70%”,下列说法不.正确的是( )A .可能北京今天降雨了,而上海没有降雨B .可能上海今天降雨了,而北京没有降雨C .可能北京和上海都没有降雨D .北京降雨的可能性比上海大解析:选D 因为北京的降雨概率比上海的降雨概率小,故D 说法不正确.2.调查运动员服用兴奋剂的时候,应用Warner 随机化应答方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的( )A .3.33%B .53%C .5%D .26%解析:选A 应用Warner 随机化应答方法调查300名运动员,我们期望有150人回答了第一个问题,而在这150人中又有大约一半的人即75人回答了“是”.其余5个回答“是”的人服用过兴奋剂,由此估计这群人中服用过兴奋剂的大约占5150≈3.33%.3.乘客在某电车站等候26路或16路电车,在该站停靠的有16,22,26,31四路电车,若各路电车先停靠的概率相等,则乘客等候的电车首先停靠的概率等于( )A.12B.13C.23D.34解析:选A 因为各路电车先停靠的概率都等于14,所以乘客等候的电车首先停靠的概率为14+14=12.4.某人手表停了,他打开电视机想利用电视机上整点显示时间来校正他的手表,则他等待不超过一刻钟的概率为( )A.16 B.15 C.14D.13解析:选C 由于电视机每隔1小时显示整点一次,并且在0~60之间任何一个时刻显示整点是等可能的,所以在哪个时间显示整点的概率只与该时间段的长度有关.而与该时间段的位置无关,这符合几何概型的条件,这是一个与时间长度有关的几何概型,P =1560=14.5.某人捡到不规则形状的五面体石块,他在每个面上都作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表).如果再投掷一次,估计该石块的第4面落在桌面上的概率约是________.解析:第四面落在桌面上的概率为P =13100=0.13.答案:0.136.地球上的山地、水和平原面积比约为3∶6∶1,那么太空的一块陨石恰好落在平原上的概率为________.解析:因为平原所占比例为13+6+1=110,所以陨石恰好落在平原上的概率为110.答案:1107.在等腰直角三角形ABC 中,斜边BC =22,在该三角形内任取一点,则该点到直角顶点A 的距离不大于1的概率为________.解析:由已知可得S △ABC =12×2×2=2,该三角形内到点A 距离不大于1的点构成扇形面积S 1=π4,所以P =π42=π8.答案:π88.有一个转盘游戏,转盘被平均分成10等份(如图所示).转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A .猜“是奇数”或“是偶数”B .猜“是4的整数倍数”或“不是4的整数倍数”C .猜“是大于4的数”或“不是大于4的数” 请回答下列问题:(1)如果你是乙,为了尽可能获胜,你会选哪种猜数方案,并且怎样猜?为什么? (2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么? (3)请你设计一种其他的猜数方案,并保证游戏的公平性.解:(1)可以选择B ,猜“不是4的整数倍数”或C ,猜“是大于4的数”.“不是4的整数倍数”的概率为810=0.8,“是大于4的数”的概率为610=0.6,它们都超过了0.5,故乙获胜的机会大.(2)为了保证游戏的公平性,应当选择方案A.因为方案A 猜“是奇数”或“是偶数”的概率均为0.5,从而保证了该游戏是公平的.(3)设计为猜“是大于5的数”或“小于6的数”,也可以保证游戏的公平性.9.小红家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小红一家人在下午6:00~7:00之间的任何一个时间随机地开始进晚餐.(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪种可能性更大些? (2)晚报在晚餐开始之前被送到的概率是多少? 解:(1)晚报在晚餐开始之前被送到的可能性更大些.(2)如图所示,试验的所有可能结果与图中区域D (右上方小正方形)内的所有点一一对应,晚报在晚餐开始之前送到等价于晚报到达时间y <晚餐开始时间x ,该事件的结果对应图中的阴影部分(区域d ).试验为几何概型.右上方小正方形的面积设为1,则d 的面积为78,于是所求事件的概率为78.。
高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.1.3 Word版含答案.docx
3.1.3概率的基本性质课时目标 1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法公式求某些事件的概率.1.事件的关系与运算(1)包含关系一般地,对于事件A与事件B,如果事件A________,则事件B________,这时称事件B 包含事件A(或称事件A包含于事件B).记作________________.不可能事件记作∅,任何事件都包含____________.一般地,如果B⊇A,且A⊇B,那么称事件A与事件B________,记作________.(2)并事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).(3)交事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).(4)互斥事件与对立事件①互斥事件的定义若A∩B为________________(A∩B=__________),则称事件A与事件B互斥.②对立事件的含义若A∩B为________________,A∪B是__________,则称事件A与事件B互为对立事件.2.概率的几个基本性质(1)概率的取值范围__________.(2)________的概率为1,__________的概率为0.(3)概率加法公式如果事件A与B为互斥事件,则P(A∪B)=____________.特殊地,若A与B为对立事件,则P(A)=1-P(B).P(A∪B)=____,P(A∩B)=____.一、选择题1.给出事件A与B的关系示意图,如图所示,则()A.A⊆B B.A⊇BC.A与B互斥D.A与B互为对立事件2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B ={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D3.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是()A.①B.②④C.③D.①③4.下列四种说法:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P(A ∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1; ④若事件A ,B 满足P(A)+P(B)=1,则A ,B 是对立事件. 其中错误的个数是( ) A .0 B .1 C .2 D .35.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85]g 范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.686.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( ) A .15B .25 C .35D .457.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.8.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.9.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________. 三、解答题10.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.(1)射中10环或9环的概率; (2)至少射中7环的概率.11.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?能力提升12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?13.年最高水位[8,10) [10,12) [12,14) [14,16) [16,18)(单位:m)概率0.1 0.28 0.38 0.16 0.08(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.1.互斥事件与对立事件的判定(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必须有一个要发生.(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A、B.①事件A 与B互斥,即集合A∩B=∅;②事件A与B对立,即集合A∩B=∅,且A∪B=I,也即A=∁I B或B=∁I A;③对互斥事件A与B的和A+B,可理解为集合A∪B.2.运用互斥事件的概率加法公式解题时,首先要分清事件之间是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏,分别求出各个事件的概率然后用加法公式求出结果.3.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再运用公式求解.如果采用方法一,一定要将事件分拆成若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.答案:3.1.3概率的基本性质知识梳理1.(1)发生 一定发生 B ⊇A 或A ⊆B 不可能事件 相等 A =B (2)事件A 发生或事件B 发生(3)事件A 发生且事件B 发生 (4)①不可能事件 ∅ ②不可能事件 必然事件 2.(1)0≤P(A)≤1(2)必然事件 不可能事件 (3)P(A)+P(B) 1 0 作业设计 1.C2.D [“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A ∪B≠B ∪D.] 3.C [从1,2,…,9中任取两个数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.①中“恰有一个偶数”和“恰有一个奇数”是同一个事件,因此不互斥也不对立;②中“至少有一个奇数”包括“两个都是奇数”这个事件,可以同时发生,因此不互斥也不对立;④中“至少有一个奇数”和“至少有一个偶数”,可以同时发生,因此不互斥也不对立;③中是对立事件,故应选C .]4.D [对立事件一定是互斥事件,故①对;只有A 、B 为互斥事件时才有P(A ∪B)=P(A)+P(B),故②错; 因A ,B ,C 并不是随机试验中的全部基本事件, 故P(A)+P(B)+P(C)并不一定等于1,故③错; 若A 、B 不互斥,尽管P(A)+P(B)=1, 但A ,B 不是对立事件,故④错.]5.C [设“质量小于4.8 g ”为事件A ,“质量小于4.85 g ”为事件B ,“质量在[4.8,4.85]g ”为事件C ,则A ∪C =B ,且A 、C 为互斥事件,所以P(B)=P(A ∪C)=P(A)+P(C),则P(C)=P(B)-P(A)=0.32-0.3=0.02.]6.C [记录取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 互斥,取到理科书的概率为事件B 、D 、E 概率的和. ∴P(B ∪D ∪E)=P(B)+P(D)+P(E) =15+15+15=35.] 7.0.30解析 P =1-0.42-0.28=0.30. 8.512解析 设甲队胜为事件A ,则P(A)=1-14-13=512.9.59解析 没有5点或6点的事件为A ,则P(A)=49,至少有一个5点或6点的事件为B.因A ∩B =∅,A ∪B 为必然事件,所以A 与B 是对立事件,则P(B)=1-P(A)=1-49=59.故至少有一个5点或6点的概率为59.10.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A 、B 、C 、D ,则A 、B 、C 、D 是互斥事件, (1)P(A ∪B)=P(A)+P(B) =0.24+0.28=0.52; (2)P(A ∪B ∪C ∪D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87.答 射中10环或9环的概率是0.52,至少射中7环的概率为0.87.11.解记“响第1声时被接”为事件A,“响第2声时被接”为事件B,“响第3声时被接”为事件C,“响第4声时被接”为事件D.“响前4声内被接”为事件E,则易知A、B、C、D互斥,且E=A∪B∪C∪D,所以由互斥事件的概率的加法公式得P(E)=P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.1+0.3+0.4+0.1=0.9.12.解(1)记“他乘火车去”为事件A1,“他乘轮船去”为事件A2,“他乘汽车去”为事件A3,“他乘飞机去”为事件A4,这四个事件不可能同时发生,故它们彼此互斥.故P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7.所以他乘火车或乘飞机去的概率为0.7.(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8,所以他不乘轮船去的概率为0.8.(3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.13.解设水位在[a,b)范围的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))=0.28+0.38+0.16=0.82.(2)P([8,12))=P([8,10))+P([10,12))=0.1+0.28=0.38.(3)记“水位不低于12 m”为事件A,P(A)=1-P([8,12))=1-0.38=0.62.。
人教版高中数学必修3课后解答答案
第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y . 程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 12、程序:3练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新4、34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第一章 复习参考题A 组(P50)1、(1)程序框图: 程序:1、(2)程序框图: 程序:2、见习题1.2 B 组第1题解答.34、程序框图:程序:INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m B 组(P35)1 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,”是否成立. 若是,则n是回文数,结束算法;否则,返回第四步.第五步,判断“i m第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62) 1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数. (3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间. 2、调查的总体是所有可能看电视的人群. 学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本. (2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差. (4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .G E .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、从表中看出当把 指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标. 2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。
高中数学 人教A版 必修3 第三章 概率 高考复习习题(解答题101-200)含答案解析
高中数学 人教A 版 必修3 第三章 概率 高考复习习题(解答题101-200)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.某项“过关游戏”规则规定:在地 关要抛掷 颗骰子 次,如果这 次抛掷所出现的点数和大于 ,则算过关.(Ⅰ)此游戏最多能过__________关.(Ⅱ)连续通过第 关、第 关的概率是__________. (Ⅲ)若直接挑战第 关,则通关的概率是__________. (Ⅳ)若直接挑战第 关,则通关的概率是__________. 2.设关于x 的一元二次方程.(1)若a 是从0、1、2、3四个数中任取的一个数, b 是从0、1、2三个数中任取的一个数,求上述方程有实数根的概率;(2)若a 是从区间[]03,任取的一个数, b 是从区间[]02,任取的一个数,求上述方程有实数根的概率. 3.当,x y Z∈,则称点(),P x y 为平面上单调格点:设求从区域Ω中任取一点P ,而该点落在区域A 上的概率;求从区域Ω中的所有格点中任取一点P ,而该点是区域A 上的格点的概率.4.某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段 后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是~分及~分的学生中选两人,记他们的成绩为,求满足“”的概率.5.高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望. 6.某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(1)求未来3年中,设表示流量超过120的年数,求的分布列及期望;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?7.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X 的分布列与数学期望()E X .8.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (Ⅰ)求应从这三个协会中分别抽取的运动员人数;(Ⅱ)将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛. (ⅰ)用所给编号列出所有可能的结果;(ⅱ)设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.9.为弘扬民族古典文化,巿电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正10分,否则记负10分,根据“该选手在回答完n 个问题后的总得分为n S ”.(1)求620S =且()01,2,3i S i ≥=的概率;(2,求X 的分布列,并计算数学期望()E X .10.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X .(1)求游戏结束时小华在第2个台阶的概率; (2)求X 的分布列和数学期望.11.某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.12.一个口袋中装有大小形状完全相同的3n +个乒乓球,其中1个乒乓球上标有数字1,2个乒乓球上标有数字2,其余n 个乒乓球上均标有数字3()*n N ∈,若从这个口袋中随机地摸出2个乒乓球,恰有一个乒乓球上标有数字2的概率是815. (1)求n 的值;(2)从口袋中随机地摸出2个乒乓球,设ξ表示所摸到的2个乒乓球上所标数字之积,求ξ的分布列和数学期望E ξ.13.重庆市某厂党支部10月份开展“两学一做”活动,将10名党员技工平均分为甲,乙两组进行技能比赛.要求在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.14.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图所示.(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.15.为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: [)[)[)[)[]45,4025,,3020.,,25,304035,,35,(Ⅰ)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[)40,35岁的人数;(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.16.某校体育教研组研发了一项新的课外活动项目,为了解该项目受欢迎程度,在某班男生女生中各随机抽取20名学生进行调研, 统计得到如下列联表:附:参考公式及数据(1)在喜欢这项课外活动项目的学生中任选1人,求选到男生的概率;(2)根据题目要求,完成22⨯列联表,并判断是否有项目与性别有关”?17.近年来我国电子商务行业迎来发展的新机遇.2016年“618”期间,某购物平台的销售业绩高达516亿元人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次. (1)选完成关于商品和服务评价的22⨯列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量X :0.070.02x0.040.O①求对商品和服务全为好评的次数X 的分布列; ②求X 的数学期望和方差. 附临界值表:2K(其中n a b c d =+++)关于商品和服务评价的22⨯列联表:18.2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:(1)由以上统计数据完成如下22⨯孩计划与家庭收入有关?说明你的理由.(2)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划且每个家庭是否为“好字”家庭互不影响,设收入在8千~1万的3个有二孩计划家庭中“好字”家庭有x个,求x的分布列及数学期望.下面的临界值表供参考:19.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:(1)求2×2列联表中的数据x,y,A,B的值;(2)绘制发病率的条形统计图,并判断疫苗是否有效?(3)能够有多大把握认为疫苗有效?20.甲、乙两人约定在中午12时到下午1时之间到某站乘公共汽车, 又知这段时间内有4班公共汽车.设到站时间分别为1215:,12:30,1245:,1:00.如果他们约定:(1)见车就乘;(2)最多等一辆.试分别求出在两种情况下两人同乘一辆车的概率.假设甲乙两人到达车站的时间是相互独立的,且每人在中午12点到1点的任意时刻到达车站是等可能的.21.某技术公司新开发了,A B 两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:(1)试分别估计产品A ,产品B 为正品的概率;(2)生产一件产品A ,若是正品可盈利80元,次品则亏损10元;生产一件产品B ,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记X 为生产1件产品A 和1件产品B 所得的总利润,求随机变量X 的分列和数学期望。
人教A版高中数学必修3课后练习第三章概率的意义
A级:基础巩固练一、选择题1.已知某种彩票发行1000000张,中奖率为0.001,则下列说法正确的是() A.买1张肯定不中奖B.买1000张一定能中奖C.买1000张也不一定能中奖D.买1000张一定恰有1张能中奖答案 C解析买1张,可能中奖,也可能不中奖,所以A选项错误;买1000张这样的彩票,可能中奖,也可能不中奖,所以B选项错误;买1000张也不一定能中奖,所以C选项正确;买1000张这样的彩票,可能有1张中奖,也可能多张中奖,也可能1张也不中奖,所以D选项错误.故选C.2.随着互联网的普及,网上购物已逐渐成为消费时尚,欲了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:满意情况不满意比较满意满意非常满意人数200n 21001000“满意”的概率是()A.715 B.25 C.1115 D.1315答案 C解析由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,所以在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为33004500=1115.故选C.3.蜜蜂包括小蜜蜂和黑小蜜蜂等很多种类,在我国的云南及周边各省都有分布.春暖花开的时候是放蜂的大好季节.养蜂人甲在某地区放养了9000只小蜜蜂和1000只黑小蜜蜂,养蜂人乙在同一地区放养了1000只小蜜蜂和9000只黑小蜜蜂.某中学生物小组在上述地区捕获了1只黑小蜜蜂.那么,生物小组的同学认为这只黑小蜜蜂是哪位养蜂人放养的比较合理()A.甲B.乙C.甲和乙D.以上都对答案 B解析 从放蜂人甲放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为110,而从放蜂人乙放的蜜蜂中,捕获一只小蜜蜂是黑小蜜蜂的概率为910,所以,现在捕获的这只小蜜蜂是放蜂人乙放养的可能性较大.故选B.4.在下列各事件中,发生的可能性最大的为( ) A .任意买1张电影票,座位号是奇数 B .掷1枚骰子,点数小于等于2C .有10000张彩票,其中100张是获奖彩票,从中随机买1张是获奖彩票D .一袋中装有8个红球,2个白球,从中随机摸出1个球是红球 答案 D解析 概率分别是P A =12,P B =13,P C =1100,P D =45,故选D. 5.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛掷两枚硬币,恰有一枚正面向上则甲胜,两枚都是正面向上则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜 答案 B解析 A 项,P (点数为奇数)=P (点数为偶数)=12;B 项,P (恰有一枚正面向上)=12,P (两枚都正面向上)=14;C 项,P (牌色为红)=P (牌色为黑)=12;D 项,P (同奇或同偶)=P (奇偶不同)=12.二、填空题6.如果从一个不透明的口袋中摸出白球的概率为16,已知袋中白球有3个,那么袋中球的总个数为________.答案 18解析 设袋中有x 个球,因为摸出白球的概率为16,且袋中白球有3个,所以3x =16.所以x =18.7.一个袋中装有数量差别较大的白球和黑球,从中任取一球,取出的是白球,估计袋中数量少的球是________.答案黑球解析根据极大似然法,知袋中数量较多的是白球,因此黑球数量较少.8.①一年按365天计算,两名学生的生日相同的概率是1 365;②如果买彩票中奖的概率是0.001,那么买1000张彩票一定能中奖;③乒乓球比赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明昨天气象局的天气预报“降水概率为90%”是错误的.其中正确的有________(填序号).答案①③解析对于②,买1000张彩票不一定中奖,故②错误;对于④,降水概率为90%只能说明下雨的可能性很大,但也可能不下雨,故④错误.三、解答题9.为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库,经过适当时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.解设水库中鱼的尾数为n,n是未知的,现在要估计n的值.假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾,设事件A={带有记号的鱼},由概率的统计定义可知P(A)=2000 n.①第二次从水库中捕出500尾,观察每尾鱼上是否有记号,共需观察500次,其中带有记号的鱼有40尾,即事件A发生的频数m=40,P(A)≈40 500.②由①②两式,得2000n≈40500,解得n≈25000.所以,估计水库中有鱼25000尾.B级:能力提升练10.设人的某一特征(眼睛的大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1)1个孩子由显性决定特征的概率是多少?(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?解 如图,由图可知,他们的孩子可能的基因有4种,即dd ,dr ,rd ,rr ,它们的概率分别为14,14,14,14.(1)当基因为dd ,dr ,rd 时,孩子显露显性基因决定的特征,所以他们的1个孩子由显性决定特征的概率是34.(2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为34.。
人教A版高中数学必修3课后习题 3.1.1 随机事件的概率
第三章概率3.1 随机事件的概率3.1.1 随机事件的概率课后篇巩固提升基础巩固①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.A.1个B.2个C.3个D.4个A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.2.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品8件正品2件次品的10件产品中,任意抽取3件, 在A中,3件都是正品是随机事件,故A错误;在B中,至少有1件次品是随机事件,故B错误;在C中,3件都是次品是不可能事件,故C错误;在D中,至少有1件正品是必然事件,故D正确.3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.6是正面朝上的频率不是概率.4.一个家庭前后育有两个小孩儿,则可能的结果为( )A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的结果,故选C.5.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )A.49B.51C.0.49D.0.510.49,所以摸到白球的频率为0.51,从而摸到白球的次数为100×0.51=51.6.我国古代数学有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( )A.6B.7C.8D.9,n≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.2357.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.=0.03.P=6008.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为.4,即4,5的频数为13+22=35.所以频率为35=0.35.100①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若log a(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.恒成立,∴①正确;奇函数y=f(x)只有当x=0有意义时才有f(0)=0,∴②正确;由log a(x-1)>0知,当a>1时,,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2) ,(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”这一事件包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”这一事件包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1);“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax+by=0的斜率k=-ab>-1,即a<b,所以包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).能力提升1.随机事件A的频率mn满足( )A.mn =0 B.mn=1 C.mn>1 D.0≤mn≤1n次试验中,事件A不发生时,频率mn=0;当事件A发生n次时,频率m n =1;当发生次数为m,0<m<n时,频率mn满足0<mn<1,故D正确.2.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡1 2 3456 7 8 9 10则取到号码为奇数的频率是( ) A.0.53 B.0.5 C.0.47 D.0.37=53100=0.53.3.某个地区从某年起n 年内的新生婴儿数及其中男婴数如表所示(单位:个):时间范围 1年内 2年内 3年内 4年内(1)填写表中的男婴出生频率(结果精确到0.01); (2)这一地区男婴出生的概率约是 . 频率f(A)=nA n ,各频率为0.49,0.54,0.50,0.50.(2)可以利用频率来求近似概率.由(1)得概率约为0.50. 0.54 0.50 0.50 (2)0.504.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%,一旦失败,一年后将丧失全部资金的50%,下表是去年200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的平均数是 元.x,如果成功,x 的取值为5×12%,如果失败,x 的取值为-5×50%,一年后公司成功的概率为192200=2425,失败的概率为8200=125,所以一年后公司收益的平均数是(5×12%×2425-5×50%×125)×10000=4760(元).5.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.n,假定每只天鹅被捕到的可能性是相等的,从保护区中任捕一只,设事件A={带有记号的天鹅},则P(A)=200n, ①第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=20150, ②由①②两式,得200n =20150,解得n=1500,所以该自然保护区中天鹅的数量约为1500只.6.李老师在某大学连续3年主讲经济学院的《高等数学》,下表是李老师统计的这门课3年来的学生考试成绩分布:经济学院一年级的学生王小慧下学期将选修李老师的《高等数学》,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.43+182+260+90+62+8=645,根据公式可计算出选修李老师的《高等数学》的人的考试成绩在各个段上的频率依次为:43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012.用已有的信息,可以估计出王小慧下学期选修李老师的《高等数学》得分的概率如下:(1)将“90分以上”记为事件A,则P(A)≈0.067.(2)将“60分~69分”记为事件B,则P(B)≈0.140.(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.。
人教A版高中数学必修三练习:第三章概率单元归纳提升课含答案
模块评估检测(120 分钟150 分)一、选择题 ( 本大题共 12 小题 , 每题 5 分, 共 60 分, 在每题给出的四个选项中 , 只有一项为哪一项切合题目要求的 )1.从 2 018 名俄罗斯足球世界杯志愿者中选用 50 名构成一个志愿者团 , 若采纳下边的方法选用 : 先用简单随机抽样从2 018 人中剔除 18 人, 余下的 2 000 人再按系统抽样的方法进行, 则每人当选的时机( C )A. 不全相等B. 均不相等C.都相等D.没法确立2. 在线段 [0,3]上任取一点,则此点坐标大于1 的概率是( B )A. B. C. D.3.一个射手进行射击 , 记事件 E1: “脱靶” ,E 2: “中靶” ,E 3: “中靶环数大于 4”,E 4: “中靶环数不小于 5”, 则在上述事件中 , 互斥而不对峙的事件共有( B )A.1 对B.2 对C.3 对D.4 对4.有五组变量 :①汽车的质量和汽车每耗费 1 升汽油所行驶的均匀行程;②均匀日学习时间和均匀学习成绩;③某人每天抽烟量和其身体健康状况;④正方形的边长和面积 ;⑤汽车的质量和百公里耗油量.此中两个变量成正有关的是( C )A. ①③B. ②④C.②⑤D.④⑤5.一个容量为 100 的样本 , 其数据的分组与各组的频数以下 :[0,(10,(20,(30,(40,(50,(60,组别10]20]30]40]50]60]70]频数1213241516137则样本数据落在 (10,40]上的频次为( C)6.若某校高一年级 8 个班参加合唱竞赛的得分如茎叶图所示 , 则这组数据的中位数和均匀数分别是( A )A.91.5 和 91.5B.91.5 和 92C.91 和 91.5D.92 和 927.履行以下图的程序框图 , 假如输入的 N是 6, 那么输出的 p 是 ( B )A.120B.720C.1 440D.5 0408. 已知Ω={(x,y)|x+y ≤6,x ≥0,y ≥0},A={(x,y)|x ≤4,y ≥0,x-2y ≥ 0}, 若向地区Ω上随机投一点 P, 则点 P 落入地区 A 的概率为( A )A. B. C. D.9.某中学呼吁学生在暑期时期起码参加一次社会公益活动 ( 以下简称活动 ). 该校文学社共有 100 名学生 , 他们参加活动的次数统计以下图 ,则从文学社中随意选 1 名学生 , 他参加活动次数为 3 的概率是( B )A. B. C. D.10. 三个数 390,455,546的最大条约数是 ( D )A.65B.91C.26D.1311.在以下图的程序框图中 , 假如输入的 n=5, 那么输出的 i 等于( C )A.3B.4C.5D.612.如图是把二进制的数 11111(2)化成十进制的数的一个程序框图 , 则判断框内应填入的条件是 ( D )A.i>5?B.i ≤5?C.i>4?D.i ≤4?二、填空题 ( 本大题共 4 小题 , 每题 5 分, 共 20 分, 将答案填在题中的横线上 )13.课题组进行城市空气质量检查 , 按地区把 24 个城市分红甲 , 乙, 丙三组, 对应的城市数分别为 4,12,8, 若用分层抽样抽取 6 个城市 , 则丙组中应抽取的城市数为 2 .14.利用秦九韶算法 , 求当 x=23 时, 多项式 7x3+3x2-5x+11 的值的算法 .①第一步 :x=23,第二步 :y=7x 3+3x2-5x+11,第三步 : 输出 y;②第一步 :x=23,第二步 :y=((7x+3)x-5)x+11,第三步 : 输出 y;③算 6 次乘法 ,3 次加法 ;④算 3 次乘法 ,3 次加法 .以上描绘正确的序号为②④.15.履行以下图的程序框图 , 输出的 T= 30 .16. 已知直线 l 过点 (-1,0),l 与圆 C:(x-1) 2+y2=3 订交于 A,B 两点 , 则弦长|AB| ≥2 的概率为.三、解答题 ( 本大题共 6 小题 , 共 70 分. 解答时应写出文字说明 , 证明过程或演算步骤 )17.(10 分) 一盒中装有 12 个球 , 此中 5 个红球 ,4 个黑球 ,2 个白球 ,1 个绿球 , 从中随机拿出 1 球, 求:(1)拿出 1 球是红球或黑球的概率 .(2)拿出 1 球是红球或黑球或白球的概率 .【分析】记事件 A 1 ={ 任取 1 球为红球 },A 2={ 任取 1 球为黑球 },A 3 ={ 任取 1 球为白球 },A 4 ={ 任取 1 球为绿球 }, 则P(A 1)=,P(A 2 )=,P(A 3)=,P(A 4 )=.由题意知 ,事件A 1,A 2,A 3,A 4相互互斥 .(1)拿出 1 球为红球或黑球的概率为 :P(A 1∪A 2)=P(A 1 )+P(A 2 )=+= .(2)拿出 1 球为红球或黑球或白球的概率为 :方法一 :P(A 1∪A 2∪A 3 )=P(A 1 )+P(A 2 )+P(A 3 )=++=.方法二 :P(A 1∪A 2∪A 3 )=1-P(A4)=1-=.18.(12 分) 甲, 乙两艘货轮都要在某个泊位停靠 6 小时 , 假设它们在一日夜的时间段中随机抵达 , 试求两船中有一艘在停靠位时 , 另一艘船一定等候的概率 .【分析】设甲 ,乙两船抵达泊位的时辰分别为x,y.则作出以下图的地区 .地区 D( 正方形 )的面积 S1 =24 2,地区 d( 暗影 )的面积 S2 =24 2 -18 2 .因此P= ==.即两船中有一艘在停靠位时另一船一定等候的概率为.19.(12 分) 在一次数学统考后 , 某班随机抽取 10 名同学的成绩进行样本剖析 , 获取成绩数据的茎叶图以下图 .(1)计算样本的均匀成绩及方差 .(2)在这 10 个样本中 , 现从不低于 84 分的成绩中随机抽取 2 个, 求 93 分的成绩被抽中的概率 .【分析】(1) 这 10 名同学的成绩是 :60,60,73,74,75,84,86,93,97,98,则均匀数=80.方差s2=[(98-80) 2 +(97-80)2+(93-80)2 +(86-80)2+(84-80) 2 +(75-8 0) 2 + (73-80) 2 +(74-80)2+(60-80)2 +(60-80)2 ]=174.4.即样本的均匀成绩是80 分,方差是 174.4.(2)设 A 表示随机事件“ 93 分的成绩被抽中” ,从不低于 84 分的成绩中随机抽取 2 个结果有 :(98,84),(98,86),(98,93),(98,97),(97,84),(97,86),(97,93),(93,84),(93,86),(86,84),共10种.而事件 A 含有 4 个基本领件 :(98,93),(97,93),(93,84),(93,86).因此所求概率为P== .20.(12 分) 某培训班共有 n 名学生 , 现将一次某学科考试成绩 ( 单位 : 分)绘制成频次散布直方图 , 以下图 . 此中落在 [80,90) 内的频数为 36.(1)请依据图中所给数据 , 求出 a 及 n 的值 .(2)从如图 5 组中按分层抽样的方法选用 40 名学生的成绩作为一个样本, 求在第一组、第五组 ( 从左到右 ) 中分别抽取了几名学生的成绩 . (3)在(2) 抽取的样本中的第一与第五组中 , 随机抽取两名学生的成绩 ,求所取两名学生的均匀分不低于70 分的概率 .【分析】 (1) 第四组的频次为 :1-0.05-0.075-0.225-0.35=0.3,因此 a==0.03,n==120.(2) 第一组应抽 :0.05 ×40=2( 名),第五组应抽 :0.075 ×40=3( 名).(3)设第一组抽取的 2 个分数记作 A1、A2 ,第五组的 3 个分数记作 B1、B2、B3,那么从这两组中抽取 2 个的结果有:A1A2 ,A1 B1,A1 B2 ,A1B3 ,A2 B1,A2B2 ,A2B3,B1B2 ,B1 B3,B2 B3共 10 种,此中均匀分不低于 70 分的有 9 种,所求概率为 P=.21.(12 分) 每年的严寒天气都会带热“御寒经济” , 以餐饮业为例 , 当外面太冷时 , 许多人都会选择叫外卖上门 , 外卖商家的订单就会增添 , 下表是某餐饮店从外卖数据中抽取的 5 天的日均匀气温与外卖订单数 .日均匀气温 ( ℃)-2-4-6-8-10外卖订单数 ( 份)5085115140160经过数据剖析 , 一天内均匀气温 x( ℃) 与该店外卖订单数 y( 份) 成线性有关关系 , 试成立 y 对于 x 的回归方程 , 并展望气温为 - 12℃时该店的外卖订单数 ( 结果四舍五入保存整数 ).【分析】由题意可知 ==-6,==110,=4 2 +2 2 +0 2+(-2) 2 +(-4) 2=40,(x i- )(y i- )=4 ×(-60)+2×(-25)+0×5+(-2)×30+(-4)×50=-550,因此 ===-13.75,= - =110+13.75×(-6)=27.5,因此 y 对于 x 的回归方程为 =-13.75x+27.5,当 x=-12 时, =-13.75x+27.5=-13.75×(-12)+27.5=192.5 ≈193.因此可展望当均匀气温为 -12 ℃时 ,该店的外卖订单数为 193 份.22.(12 分) 某高校在 2018 年的自主招生考试成绩中随机抽取100 名中学生的笔试成绩 , 按成绩分组 , 获取的频次散布表以下所示 .组号分组频数频次第 1 组[160,165)50.050第 2 组[165,170)①0.350第 3 组[170,175)30②第 4 组[175,180)200.200第 5 组[180,185]100.100共计100 1.00(1)请先求出频次散布表中① , ②地点的相应数据 , 再达成频次散布直方图 .(2)为了能选拔出最优异的学生 , 高校决定在笔试成绩高的第 3、4、5 组顶用分层抽样抽取 6 名学生进入第二轮面试 , 求第 3、4、5 组每组各抽取多少名学生进入第二轮面试.(3)在(2) 的前提下 , 学校决定在 6 名学生中随机抽取 2 名学生接受 A考官进行面试 , 求: 第 4 组起码有一名学生被 A考官面试的概率 .【分析】 (1) ①由题可知 ,第 2 组的频数为 0.350 ×100=35人,②第3组的频次为=0.300,频次散布直方图以下图,(2)由于第 3 、4 、5 组共有 60 名学生 ,因此利用分层抽样在 60 名学生中抽取 6 名学生进入第二轮面试 ,每组抽取的人数分别为 :第 3 组: ×6=3 人,第 4 组: ×6=2 人,第 5 组: ×6=1 人,因此第 3 、4、5 组分别抽取 3 人、 2 人、 1 人进入第二轮面试 .(3)设第 3 组的 3 位同学为 A 1,A 2,A 3,第 4 组的 2 位同学为 B1,B2 ,第 5组的 1 位同学为 C1 ,则从这六位同学中抽取两位同学有(A 1 ,A 2 ),(A 1 ,A 3 ),(A 1 ,B1),(A 1 ,B2 ),(A 1,C1),(A 2 ,A 3 ),(A 2 ,B 1 ),(A 2,B 2),(A 2 ,C1 ),(A 3 ,B 1),(A 3 ,B2 ),(A 3 ,C1),(B 1,B 2),(B 1 , C1 ),(B 2,C1),共 15 种,此中第 4 组的 2 位同学 B1,B 2中起码有一位同学当选的有:(A 1 ,B1),(A 1 ,B2 ),(A 2 ,B1),(A 2 ,B2 ),(A 3 ,B1 ),(A 3 ,B2 ),(B 1 ,B2 ),(B 1 ,C1),(B 2 ,C1 ),共有 9 种,所以第 4 组起码有一名学生被 A 考官面试的概率为= .封闭 Word 文档返回原板块。
2021年高中数学 3.1.2概率的意义课后习题新人教版必修3
2021年高中数学 3.1.2概率的意义课后习题新人教版必修3我们把在条件S下,一定会发生的事件,叫做相对于条件S的________事件。
在条件S下,一定不会发生的事件,叫做相对于条件S的_________事件。
必然事件和不可能事件统称为相对于条件S的______事件。
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S下的_______事件。
在相同条件S下重复次试验,观察某一事件A是否出现,称次试验中事件A出现的次数为事件A出现的______,称事件A出现的比例为事件A出现的______。
由于事件A发生的次数至少为0,至多为,因此事件A的频率范围为____________。
概率及其记法:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的___ _。
:判断以下现象是否是随机现象:某路中单位时间内发生交通事故的次数;冰水混合物的温度是0℃;三角形的内角和为180°;一个射击运动员每次射击的命中环数;边形的内角和为180°。
9.下面事件:①在标准大气压下,水加热到80℃时会沸腾;②抛掷一枚硬币,出现反面;③实数的绝对值不小于零;其中是不可能事件的是( )A. ②B. ①C. ①②D. ③10.有下面的试验:①如果 ,那么;②某人买彩票中奖;③实系数一次方程必有一个实根;④在地球上,苹果抓不住必然往下掉;其中必然现象有 ( )A. ①B. ④C. ①③D. ①④11.下面给出四个事件:①明天天晴;②在常温下,焊锡熔化;③自由下落的物体作匀加速直线运动;④函数(,且)在定义域上为增函数;其中是随机事件的有A. 0B. 1C. 2D. 3 ( )12.从12个同类产品(其中有10个正品,2个次品)中,任意取3个的必然事件是A.3个都是正品B.至少有1个是次品( )C.3个都是次品D.至少有1个是正品13.下列事件是随机事件的有( )A.若、、都是实数,则。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
高中数学必修三第三章概率综合训练(含答案)
高中数学必修三概率综合训练一、单选题1.下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A. ②③④B. ①③⑤C. ①②③⑤D. ②③⑤2.下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.气象台预报“本市明天降雨概率是70%”,下列说法正确的是()A. 本市明天将有70%的地区降雨B. 本市明天将有70%的时间降雨C. 明天出行带雨具的可能性很大D. 明天出行不带雨具肯定要淋雨4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. “至少有一个红球”与“都是黑球”B. “至少有一个黑球”与“都是黑球”C. “至少有一个黑球”与“至少有1个红球”D. “恰有1个黑球”与“恰有2个黑球”5.已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A. 0B. 1C. 2D. 36.设函数,若从区间内随机选取一个实数,则所选取的实数满足的概率为()A. 0.5B. 0.4C. 0.3D. 0.27.如图,在矩形中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是()A. B. C. D.8.掷一个骰子,出现“点数是质数”的概率是()A. B. C. D.9.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A. 至多有2件次品B. 至多有1件次品C. 至多有2件正品D. 至多有1件正品10.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为()A. B. C. D.11.在边长为4的正方形内随机取一点,该点到正方形的四条边的距离都大于1的概率是()A. B. C. D.12.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A. P(M)=,P(N)=B. P(M)=,P(N)=C. P(M)=,P(N)=D. P(M)=,P(N)=13.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A. 3个都是正品B. 至少有1个是次品C. 3个都是次品D. 至少有1个是正品14.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为()A. 0.6B. 0.5C. 0.4D. 0.315.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤”的概率,则P=()A. B. C. D.16.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A. B. C. D.17.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A. 0.9B. 0.2C. 0.7D. 0.518.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C. D.19.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足的概率为()A. B. C. D.20.袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A. B. C. D.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且。
人教版高中数学必修三教学案讲义及课后作业-概率全章复习
人教版高中数学必修三教学讲义年级:上课次数:学员姓名:辅导科目:数学学科教师:课题概率课型□预习课□同步课■复习课□习题课授课日期及时段教学内容《概率》全章复习与巩固【学习目标】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.会用互斥事件的概率加法公式求互斥事件的概率.3.理解古典概型及其概率计算公式,会计算一些随机事件发生的概率.4.了解随机数的意义,能运用模拟方法估计概率,初步体会几何概型的意义.【知识网络】例1.某射手在相同条件下进行射击,结果如下:(1)问该射手射击一次,击中靶心的概率约是多少?(2)假设该射手射击了300次,估计击中靶心的次数是多少?【思路点拨】弄清频率和概率的含义及它们之间的关系是解题的关键.【解析】(1)由表可知概率约为0.9;(2)估计击中靶心的次数为300×0.9=270(次).【总结升华】本题中利用概率知识估计击中靶心的次数是一种非常科学的决策方法.举一反三:f,则随着n的逐渐增大,有【变式1】若在同等条件下进行n次重复试验得到某个事件A发生的频率()n( )f与某个常数相等A.()nf与某个常数的差逐渐减小B.()nf与某个常数的差的绝对值逐渐减小C.()nf与某个常数的附近摆动并趋于稳定D.()n【答案】本题选D,根据概率的定义.要点二:互斥事件与对立事件例2.经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下:(1)至多2人排队等候的概率是多少? (2)至少3人排队等候的概率是多少?【思路点拨】利用互斥事件概率加法公式计算.【解析】记“等候的人数为0”为事件A ,“1人等候”为事件B ,“2人等候”为事件C ,“3人等候”为事件D ,“4人等候”为事件E ,“5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥. (1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C ,∴ P (G )=P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,∴ P (H )=P (D+E+F )=P (D )+P (E )+P (F ) =0.3+0.1+0.04=0.44.【总结升华】第(2)问也可以这样解:因为G 与H 是对立事件,所以P (H )=1-P (G )=1-0.56=0.44. 举一反三:【变式1】某地区的年降水量在下列范围内的概率如下表所示:年降水量 (单位:mm) [)150,100[)200,150[)250,200[)300,250概率0.120.250.160.14(1)求年降水量在[100,200)()mm 内的概率;(2)求年降水量在[150,300)()mm 内的概率. 【答案】(1)0.37(2)0.55【解析】(1)记这个地区的年降水量在[100,150)、[150,200)、[200,250)、[250,300)()mm 范围内分别为事件,,,A B C D ,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,年降水量在[100,200)()mm 范围内的概率是()()()0.120.250.37P A B P A P B +=+=+=∴年降水量在[100,200)()mm 范围内的概率是0.37. (2)年降水量在[150,300)()mm 范围内的概率是()()()()0.250.160.140.55P B C D P B P C P D ++=++=++=的条件写成集合形式,并把所研究事件A的集合也分析得出. 把两个集合用平面区域表示,特别注意不等式所表示区域.【解析】到达乙地的时间是9:30到10:00之间的任一时刻,某人从乙地转乘的时间是9:45到10:15之间的任一时刻,如果在平面直角坐标系中用x轴表示班车到达乙地的时间,y轴表示从乙地出发的时间,因为到达乙地时间和从乙地出发的时间是随机的,则试验的全部结果可看作是边长为0.5的正方形.设“他能赶上车”为事件A,则事件A的条件是x y≤,构成事件A的区域为图中的阴影部分.由几何概型公式,得22210.50.252()0.8750.5P A-⨯==,即他能赶上车的概率为0.875.【总结升华】在概率问题中,与面积有关或可以转化为二维空间的,可以采取几何概型的方法去解决.直接与面积有关的,可直接计算,有时需要先进行转化成二维空间,然后利用几何概型.举一反三:【变式1】在0~1之间随机选择两个数,这两个数对应的点把长度为1的线段分成了三条线段,试求这三条线段能构成三角形的概率.【解析】设三条线段的长度分别为x,y,1-x-y,则0101011xyx y<<⎧⎪<<⎨⎪<--<⎩,,,即0101xy x<<⎧⎨<<-+⎩,.在平面上建立如图所示的平面直角坐标系,直线x=0,y=0,y=-x+1围成如图所示三角形区域G(不包括边界),每一对(x,y)对应着G内的点(x,y),由题意知,每个试验结果出现的可能性相等,因此,试验属于几何概型.三条线段能构成三角形,当且仅当由802a b a b +-=⎧⎪⎨=⎪⎩,得交点坐标为16833⎛⎫ ⎪⎝⎭,, ∴ 所求事件的概率为18812313882P ⨯⨯==⨯⨯. 【总结升华】几何概型的概率问题关键是数形结合,将问题转化成与长度、角度、面积、体积等相关的类型解决.课 后 作 业年 级 : 上 课 次 数 : 作业上交时间:学 员 姓 名 : 辅 导 科 目 : 数学 学 科 教 师:作业内容 作业得分作 业 内 容【巩固练习】1.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( )A .1对B .2对C .3对D .4对2.某校学生毕业后有回家待业,上大学和补习的三种方式,现取一个样本调查结果如图所示,若该校每一个学生上大学的概率为45,则每个学生补习的概率为( )A .110B .225C .325D .15 3.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85)(g )范围内的概率是( )A .0.62B .0.38C .0.02D .0.684.先后抛掷骰子三次,则至少一次正面朝上的概率是( )A .81B . 83C . 85D . 87 5.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( )。
高中数学人教A版必修三课时习题:第3章概率3.3.2含答案
3.3.2均匀随机数的产生课时目标1.理解均匀随机数的观点与意义,认识均匀随机数的产生过程.2.能使用计算器或计算机模拟均匀随机数的产生来预计事件的概率.识记强化1.均匀随机数设试验结果 x 是区间 [a,b]上的任何一个实数,而且出现任何一个实数是等可能的.2.均匀随机数的产生(1)计算器上产生 [0,1] 上的均匀随机数是等可能的.(2)Excel软件产生[0,1]区间上均匀随机数的函数为“rand()”3.用模拟的方法近似计算某事件概率的方法(1)试验模拟方法:制作两个转盘模型,进行模拟试验,并统计试验结果.(2)计算机模拟的方法:用 Excel 软件产生 [0,1] 区间上均匀随机数进行模拟.注意操作步骤.课时作业一、选择题1.以下对于用转盘进行随机模拟的说法,正确的选项是()A.旋转的次数的多少不会影响预计的结果B.旋转的次数越多,预计的结果越精准C.旋转时能够按规律旋转D.转盘的半径越大,预计的结果越精准1答案: B分析:旋转时要无规律旋转,不然预计的结果与实质有较大的偏差,因此 C 不正确;转盘的半径与预计的结果没关,因此 D 不正确;旋转的次数越多,预计的结果越精准,因此 A 不正确.应选 A.2.与均匀随机数特色不符的是()A .它是 0~ 1 内的任何一个实数B.它是一个随机数C.出现 0~1 内任何一个实数都是等可能的D.它是随机数的均匀数答案: D分析:A 、B、C 是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,其实不是“随机数的均匀数”,应选 D.3.用均匀随机数进行随机模拟,能够解决()A.只好求几何概型的概率,不可以解决其余问题B.不单能求几何概型的概率,还可以计算图形的面积C.不只好预计几何概型的概率,还可以预计图形的面积D.最合适预计古典概型的概率答案: C分析:很显然用均匀随机数进行随机模拟,不只好预计几何概型的概率,还可以预计图形的面积,获得的是近似值不是精准值,用均匀随机数进行随机模拟,不合适预计古典概型的概率,应选 C.4.用计算器或计算机产生20 个 0~1 之间的随机数x,可是基本领件都在区间 [ -1,3]上,则需要经过的线性变换是()A .y=3x-1B .y=3x+1C.y=4x+1 D.y=4x-1答案: D分析:将区间 [0,1] 伸长为本来的 4 倍,再向左平移一个单位得区间[-1,3],因此需要经过的线性变换是y=4x-1,应选 D.5.以下命题不正确的选项是 ().n AA .依据古典概型概率计算公式P(A)=n,求出的值是事件 A 发生的概率的精准值μAB.依据几何概型概率计算公式P(A)=求出的值是事件 A 发生的概率的精准值2C .依据古典概型试验,用计算机或计算器产生随机整数统计试验次数 N 和事件 A 发生的次数 N 1,获得的值 N N 1是 P(A)的近似值D .依据几何概型试验,用计算机或计算器产生均匀随机数统计试验次数 N 和事件 A 发生次数 N 1,获得的值 N N 1是 P(A)的精准值答案: D分析:用公式求出的值都是概率的精准值, 用试验产生随机数求出的值都是频次,即相应概率的近似值.6.在长为 12 cm 的线段 AB 上任取一点 M ,并以线段 AM 为边作正方形.这个正方形的面积介于36 cm 2 与 81 cm 2 之间的概率为 ()36 12 12 1A. 81B.36C.81D.4答案: D分析:由题意知, 6<AM<9,而 AB = 12,则所求概率为 9-6112 =4.二、填空题 7.如下图,在正方形围栏内均匀撒米粒, 一只小鸡在此中任意啄食,现在小鸡正在正方形的内切圆中的概率是 ________.π答案: 4分析:设正方形边长为 2a ,则内切圆的面积为 S 圆 =πa2,S 正 =4a 2.π∴ 小鸡在正方形的内切圆中的概率为 P =4.18.在区间 [ -1,1]上随机地任取两个数 x 、y ,则知足 x 2+y 2<4的概率是 ________.π答案: 16分析: 由条件知:- 1≤x ≤1,- 1≤ y ≤1,∴ 点(x ,y)落在边长为 2 的正方形内部及界限上,3即 Ω={( x ,y)|-1≤x ≤1,- 1≤y ≤1} ,∴μΩ=4.1 π记事件 A =“x 2+y 2<4”,则 μA =4,μAπ∴ P(A)=μ=.Ω169.在边长为 2 的正三角形 ABC 内任取一点 P ,则使点 P 到三个极点的距离起码有一个小于1 的概率是 ________.3π答案: 6分析: 以 A 、B 、C 为圆心,以 1 为半径作圆,与 △ABC 交出三个扇形,当 P 落在其内时切合要求 (如图 ).1 ππ 3×2×3×12∴ P =3 = 6 .3×22 4三、解答题10.如下图,在一个边长为 3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.解:设事件 A ={ 所投点落入小正方形内 } .① 用计算机产生两组 [0,1] 上的均匀随机数, a 1= RAND , b 1= RAND ;4② 经过平移和伸缩平移变换, a =3a 1-1.5,b =3b 1-1.5,得 [-1.5,1.5]上的均匀随机数.③ 统计落入大正方形内的点数 N(即上述全部随机数组成的点 (a ,b)的个数 )及落入小正方形内的点数N 1(即知足- 1<a<1 且- 1<b<1 的点(a ,b)的个数 ).N 14④ 计算 N ,即为概率 P(A)的近似值,约为 9.11.从甲地到乙地有一班车在 9:30 到 10:00 抵达,若某人从甲地坐该班车到乙地转乘 9:45 到 10:15 出发的汽车到丙地去,设计用随机模拟的方法预计他能追上车的概率的步骤?解:能追上车的条件是抵达乙地时汽车没有出发, 我们能够用两组均匀随机数 x 和 y 来表示抵达乙地的时间和汽车从乙地出发的时间,当 x ≤y 时能追上车.设事件 A :“他能追上车 ”.① 利用计算器或计算机产生两组 [0,1] 上的均匀随机数, x 1 = RAND ,y 1=RAND.② 经过变换 x =0.5x 1+9.5,y =0.5y 1+9.75.③ 统计出试验总次数 N 和知足条件 x ≤y 的点 (x ,y)的个数 N 1.N 1 N 1④ 计算频次 f n (A)= N ,则 N 即为概率 P(A)的近似值.能力提高12.将[0,1] 内的均匀随机数转变为 [ -3,4]内的均匀随机数,需实施的变换为 ( )答案: C分析: 依据伸缩平移变换13.利用模拟的方法计算如图, 由 y =1 和 y =x 2所围成的部分 M 的面积.5解:(1)用计算机产生两组 [0,1] 内均匀随机数a1=RAND(),b =R AND().(2)经过平移和伸缩变换, a=(a1-0.5)*2.(3)数落在地区内 (即知足 0<b<1,且 b-a2>0)的样本点数 N1计算2N1S暗影=N (N 代表落在矩形中的点 (a,b)的个数 ).6。
新编【人教版】数学必修三《事件与概率》课后练习(含答案)
新编人教版精品教学资料事件与概率课后练习主讲教师:熊丹北京五中数学教师题一:袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球题二:下列事件中,必然事件是,不可能事件是,随机事件是.(1)某射击运动员射击1次,命中靶心;(2)从一只装着白球和黑球的袋中摸球,摸出红球;(3)13人中至少2个人的生日是同一个月;(4)任意摸1张体育彩票会中奖;(5)天上下雨,马路潮湿;(6)随意翻开一本有400页的书,正好翻到第100页;(7)你能长高到4m;(8)抛掷1枚骰子得到的点数小于8.题三:一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环D.命中环数至多为6环题四:某人连续投篮投3次,那么下列各组事件中是互斥且不对立的事件的组数为()(1)事件A:至少有一个命中,事件B:都命中;(2)事件A:至少有一次命中,事件B:至多有一次命中;(3)事件A:恰有一次命中,事件B:恰有2次命中;(4)事件A:至少有一次命中,事件B:都没命中.A.0 B.1 C.2 D.3题五:为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是.题六:小明将1枚质地均匀的硬币连续抛掷3次.(1)按3次抛掷结果出现的先后顺序,下列三种情况:①正面朝上、正面朝上、正面朝上;②正面朝上、反面朝上、反面朝上;③正面朝上、反面朝上、正面朝上,其中出现的概率()A.①最小B.②最小C.③最小D.①②③均相同(2)请用树状图说明:小明在3次抛掷中,硬币出现1次正面向上、2次反面向上的概率是多少题七:掷两个面上分别记有数字1至6的正方体玩具,设事件A为“点数之和恰好为6”,则A所有基本事件个数为()A.2个B.3个C.4个D.5个题八:从1,2,3,5中任取2个数字作为直线Ax+By=0中的A、B.(1)求这个试验的基本事件总数;(2)写出“这条直线的斜率大于-1”这一事件所包含的基本事件.题九:袋内装有红、白、黑球分别为3、2、1个,从中任取两个,则互斥而不对立的事件是()A.至少一个白球;都是白球B.至少一个白球;至少一个黑球C.至少一个白球;一个白球一个黑球D.至少一个白球;红球、黑球各一个题十:掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A.“至少有一个奇数”与“都是奇数”B.“至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”(1A、B中恰有一个发生的概率大;(2)事件A、B同时发生的概率一定比A、B中恰有一个发生的概率小;(3)互斥事件一定是对立事件,对立事件不一定是互斥事件;(4)互斥事件不一定是对立事件,对立事件一定是互斥事件.题十二:从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品.题十三:经临床验证,一种新药对某种疾病的治愈率为49%,显效率28%,有效率12%,其余为无效.则某人患该病使用此药后无效的概率是.事件与概率课后练习参考答案题一:A.详解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件.A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.题二:(3)、(5)、(8);(2)、(7);(1)、(4)、(6).详解:在一定条件下,可能发生也可能不发生的事件,称为随机事件.一定发生的事件称为必然事件;一定不发生的事件称为不可能事件.(1)某射击运动员射击1次,命中靶心;(随机事件)(2)从一只装着白球和黑球的袋中摸球,摸出红球;(不可能事件)(3)13人中至少2个人的生日是同一个月;(必然事件)(4)任意摸1张体育彩票会中奖;(随机事件);(5)天上下雨,马路潮湿;(必然事件)(6)随意翻开一本有400页的书,正好翻到第100页;(随机事件);(7)你能长高到4m;(不可能事件)(8)抛掷1枚骰子得到的点数小于8.(必然事件).题三:C.详解:根据对立事件的定义可得,一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是:“命中环数至少为6环”,故选C.题四:B.详解:利用互斥事件、对立事件的定义,即可得到结论.互斥事件:事件A与事件B不可能同时发生,强调的是“不同时发生”.对立事件:事件A、B中必定而且只有一个发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率综合课后练习
题一:在一次师生联欢会上,到会的学生比教师多12人,从这些师生中随机选一人表演节
题二:某学习小组共有7名同学,其中男生n名(2≤n≤5),现从中选出2人参加一项调
题三:某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,那么互斥而不对立的两个事件是()
A.“至少有1名女生”与“都是女生”B.“至少有1名女生”与“至多1名女生”C.“至少有1名男生”与“都是女生”D.“恰有1名女生”与“恰有2名女生”
题四:某小组有3名男生和2名女生,从中任选出2名同学去参加演讲比赛,有下列4对事件:
①至少有1名男生和至少有1名女生,
②恰有1名男生和恰有2名男生,
③至少有1名男生和全是男生,
④至少有1名男生和全是女生,
题五:已知向量a=(x,-1),b=(3,y),其中x随机选自集合{-1,1,3},y随机选自集合{1,3},那么a⊥b的概率是.
题六:从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是.
题七:某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:
(1) 从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;
(2) 从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5, 23.9)中的概率.
题八:已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:
若抽取学生n 人,成绩分为A (优秀)、B (良好)、C (及格)三个等级,设x ,y 分别表示数学成绩与地理成绩,例如:表中数学成绩为B 等级的共有20+18+4=42人,已知x 与y 均为B 等级的概率是0.18.
(1)若在该样本中,数学成绩优秀率是30%,求a ,b 的值;
(2)在地理成绩为C 等级的学生中,已知a ≥10,b ≥8,求数学成绩为A 等级的人数比C 等级的人数少的概率.
题九:若m ∈(0,3),则直线(m +2)x +(3-m )y -3=0与x 轴、y 轴围成的三角形的面积小于
98的概率为________.
题十:在区间(0,1)内任取两个实数,则这两个实数的和大于1
3的概率为 .
概率综合
课后练习参考答案题一:66.
=故参加联欢会的学生的人数是66.
题二:4.
详解:事件“至少有一名女生参加”对立事件是“没有女生”,总的取法种数是2
721
C=.
事件“没有女生”所包含的基本事件数是
2
(1) C
2
n
n n-
=
.
.故有
(1)
2
1
21
n n-
-=
题三:D.
详解:A中的两个事件是包含关系,故不符合要求;
B中的两个事件之间又都包含一名女的可能性,故不互斥;
C中的两个事件是对立事件,故不符合要求;
D中的两个事件符合要求,它们是互斥且不对立的两个事件.
题四:②④.
详解:互斥事件是指不能同时发生的事件,
①至少有1名男生和至少有1名女生,不是互斥事件,当取出的2个人正好是1名男生和1名女生时,
这两件事同时发生了.
②恰有1名男生和恰有2名男生,这两件事不能同时发生,故是互斥事件.
③至少有1名男生和全是男生,不是互斥事件,因为“至少有1名男生”包含了“全是男生”的情况.
④至少有1名男生和全是女生,是互斥事件,因为这两件事不能同时发生.
故答案为②④.
题五:
1
6
.
详解:由a⊥b得a·b=3x-y=0,3x=y.当x=-1时,y=-3;当x=1时,y=3;当x=3时,y=9.从而所求的概率P=
1
3×2=
1
6.
题六:
1
5
.
详解:从两个集合中分别取一个数a, b,用坐标表示为(a, b),
则(a , b )的取值有(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3)共15种,而b >a 时有(1,2),(1,3),(2,3)3种结果,故所求概率是315=15
.
题七: (1)
12;(2) 310
. 详解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ), (A ,C ), (A ,D ), (B ,C ), (B ,D ), (C ,D )共6个.
由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人的身高都在1.78以下的事件有:(A ,B ),(A ,C ),(B ,C )共3个. 因此选到的2人的身高都在1.78以下的概率为P =
36=1
2
. (2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ), (A ,C ), (A ,D ), (A ,E ), (B ,C ), (B ,D ), (B ,E ), (C ,D ), (C ,E ), (D ,E )共10个.
由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.
选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D ), (C ,E ), (D ,E )共3个.
(2)∵ a +b =31,a ≥10,b ≥8,∴ 满足条件的(a ,b )有(10,21),(11,20),(12,19),(13,18)…(23,8)共14种;其中a <b 的有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共6种,∴ 数学成绩为
题九: 2
3
.
详解:直线与两个坐标轴的交点分别为(
3m +2,0),(0,33-m
), 又当m ∈(0,3)时,3m +2>0,33-m >0,∴12·3m +2·33-m <9
8,
解得0<m <2,∴P =2-03-0=2
3.
题十:
1718
.
详解:设这两个实数分别为x ,y ,则⎩⎨⎧
0<x <10<y <1,满足x +y >1
3的部分如图中阴影部分所示.
所以这两个实数的和大于13的概率为1-12×13×13=17
18
.。