新课标高中数学必修三《概率》知识点
新高考概率知识点总结

新高考概率知识点总结概率,作为数学中重要的分支之一,是新高考数学考试中的一项重要内容。
了解和掌握概率的基本知识,对于解决实际问题和提高数学成绩都有着重要的意义。
本文将对新高考概率知识点进行总结,帮助学生更系统地学习和应用概率知识。
1. 概率基本概念概率是指在一定条件下,某一事件发生的可能性大小。
常用的表示概率的方式有百分数、分数和小数。
概率的取值范围在0到1之间,0表示不可能事件,1表示必然事件。
2. 事件与样本空间样本空间是指一个试验中可能出现的所有结果的集合。
事件是样本空间的子集,表示我们关心的某个结果或结果的集合。
3. 事件的概率计算事件的概率计算方法有两种:古典概率和统计概率。
古典概率指的是根据样本空间的元素个数来确定事件的概率,计算公式为:P(A) = A 的可能结果数 / 样本空间的元素个数。
统计概率指的是通过大量实验的统计结果来确定事件的概率,计算公式为:P(A) = A发生的次数 / 实验总次数。
4. 相互独立事件的概率计算当两个事件A和B满足P(A∩B) = P(A) * P(B)时,我们称事件A和事件B是相互独立的。
相互独立事件的概率计算公式为:P(A∪B) =P(A) + P(B) - P(A∩B)。
5. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。
6. 事件的排列与组合排列是指从n个元素中选择m个进行有顺序的排列,计算公式为:A(n, m) = n! / (n-m)!。
组合是指从n个元素中选择m个进行无顺序的组合,计算公式为:C(n, m) = n! / (m! * (n-m)!)。
7. 互斥事件的概率计算当两个事件A和B满足P(A∩B) = 0时,我们称事件A和事件B是互斥的。
互斥事件的概率计算公式为:P(A∪B) = P(A) + P(B)。
8. 随机变量与概率分布随机变量是指一个试验结果的数值表示,它的取值是随机的。
数学必修三概率的知识点及试

数学必修三概率的知识点及试————————————————————————————————作者:————————————————————————————————日期:第三章 概率3.1随机事件的概率1.随机事件的概念——在一定的条件下所出现的某种结果叫做事件。
(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。
2. 频数与频率,概率:事件A 的概率 ——在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。
——由定义可知0≤P(A )≤13.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件()P A B ⋃或)(P B A +(和事件)若某事件发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。
——P (A+B )=P (A )+P (B )(A.B 互斥);且有P (A+A )=P (A )+P (A =1。
交事件)()(AB P B A P 或I (积事件)若某事件发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。
【典型例题】1、指出下列事件是必然事件,不可能时间,还是随机事件:(1)“天上有云朵,下雨”;(2)“在标准大气压下且温度高于0οC 时,冰融化”;(3)“某人射击一次,不中靶”;(4)“如果b a >,那么0>-b a ”;2、判断下列各对事件是否是互斥事件,并说明道理。
某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生3、给出下列命题,判断对错:(1)互斥事件一定对立;(2)对立事件一定互斥;(3)互斥事件不一定对立。
必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高中数学概率知识点总结

高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。
而概率就是用来描述这些不确定事件发生的可能性的。
概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。
1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。
比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。
事件则是样本空间的一个子集,表示我们关心的那部分结果。
比如“出现奇数点数”的事件为{1,3,5}。
1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。
而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。
古典概率适用于理论计算,而频率概率适用于实际观测。
1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。
二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。
2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。
比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。
2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。
2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。
组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。
高二数学必修3第三章概率知识点归纳

2021高二数学必修3第三章概率知识点归纳聪明出于勤奋,天才在于积累。
小编准备了高二数学必修3第三章概率知识点,希望能帮助到大家。
一.随机事件的概率及概率的意义1、根本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S确实定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在一样的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,假如随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联络:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率二.概率的根本性质1、根本概念:Page 8 of 8(1)事件的包含、并事件、交事件、相等事件(2)假设AB为不可能事件,即AB=ф,那么称事件A与事件B互斥;(3)假设AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);假设事件A与B为对立事件,那么AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的根本性质:1)必然事件概率为1,不可能事件概率为0,因此01; 2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)假设事件A与B为对立事件,那么AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=14)互斥事件与对立事件的区别与联络,互斥事件是指事件A 与事件B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)事件A发生且事件B不发生; (2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发惹事件A不发生,对立事件互斥事件的特殊情形。
高二数学必修3第三章概率知识点归纳

高二数学必修3第三章概率知识点归纳聪明出于勤劳,天赋在于积聚。
小编预备了高二数学必修3第三章概率知识点,希望能协助到大家。
一.随机事情的概率及概率的意义1、基本概念:(1)肯定事情:在条件S下,一定会发作的事情,叫相关于条件S的肯定事情; (2)不能够事情:在条件S下,一定不会发作的事情,叫相关于条件S的不能够事情; (3)确定事情:肯定事情和不能够事情统称为相关于条件S确实定事情;(4)随机事情:在条件S下能够发作也能够不发作的事情,叫相关于条件S的随机事情;(5)频数与频率:在相反的条件S下重复n次实验,观察某一事情A能否出现,称n次实验中事情A出现的次数nA为事情A出现的频数;称事情A出现的比例fn(A)=nnA为事情A出现的概率:关于给定的随机事情A,假设随着试验次数的添加,事情A发作的频率fn(A)动摇在某个常数上,把这个常数记作P(A),称为事情A的概率。
(6)频率与概率的区别与联络:随机事情的频率,指此事情发作的次数nA与实验总次数n的比值nnA,它具有一定的动摇性,总在某个常数左近摆动,且随着实验次数的不时增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事情的概率,概率从数量上反映了随机事情发作的能够性的大小。
频率在少量重复实验的前提下可以近似地作为这个事情的概率二.概率的基本性质1、基本概念:Page 8 of 8(1)事情的包括、并事情、交事情、相等事情(2)假定AB为不能够事情,即AB=ф,那么称事情A与事情B互斥;(3)假定AB为不能够事情,AB为肯定事情,那么称事情A与事情B互为统一事情;(4)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质:1)肯定事情概率为1,不能够事情概率为0,因此01; 2)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=14)互斥事情与统一事情的区别与联络,互斥事情是指事情A 与事情B在一次实验中不会同时发作,其详细包括三种不同的情形:(1)事情A发作且事情B不发作; (2)事情A不发作且事情B发作;(3)事情A与事情B同时不发作,而统一事情是指事情A 与事情B有且仅有一个发作,其包括两种情形;(1)事情A发作B不发作;(2)事情B发作事情A不发作,统一事情互斥事情的特殊情形。
高中数学中的概率知识点

高中数学中的概率知识点概率是高中数学中的重要组成部分,它涉及到随机事件的规律性和不确定性。
在本篇文档中,我们将详细探讨高中数学中概率的相关知识点,包括概率的基本概念、概率的计算方法以及一些常见的概率分布等。
一、概率的基本概念1.1 样本空间首先,我们定义一个试验的所有可能结果的集合为样本空间,记作( S )。
例如,掷骰子的样本空间为( S = {1,2,3,4,5,6} )。
1.2 随机事件样本空间的一个子集被称为随机事件,记作( A )。
例如,掷骰子得到偶数的随机事件为( A = {2,4,6} )。
1.3 概率随机事件( A )发生的可能性称为概率,通常用符号( P(A) )表示。
概率的取值范围在0到1之间,即( 0 P(A) 1 )。
当( P(A) = 0 )时,表示事件( A )不可能发生;当( P(A) = 1 )时,表示事件( A )必然发生。
1.4 概率的基本性质(1)( P() = 0 ) ,即空事件的概率为0。
(2)( P(S) = 1 ) ,即样本空间事件的概率为1。
(3)对于任意事件( A )和( B ),有( P(A B) = P(A) + P(B) - P(A B) )。
(4)对于任意事件( A_1, A_2, , A_n ),有( P(A_1 A_2 A_n) = P(A_1) P(A_2)P(A_n) )(假设这些事件是相互独立的)。
二、概率的计算方法2.1 计数法当样本空间中的元素数量有限时,可以通过计数法计算概率。
即事件( A )包含的基本事件的数量除以样本空间( S )中基本事件的数量。
2.2 条件概率在条件概率中,我们关注在事件( B )发生的条件下事件( A )发生的概率,记作( P(A|B) )。
条件概率的计算公式为:[ P(A|B) = ]2.3 独立事件如果事件( A )的发生不影响事件( B )的发生概率,则称事件( A )和事件( B )是独立的。
必修三概率部分知识点

新课标必修3概率部分知识点总结及典型例题解析◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
高中数学必修3(新课标)
第三章 概 率(知识点)
3.1 随机事件的概率及性质
1、 基本概念:
(1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件;
(2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件;
(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件;
(5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C ……表示.
(6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的频率:
对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n
n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。
我们把这个常数叫做随机事件的概率,概率从数量
上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率
(8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性.
2 概率的基本性质
1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A(或A⊆B).不可能事件记作Ø,任何事件都包含不可能事件.
2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1.
一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等,记作A=B.
3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B).
4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).
5)若A∩B为不可能事件(A∩B=Ø),那么称事件A与事件B互斥.不可能同时发生.
6)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件.有且仅有一个发生.
任何事件的概率在0~1之间,即
0≤P(A)≤1.
必然事件的概率为1,不可能事件的概率为0.
(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).
.
.
3.2 古典概型
基本概念:
⑴基本事件:一次试验中可能出现的每一个基本结果;
基本事件有如下特点:
① 任何两个基本事件是互斥的;
② 任何事件(除不可能事件)都可以表示成基本事件的和.
⑵古典概型的特点:
① 试验中所有可能出现的基本事件只有有限个;
② 每个基本事件出现的可能性相等.
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
⑶古典概型概率计算公式:一次试验的等可能基本事件共有n 个,事件A 包含了其中的m 个基本事件,则事件A 发生的概率P (A )=m n . 2、古典概型的概率计算公式:P (A )=总的基本事件个数
包含的基本事件个数A . 3.3 几何概型
基本概念:
1、 几何概型:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
在几何概型中,事件A 的概率的计算公式如下:
P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)
2、互斥事件:
⑴不可能同时发生的两个事件称为互斥事件;
⑵如果事件n A A A ,,,21 任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥. ⑶如果事件A ,B 互斥,那么事件A+B 发生的概率,等于事件A ,B 发生的概率的和,
.
即:)()()(B P A P B A P +=+
⑷如果事件n A A A ,,,21 彼此互斥,则有:
)()()()(2121n n A P A P A P A A A P +++=+++
⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件.
①事件A 的对立事件记作A
)(1)(,1)()(A P A P A P A P -==+
②对立事件一定是互斥事件,互斥事件未必是对立事件.
3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.。