第7章 虚拟变量回归模型-案例 虚拟变量回归模型ppt汇总 计量经济学

合集下载

虚拟变量回归课件

虚拟变量回归课件
虚拟变量回归在各个领域都有广泛的应用,其中包括房价预测和汽车保险费用预估。通过实际案例分析, 我们将展示其在实际问题中的应用。
虚拟变量回归面临的问题
在进行虚拟变量回归时,我们可能会面临多重共线性问题。为了解决这个问 题,我们将介绍哑变量陷阱和特征选 收集数据 2. 对数据进行预处理 3. 分析数据 4. 建立模型 5. 模型的评估与优化
虚拟变量回归
通过介绍虚拟变量回归,我们将探讨其概念、作用以及应用。还将讨论面临 的问题和解决方法,以及如何进行虚拟变量回归并提高模型精度。
什么是虚拟变量回归
虚拟变量回归是一种统计方法,用于处理具有分类特征或非数字特征的数据。 它将非数字变量转换为二元变量,以便在回归模型中使用。
虚拟变量回归的应用
总结
虚拟变量回归具有自身的优点和局限性。我们将总结这些,并探讨未来的发 展方向。最后,我们将分享一些提高模型精度的技巧和建议。

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学

第七章 虚拟变量 虚拟变量回归模型ppt汇总 计量经济学
第七章 虚拟变量
• 在回归分析中,被解释变量的影响因素 除了量(或定量)的因素还有质(或定 性)的因素,这些质的因素可能 会使回 归模型中的参数发生变化,为了估计质 的因素产生的影响,在模型中就需要引 入一种特殊的变量—虚拟变量。
2020/6/16
(二)作用
• 1、可以描述和测量定性(或属性)因素 的影响;
2、多个因素各两种属性
• 如果有m个定性因素,且每个因素各有两个不同的 属性类型,则引入m个虚拟变量。
• 例2
• 研究居民住房消费函数时,考虑到城乡差异和不同 收入层次的影响将消费函数设定为:
Yt=b0+b1Xt+a1D1t+ a2D2t+ μt
Yt=居民住房消费支出
Xt=居民可支配收入
1城镇居民
2020/6/16
虚拟变量对截距的影响
y
有适龄子女
b0&#
o
图1 虚拟变量对截距的影响
x
2020/6/16
2、乘法方式引入虚拟变量
• 基本思想:以乘法方式引入虚拟解释变量
,是在所设定的计量经济模型中,将虚拟 解释变量与其他解释变量相乘作为新 的解释变量,以达到其调整模型斜率的
目的。 • 该方式引入虚拟变量主要作用:
D=
0 无适龄子女
将家庭教育费用支出函数写成:Yt=b0+b1Xt+aDt+μt 即以加法形式引入虚拟变量。
2020/6/16
子女年龄结构不同的家庭教育 费用支出函数为:
• 无适龄子女家庭的教育费用支出函数(D=0 ):Yt=b0+b1Xt+μt
• 有适龄子女家庭的教育费用支出函数(D=1 ):Yt=(b0+a)+b1Xt+μt

计量经济学-虚拟变量回归共71页文档

计量经济学-虚拟变量回归共71页文档
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
计量经济学-虚拟变量回归
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0















66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

计量经济学课件虚拟变量

计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。

计量经济第七章虚拟变量模型课件

计量经济第七章虚拟变量模型课件

log
P2i P1i
21
21 X i ;
log
P3i P1i
31
31 X i ;
log
P3i P2i
32
32 X i .
其中 P1i、P2i、P3i 分别表示第 个决策者做出 第1、2、3个选择的概率。
23
Yi 0 1D1i ui ,
i 1,2, ,n.
其中 Yi
为个人月支出,
D1i
=
1,已婚 0,未婚
6
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 0 ui 0
• 已婚者的月期望支出为:
E Yi | D1i 1 E 0 1 1 ui 0 1
0 :未婚者的月平均支出 1 :未婚者与已婚者的月平均支出差距 0 1 :已婚者的月平均支出
Zi
f
1
Pi
ln
1
Pi Pi
ln
Pi 1 Pi
0
1
X1i
+
+k X ki
17
二、二元Logit模型估计
• 1.可重复观测数据的二元Logit模型 参数估计
• P144 【相关链接】
• 2.不可重复观测数据的二元Logit模 型参数估计
• P145 【相关链接】
18
三、模型检验与拟合优度
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。
(linear probability model,LPM) 模型的基本形式为:
Yi 0 1X1i +2 X2i k Xki ui ,
E Yi | X 0 1X1i +2 X2i k Xki ,
i 1,2, ,n.

虚拟变量回归模型课件

虚拟变量回归模型课件
Dongbei University Of Finance & Economics
第二节 虚拟解释变量---加法模型和乘法模型
虚拟解释变量进入模型的基本形式:
Yi 1 2 X i i Yi 1 2 X i Di i
Yi 1 2 X i Di X i i
乘法模型的实质:
1、 Di 的引入按照是否城镇家庭这一特征将样本分为了不同群体,但与加法模型的区别在 于,此时的差异通过截距(自发消费)和斜率(边际消费倾向)同时体现。 2 + 2 2、城镇家庭与农村家庭样本的回归线差异: 消费
1 +1 1
2
收入
3、若例3采用了如例2的模型,则忽略了城镇家庭与农村家庭的哪一种差异? 4、在现实问题中,依据何种规则在加法、乘法和即加且乘模型中进行选择?
乘法模型的实质:
1、 Di 的引入依然按照是否户籍人口家庭这一特征将样本分为了不同群体,分别对其进行 了回归参数的估计。与加法模型的区别在于,此时的差异通过数量型变量收入而体现。 2、户籍家庭与流动人口家庭样本的回归线差异: 消费
2 +
2
1
收入
3、依据传统认识,流动人口家庭由于相关社会保障匮乏,因而具有较高的储蓄倾向,这一 事实通过什么来判断?
加法模型的实质:
1、 Di 的引入实质是按照是否高管这一特征将样本分为了不同群体,分别对其进行了回归 参数的估计。此时的差异体现在模型截距上。 ---那这与把样本分成两组,分别进行参数估计有何区别? 2、高管与非高管样本的回归线差异:
工资
1 1
3、不同岗位等级间是否存在显著的工资差异根据什么判断?
四、 虚拟变量应用模式比较
Dongbei University Of Finance & Economics

计量经济学——虚拟解释变量模型PPT课件

计量经济学——虚拟解释变量模型PPT课件

编辑版pppt
8
以一个最简单的虚拟变量模型为例,如 果只包含一个质的因素,而且这个因素 仅有两个特征,则回归模型中只需引入 一个虚拟变量。如果是含有多个质的因 素, 自然要引入多个虚拟变量。
编辑版pppt
9Байду номын сангаас
如果只有一个质的因素,且具有m个特 征,那么如果是含有截距项的,就要引入 m-1个虚拟变量;不含有截距项的, 应该 引入m个虚拟变量,这就是虚拟变量的设 定原则。
编辑版pppt
10
一 、截距变动模型和斜率变动模型
(一)包含一个虚拟变量的截距变动模型 首先从最简单的例子入手,假设只有一
个定性因素影响被解释变量的变化,而且这 个因素仅有两种特征,这时候只需要引入一 个虚拟变量。
编辑版pppt
11
【例8.1】假设有一个包括正常年份和
非正常年份(亚洲金融危机或SARS的影
17
D 0时 正常E 年 ( Y ) i 份 02 X i D 1时 非正E 常 ( Y I) 年 01份 2 X i
如果我们绘制图形,得到的结果仍然
是一样的。此时,β1<0,非正常年份的
线低于正常年份的线,代表非正常年份的 消费水平低于正常年份的消费水平。
编辑版pppt
18
2.虚拟变量D=0所代表的特性或
编辑版pppt
6
需要指出的是,虚拟变量主要是用来 代表质的因素,但是有些情况下也可以 用来代表数量因素。例如在建立储蓄函 数时,“收入”显然是一个重要解释变 量,虽然是“数量”因素,但是为了方 便也可以用虚拟变量表示。
编辑版pppt
7
第二节 虚拟解释变量的设定
虚拟解释变量模型的设定因为质的 因素的多少和这些因素特征的多少而引 入的虚拟变量也会不同。

虚拟变量回归模型课件.ppt

虚拟变量回归模型课件.ppt
第7章 单方程回归模型的几个专门问题
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些

计量经济学习题第7章单方程回归模型的几个专题

计量经济学习题第7章单方程回归模型的几个专题

计量经济学习题第7章单方程回归模型的几个专题第7章单方程回归模型的几个专题一、名词解释1、虚拟变量2、模型设定误差3、工具变量4、工具变量法5、变参数模型6、分段线性回归模型7、虚拟变量模型二、简答题1、模型中引入虚拟变量的作用是什么?2、虚拟变量引入的原则是什么?3、虚拟变量引入的方式及每种方式的作用是什么?4、判断计量经济模型优劣的基本原则是什么?5、模型设定误差的类型有那些?6、工具变量选择必须满足的条件是什么?7、滞后变量模型包括哪几种类型?写出各自的模型形式。

8、设定误差产生的主要原因是什么?9、在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?三、单项选择题1、设某地区消费函数i i i x c c y μ++=10中,消费支出不仅与收入x 有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。

假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个2、当质的因素引进经济计量模型时,需要使用()A. 外生变量B. 前定变量C. 内生变量D. 虚拟变量3、.由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A. 系统变参数模型B.系统模型C. 变参数模型D. 分段线性回归模型4、.假设回归模型为i i i x y μβα++=,其中Xi 为随机变量,Xi 与Ui 相关则β的普通最小二乘估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致5、假定正确回归模型为i i i i x x y μββα+++=2211,若遗漏了解释变量X2,且X1、X2线性相关则1β的普通最小二乘法估计量( )A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致6、对于误差变量模型,模型参数的普通最小二乘法估计量是( )A.无偏且一致的B.无偏但不一致C.有偏但一致D.有偏且不一致7、系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型8、虚拟变量( )A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素9、. 分段线性回归模型的几何图形是( )A.平行线B.垂直线C.光滑曲线D.折线10、如果一个回归模型中不包含截距项,对一个具有m 个特征的质的因素要引入虚拟变量数目为( )A.mB.m-1C.m-2D.m+111、设某商品需求模型为Yt=β0+β1Xt+Ut ,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性四、多项选择题1、系统变参数模型中,参数变化是( )A.随机的B.离散的C.非随机的D.连续的E.系统的2、在包含有随机解释变量的回归模型中,可用作随机解释变量的工具变量必须具备的条件有,此工具变量( )A.与该解释变量高度相关B.与其它解释变量高度相关C.与随机误差项高度相关D.与该解释变量不相关E.与随机误差项不相关3、关于虚拟变量,下列表述正确的有()A .是质的因素的数量化B .取值为l 和0C .代表质的因素D .在有些情况下可代表数量因素E .代表数量因素4、虚拟变量的取值为0和1,分别代表某种属性的存在与否,其中()A 、0表示存在某种属性B 、0表示不存在某种属性C 、1表示存在某种属性D 、1表示不存在某种属性E 、0和1代表的内容可以随意设定5、在截距变动模型i i i x D y μβαα+++=10中,模型系数()A 、0α是基础类型截距项B 、1α是基础类型截距项C 、0α称为公共截距系数D 、1α称为公共截距系数E 、01αα-为差别截距系数6、对于线性回归模型i i i i Dx x D y μββαα++++=)(2110,其中D 为虚拟变量,有()A 、其图形是两条平行线B 、基础类型的截距项是0αC 、基础类型的截距为1βD 、差别截距系数为1αE 、差别斜率系数为12ββ-7、对于分段线性回归模型t t t t D x x x y μβββ+-++=)(*210,其中()A 、虚拟变量D 代表品质因素B 、虚拟变量D 代表数量因素C 、以*x x t =为界,前后两段回归直线的斜率不同D 、以*x x t =为界,前后两段回归直线的截距不同E 、该模型是系统变参数模型的一种特殊形式五、计算题1、家庭消费C ,除依赖于收入Y 之外,还同下列因素有关:(1)民族:汉、蒙、满、回、藏(2)家庭小孩数:没有孩子、1-2个孩子、3个及以上孩子(3)户主的文化程度:高中以下、高中、大专以上试设定该家庭消费函数的回归模型。

计量经济学第7章 含有定性信息的多元回归分析

计量经济学第7章  含有定性信息的多元回归分析

第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。

就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。

在每种情况下,变量的大小都传递了有用的信息。

在经验研究中,我们还必须在回归模型中考虑定性因素。

一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。

本章的绝大部分内容都在探讨定性自变量。

我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。

这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。

我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。

这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。

尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。

虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。

7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。

在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。

在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。

在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。

比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。

这种情形中的变量名称就是取值1的事件。

通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。

第七章虚拟变量回归

第七章虚拟变量回归

第七章虚拟变量回归第七章虚拟变量回归第⼀节虚拟变量的性质在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。

例如需要考虑性别、民族、不同历史时期、季节差异、政府的更迭(⼯党-保守党)、经济体制的改⾰、固定汇率变为浮动汇率、从战时经济转为和平时期经济等。

这些因素也应该包括在模型中。

⼀、基本概念由于定性变量通常表⽰的是某种特征的有和⽆,所以量化⽅法可采⽤取值为1或0。

这种变量称作虚拟变量(dummy variable )。

虚拟变量也称:哑元变量、定性变量等等。

通常⽤字母D 或DUM 加以表⽰(英⽂中虚拟或者哑元Dummy 的缩写)。

⽤1表⽰具有某⼀“品质”或属性,⽤0表⽰不具有该“品质”或属性。

虚拟变量使得我们可以将那些⽆法定量化的变量引⼊回归模型中。

虚拟变量应⽤于模型中,对其回归系数的估计与检验⽅法和定量变量相同。

虚拟变量表⽰两分性质,即“是”或“否”,“男”或“⼥”等。

下⾯给出⼏个可以引⼊虚拟变量的例⼦。

例1:你在研究学历和收⼊之间的关系,在你的样本中,既有⼥性⼜有男性,你打算研究在此关系中,性别是否会导致差别。

例2:你在研究某省家庭收⼊和⽀出的关系,采集的样本中既包括农村家庭,⼜包括城镇家庭,你打算研究⼆者的差别。

例3:你在研究通货膨胀的决定因素,在你的观测期中,有些年份政府实⾏了⼀项收⼊政策。

你想检验该政策是否对通货膨胀产⽣影响。

上述各例都可以⽤两种⽅法来解决,⼀种解决⽅法是分别进⾏两类情况的回归,然后看参数是否不同。

另⼀种⽅法是⽤全部观测值作单⼀回归,将定性因素的影响⽤虚拟变量引⼊模型。

⼆、虚拟变量设置规则虚拟变量的设置规则涉及三个⽅⾯: 1.“0”和“1”选取原则虚拟变量取“1”或“0”的原则,应从分析问题的⽬的出发予以界定。

从理论上讲,虚拟变量取“0”值通常代表⽐较的基础类型;⽽虚拟变量取“1”值通常代表被⽐较的类型。

“0”代表基期(⽐较的基础,参照物);“1”代表报告期(被⽐较的效应)。

第七章 多元回归分析-虚拟变量

第七章 多元回归分析-虚拟变量
有男性male的虚拟变量和hsgrad仅仅中学毕业和colgrad大学毕业的虚拟变量加入malehsgrad和malecolgrad共有五个虚拟变量共有六种类型此时hsgrad代表女性仅仅中学毕业者colgrad表示女性大学毕业者交叉项表示男性仅仅中学毕业者和男性大学毕业者虚拟变量之间的交叉项续也可以考虑虚拟变量d和连续变量x之间的交叉项为了检验一个回归方程对不同的组是否应该取不同的参数我们可以检验表示组的虚拟变量及其和所有其他x变量的交叉项的显著性因此可以估计有所有交叉项和没有交叉项两种情况下的模型然后构造f统计量这种方法不容易把握chow检验如果我们对第一组样本做没有交叉项的回归得到ssr再同样对所有样本做没有交叉项的回归得到ssr那么ssrssrssrssrssrchow检验续chow检验其实就是一个对排除性限制条检验我们注意到ssrur限制条件针对每一个斜率和一个截距注无限制条件的模型估计了两个截距项和两组不同的系数因此自由度df为n做模型回归时我们假设所有的样本观测值都来自同一个总体如果总体发生改变那么模型参数也将发生改变因此检验总体也就是经济过程是否发生改变是用计量进行经济研究的主要步骤
线性概率模型(续)
• 即使概率的预测值在 [0,1] 范围内, 我们也可能估 计出x 的变化对成功概率的影响大于+1 或者小于 –1, 因此最好用x 均值附近的变化 • 此外,该模型的扰动项不满足同方差的假设,因 此会对检验产生影响 • 虽然有以上不足,线性概率模型还是可以在y 为 二元变量的情况下作为初步的模型来使用
其它变量与虚拟变量的交叉项
• 也可以考虑虚拟变量 d 和连续变量 x 之间 的交叉项 • y = β0 + δ1d + β1x + δ2d*x + u • 若 d = 0, 那么 y = β0 + β1x + u • 若 d = 1, 那么 y = (β0 + δ1) + (β1+ δ2) x + u • 这里的两种情况可以看成是斜率的变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)一般方式
实际应用中,一般是直接以加法和乘法方式引入虚
拟变量,然后再利用t检验判断其系数是否显著的不
等于零,进而确定虚拟变量的具体引入方式。 我们还可以用加法模型与乘法模型相结合的方式建 立模型来拟合经济发展出现转折的情况。
例7.1.9 进口商品消费支出y主要取决于国民 生产总值x的多少。我国改革开放前后,由于国家政 策的变化,及改革开放后外资的大量引入等因素的 影响,1978年前后,y和x
收 入
还可将多个虚拟变量引入模型中以考察多种“定 性”因素的影响。
如在上述职工薪金的例中,再引入代表学历的 虚拟变量D2:
1 本科及以上学历
D2
=
0
本科以下学历
职工薪金的回归模型可设计为:
Yt = b 0 + b1 Xt + b 2 D1 + b 3 D2 + mt
于是,不同性别、不同学历职工的平均薪 金分别为:
加法方式引入虚拟变量,考察:截距的不同, 许多情况下:往往是斜率就有变化,或斜率、截距同时发
生变化。 斜率的变化可通过以乘法的方式引入虚拟变量来测度。
例:根据消费理论,消费水平C主要取决于收入水平Y,但在 一个较长的时期,人们的消费倾向会发生变化,尤其是在自然 灾害、战争等反常年份,消费倾向往往出现变化。这种消费倾 向的变化可通过在收入的系数中引入虚拟变量来考察。
• 比较类型,否定类型取值为0。
概念:
同时含有一般解释变量与虚拟变量的模型称为 虚拟变量模型或者方差分析(analysis-of variance: ANOVA)模型。
一个以性别为虚拟变量考察企业职工薪金的模型:
Yt = b 0 + b1 Xt + b 2 Dt + mt
其中:Yt为企业职工的薪金,Xt为工龄, Dt=1,若是男性,Dt=0,若是女性。
§7.2 虚拟变量的引入
1、加法方式
所设定的计量经济模型中加入适当的虚拟变量,此时虚 拟变量与其他解释变量在设定模型中是相加关系。其作 用是改变了设定模型的截距水平。
企业职工薪金模型中性别虚拟变量的引y
=年薪,x
=工作年限,D
=
一般地,在虚拟变量的设置中, 基础类型和肯定类型取值为1; 比较类型和否定类型取值为0。
例如:
1)表示性别的虚拟变量可取为
1 男性 D1= 0 女性
2)表示文化程度的虚拟变量可取为
1 本科及以上学历
D2=
0 本科以下学历
3)表示地区的虚拟变量可取为
D3=
1 城市 0 农村
4)表示消费心理的虚拟变量可取为 1 喜欢某种商品
1 高中 1 大学及其
D 1= 0 其他 D 2= 0
其他
模型可设定如下:
Yt = b 0 + b1 Xt + b 2 D1 + b3 D2 + mt
在E(mt)=0 的初始假定下,高中以下、高中、大学 及其以上教育水平下个人保健支出的函数:
高中以下: E(Yt | Xt , D1 = 0, D2 = 0) = b0 + b1 Xt
这里,虚拟变量D以与X相乘的方式引入了模型中,从而 可用来考察消费倾向的变化。
假定E(mt)= 0,上述模型所表示的函数可化为:
正常年份:
bbb E ( C t|X t,D t= 1 ) = 0 + (1 + 2 ) X t
反常年份:
bb E ( C t|X t,D t= 0 )=0 + 1 X t
•女职工本科以下学历的平均薪金:
E(Yt | Xt , D1 = 0, D2 = 0) = b 0 + b1 Xt
•男职工本科以下学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 0) = (b0 + b 2 ) + b1 Xt
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
这意味着,男女职工平均薪金对工龄的变化率
是一样的,但两者的平均薪金水平相差 a。
可以通过传统的回归检验,对 a 的统计显著性进行检验,
以判断男女职工的平均薪金水平是否显著差异。
例7.1.4 居民家庭的教育费用支出除了受收入水平的影 响之外,还与子女的年龄结构密切相关。如果家庭中 有适龄子女(6-21岁),教育费用支出就多。因此,为了 反映“子女年龄结构”这一定性因素,设置虚拟变量:
例如,进口消费品数量Y主要取决于国民收入 X的多少,中国在改革开放前后,Y对X的回归关 系明显不同。
这时,可以t*=1978年为转折期,以1978年 的国民收入Xt*为临界值,设如下虚拟变量:
1
Dt
=
0
t t* t t*
则进口消费品的回归模型可建立如下:
y t= b 0 + b 1 x t+ a x t x t D t+ u t
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
2、乘法方式
在所设定的计量经济模型中,将虚拟解释变量与其他解释变 量相乘作为新的解释变量出现在模型中,以达到其调整设定 模型斜率系数的目的。
乘法形式引入虚拟解释变量的主要作用:①两个回归模型之间的比较; ②因素之间的交互影响分析;③提高模型对现实经济现象的描述精度。
(2)乘法类型
例7.1.6 随着收入水平的提高,家庭教育费用支出的边际消费倾向 可能会发生变化。为了反映定性因素对斜率的影响,可以用乘法方式 引入虚拟变量,将家庭教育费用支出函数取成:
图7.1.2 虚拟变量对斜率的影响
如,设
1 正常年份
Dt
=
0
反常年份
消费模型可建立如下:
bb b m C t=0 + 1 X t+2 D tX t+t
虚拟变量模型
同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型。
在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要 是用作解释变量。
例如:一个以性别为虚拟变量来考察职工薪金的模型如下:
b b b m Y i=0+1X i+2D i+i
(7-1)
其中
Y i ——为职工的薪金;
D i =1 ——代表男性
年 薪 Y
b0+a b0
男 职 工 女 职 工
工 龄 X
7.2.虚拟变量的引入
虚拟变量作为解释变量引入模型有两种基本方式:加法方式和乘法方式。
1. 加法方式
yt=b 0+b 1xt+atD +u t,D
=
1 0
男性 女性
上述职工薪金模型(7-1)中性别虚拟变量的引入就采取了加法方式,
在该模型中,如仍假定 Eut =0 ,则:
第7章 虚拟变量回归模型
§7.1 虚拟变量的基本含义 §7.2 虚拟变量的引入 §7.3 案例分析
为了能够在模型中反映这些因素的影响,并提高模型的精度,需要将 它们人为地“量化”,这种“量化”通常是通过引入“虚拟变量”来完成的。
这种用两个相异数字来表示对被解释变量有重要影响而自身又 没有观测数值的一类变量,称为虚拟变量(dummy variables)。
高中:
E(Yt | Xt , D1 = 1, D2 = 0) = (b 0 + b 2 ) + b1 Xt
大学及其以上: E(Yt | Xt , D1 = 0, D2 = 1) = (b0 + b3 ) + b1 Xt
假定b3>b2,其几何意义:
保 健 支 出
β3
β2
β0
大 学 教 育 高 中 教 育 低 于 中 学 教 育
当tt*=1978年, Dt =1
ˆ y t= b ˆ 0 a ˆx t + b ˆ 1 + a ˆx t
§7.3 案例
scalar demvotes = 0.484-0.0324*1+0.0564*1+0.0097*1*30.0083*1*3.019=0.51024
一个特殊的定性因素)。例如:
§7.1 虚拟变量的基本含义
许多经济变量是可以定量度量的,如:商品需求量、价格、 收入、产量等,
但也有一些影响经济变量的因素无法定量度量,如:职业、 性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等等。
为了在模型中能够反映这些因素的影响,并提高模型的精 度,需要将它们“量化”。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界 指标的虚拟变量模型来反映。
当截距与斜率发生变化时,则需要同时引入加 法与乘法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
ˆ y t= b ˆ 0+ b ˆ 1 x t+ a ˆx t x t D t
为什么下面这样的写法?
女职工的平均薪金为:
E y tx t,D t= 0= b 0+ b 1 x t
男职工的平均薪金为:
E y tx t,D t= 1 = b 0 + a + b 1 x t
从几何意义上看(图7-1),
a
图7-1 男女职工平均薪金示意图
假定 a0 ,
则两个函数有相同的斜率,但有不同的截距。
这种“量化”通常是通过引入“虚拟变量”来完成的。 根据这些因素的属性类型,构造只取“0”或“1”的人工 变量,通常称为虚拟变量(dummy variables),记为D。
相关文档
最新文档