北师大版八年级下册数学教案5篇

合集下载

八年级数学教案下册北师大3篇

八年级数学教案下册北师大3篇

八年级数学教案下册北师大3篇教案的设计是实施教学必不行少的一个重要环节,以下是要与大家共享的:八年级〔数学〕教案下册北师大范文,供大家参考!八年级数学教案下册北师大范文一5.1总体平均数与方差的估量学习目标:1、理解总体与样本的关系,认识并体会统计估量的意义,实施方法及在实际问题中的应用。

2、理解用样本平均数、方差推断总体平均数与方差。

重点、难点体会统计思想,并会用样本平均数和方差估量总体平均数和方差。

教学过程:一、旧知回忆:1、在调查讨论过程中,总体是__________,个体是__________,样本是__________,样本容量是2、平均数的计算公式是3、方差的计算公式是二欢乐自学:阅读教材P140-144 完成以下练习。

1、在总体中抽取样本,通过对样本的分析,去推断总体的状况,这就是思想。

2、用样本平均数、方差去估量总体的__________然后再对事件进展做出决断、预报。

3、在"说一说'及"动脑筋'中,分别是可以用样本的去估量总体的__________、4、例题是通过计算零件直径的方差来得到机器两个时段的运作性能是否稳定正常的。

三、稳固练习八年级数学教案下册北师大范文二教学内容:不确定性教学目标:1.结合"掷硬币'的游戏,通过丰富的生活实例体验一些事情发生的不确定性,感受简洁的随机现象。

2.能用"可能'、"肯定'、"不行能'来描述简洁事件发生的状况,并能够列出简洁的随机现象中全部可能发生的结果。

教学重点:能对一些事件的可能性作出正确推断。

教学难点:能用数学语言描述探究发觉的过程和结论。

教学过程:一、创设情景:师抛硬币,让生推测哪个面可能朝上?生:师:今日这节课我们继续来讨论"可能性的问题。

二、探究新知:1、转转盘,感受事件发生的可能性是有大小的。

(1)推测:出示四个转盘:图推想:转动①号盘,指针停在哪种颜色上的可能性大?②③④号呢?让生独立推想,并说一说想法。

八年级下册数学教案

八年级下册数学教案

八年级下册数学教案北师大版八年级下册数学教案作为一名辛苦耕耘的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。

快来参考教案是怎么写的吧!以下是店铺为大家整理的北师大版八年级下册数学教案,仅供参考,希望能够帮助到大家。

北师大版八年级下册数学教案1一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

优生不多,思想不够活跃,有少数学生不上进,思维跟不上。

要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、本学期教学内容分析本学期教学内容共计六章。

第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

第二章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

第三章《图形的平移与旋转》本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。

第四章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。

北师大版初中数学八年级下册精品教案全集

北师大版初中数学八年级下册精品教案全集

§5.3 相似三角形教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义.2.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光.教学重点:.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)教学难点:准确找出相似三角形的对应边和对应角度。

教学方法:学情分析:教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.二、给出定义从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’可知ABC∽△A’B’C’2.板书定义.叫学生写在笔记本上.3.什么叫相似比,说明相似比的意义.注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边)△ABC和△A’B’C’的比与△A’B’C’和△ABC的比不一定相等,而是成倒数的关系.三、导出定理1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?”如图:如果DE∥BC,∠ADE =∠B∠AED=∠C;AD:AB=DE D E:BC=AE:ACB C2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原三角形的三边对应成比例.(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)四、学生练习1、讨论224页练习1(1)所有的等腰三角形相似吗?等边三角形呢?为什么?(2)所有的直角三角形相似吗?等腰直角三角形呢?为什么?演示课件2、课堂练习224页2(目的,找对应边对应角)3、练习:找出哪些对三角形是相似的.找出对应角、对应边,列出比例式.五、课堂小结:相似三角形的定义;会准确找出两三角形的对应边和对应角;六、课外作业:P235 N1(1)、(2),N 2。

八年级数学下册(北师大版)配套教学教案(全册)

八年级数学下册(北师大版)配套教学教案(全册)

八年级数学下册(北师大版)配套教学教案(全册)全新修订版教学设计(教案全)八年级数学下册老师的必备资料家长的帮教助手学生的课堂再现北师大版目录1 证明1.1等腰三角形 (6)第1课时三角形的全等和等腰三角形的性质 (6)第2课时等边三角形的性质 (10)第3课时等腰三角形的判定与反证法 (13)第4课时等边三角形的判定及含30°角的直角三角形的性质 (17) 1.2 直角三角形 (21)第1课时勾股定理及其逆定理 (21)第2课时直角三角形全等的判定 (26)1.3 线段的垂直平分线 (30)第1课时线段的垂直平分线 (30)第2课时三角形三边的垂直平分线及作图 (33)1.4 角平分线 (36)第1课时角平分线 (36)第2课时三角形三条内角的平分线 (40)2 一元一次不等式与一元一次不等式组2.1不等关系 (42)2.2 不等式的基本性质 (44)2.3 不等式的解集 (47)2.4 一元一次不等式 (49)第1课时一元一次不等式的解法 (49)第2课时一元一次不等式的应用 (52)2.5 一元一次不等式与一次函数 (56)第1课时一元一次不等式与一次函数的关系 (56)第2课时一元一次不等式与一次函数的综合应用 (59) 2.6 一元一次不等式组 (62)第1课时一元一次不等式组的解法 (62)第2课时一元一次不等式组的解法及应用 (64)3 图形的平移与旋转3.1图形的平移 (67)第1课时平移的认识 (67)第2课时坐标系中的点沿x轴、y轴的平移 (70) 3.2 图形的旋转 (74)第1课时旋转的定义和性质 (74)第2课时旋转作图 (77)3.3 中心对称 (79)3.4 简单的图案设计 (82)4 因式分解4.1 因式分解 (85)4.2 提公因式法 (86)第1课时直接提公因式因式分解 (86)4.2 提公因式法 (89)第1课时直接提公因式因式分解 (89)第2课时变形后提公因式因式分解 (91)4.3 公式法 (93)第1课时平方差公式 (93)第2课时完全平方公式 (96)5 分式5.1认识分式 (99)第1课时分式的有关概念 (99)第2课时分式的基本性质 (102)5.2 分式的乘除法 (105)5.3 分式的加减法 (109)第1课时同分母分式的加减 (109)第2课时异分母分式的加减 (111)5.4 分式方程 (116)第1课时分式方程的概念及列分式方程 (116)第2课时分式方程的解法 (118)第3课时分式方程的应用 (121)6 平行四边形6.1平行四边形的性质 (125)第1课时平行四边形边和角的性质 (125)第2课时平行四边形对角线的性质 (128)6.2 平行四边形的判定 (130)第1课时利用四边形边的关系判定平行四边形 (130)第2课时平行四边形的判定定理3与两平行线间的距离 (132) 6.3 三角形的中位线 (135)6.4 多边形的内角和与外角和 (138)。

北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:三角形的证明详细内容:三角形的性质、全等三角形的判定、三角形的角平分线、中线、高线、三角形全等的性质及判定方法。

2. 第六章:不等式与不等式组详细内容:一元一次不等式、一元一次不等式组、不等式的性质、不等式的解法及应用。

二、教学目标1. 理解并掌握三角形的性质、全等三角形的判定方法以及三角形的角平分线、中线、高线的性质。

2. 学会解一元一次不等式及不等式组,掌握不等式的性质及解法。

3. 能够运用所学知识解决实际问题,提高逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:全等三角形的判定方法、一元一次不等式的解法。

2. 教学重点:三角形性质的应用、不等式的性质及解法。

四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。

2. 学具:练习本、草稿纸、笔。

五、教学过程1. 实践情景引入:通过展示实际生活中全等三角形和不等式的应用,激发学生的学习兴趣。

2. 例题讲解:(1)讲解全等三角形的判定方法,通过例题使学生掌握SSS、SAS、ASA、AAS、HL定理。

(2)讲解一元一次不等式的解法,通过例题使学生掌握不等式的性质及解法。

3. 随堂练习:(1)让学生运用全等三角形的判定方法解决实际问题。

(2)让学生解一元一次不等式及不等式组。

4. 课堂小结:六、板书设计1. 三角形性质、全等三角形的判定方法、三角形的角平分线、中线、高线。

2. 一元一次不等式及不等式组的解法。

七、作业设计1. 作业题目:(1)已知三角形ABC中,AB=AC,求证:角平分线AD垂直于BC。

(2)解不等式组:2x3>1,x+4≤5。

2. 答案:(1)证明:因为AB=AC,所以角平分线AD垂直于BC。

(2)解:不等式组的解为x>2,x≤1,所以x=2。

八、课后反思及拓展延伸1. 反思:通过本节课的教学,了解学生在全等三角形判定和不等式解法方面的掌握情况,及时调整教学方法,提高教学效果。

北师大版八年级下册数学全册精品教案设计

北师大版八年级下册数学全册精品教案设计

北师大版八年级下册数学全册精品教案设计一、教学内容1. 第十三章:数据的收集与整理13.1 数据的收集13.2 数据的整理13.3 数据的表示2. 第十四章:概率初步14.1 随机事件14.2 概率的计算14.3 概率的应用二、教学目标1. 让学生掌握数据的收集、整理和表示方法,能够运用这些方法解决实际问题。

2. 使学生了解随机事件的性质,掌握概率的计算方法,并能运用概率知识解决简单问题。

3. 培养学生的数据分析、逻辑思维和解决问题的能力。

三、教学难点与重点1. 教学难点:数据的整理和表示,概率的计算。

2. 教学重点:数据的收集方法,随机事件的性质,概率的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备、教学课件。

2. 学具:学生用书、练习本、铅笔、直尺、圆规。

五、教学过程1. 引入:通过实际情景,如调查班级同学的身高、体重等数据,引出数据的收集与整理。

2. 新课导入:讲解数据的收集方法、整理方法和表示方法,结合实例进行分析。

3. 例题讲解:以教材中的例题为载体,详细讲解数据的整理与表示,以及概率的计算方法。

4. 随堂练习:针对教学内容,设计具有代表性的练习题,让学生独立完成,并及时反馈、纠正。

5. 知识拓展:介绍随机事件在实际生活中的应用,激发学生学习兴趣。

六、板书设计1. 数据的收集与整理收集方法:问卷调查、观察、访谈等整理方法:分类、排序、汇总等表示方法:表格、条形图、折线图等2. 概率初步随机事件:不确定事件、必然事件、不可能事件概率的计算:古典概率、频率估计概率概率的应用:生活中的概率问题七、作业设计1. 作业题目:(1)收集本班同学的年龄、性别、爱好等数据,整理成表格,并用适当的图表示出来。

(2)计算一枚硬币正面向上的概率,并解释原因。

2. 答案:(1)略(2)概率为0.5,因为硬币正反两面的出现是等可能的。

八、课后反思及拓展延伸1. 反思:本节课的教学内容是否讲解清楚,学生是否掌握了重点、难点。

新北师大版八年级数学下册教案(5篇)

新北师大版八年级数学下册教案(5篇)

新北师大版八年级数学下册教案(5篇)新北师大版八年级数学下册教案(精选篇1)教学目标:情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算证明题;培养学生探究问题自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点难点重点:等腰梯形性质的探索;难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿教学方法:启发法学习方法:讨论法合作法练习法教学过程:(一)导入1出示图片,说出每辆汽车车窗形状(投影)2板书课题:5梯形3练习:下列图形中哪些图形是梯形?(投影)结梯形概念:只有4总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5指出图形中各部位的名称:上底下底腰高对角线。

(投影)6特殊梯形的分类:(投影)(二)等腰梯形性质的探究【探究性质一】思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作讨论作答)如图,等腰梯形ABCD中,AD∥BC,AB=CD。

求证:∠B=∠C想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。

(投影)(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)【探究性质二】如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作讨论作答)如上图,等腰梯形ABCD中,AD∥BC,AB=CD,ACBD相交于O,求证:AC=BD。

(投影)等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作作答)问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)等腰梯形性质:同以底上的两个内角相等,对角线相等(三)质疑反思小结让学生回顾本课教学内容,并提出尚存问题;学生小结,教师视具体情况给予提示:性质(从边角对角线对称性等角度总结)解题方法(化梯形问题为三角形及平行四边形问题)梯形中辅助线的添加方法。

北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:平行四边形5.1 平行四边形的性质与判定5.2 矩形、菱形、正方形的性质与判定5.3 梯形的性质2. 第六章:数据的收集与处理6.1 数据的收集与整理6.2 概率初步6.3 统计图表的选择与应用二、教学目标1. 知识与技能:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)学会数据的收集、整理、分析与处理,掌握概率初步知识;(3)能够运用统计图表进行数据分析。

2. 过程与方法:(1)通过实际操作,提高学生的观察、分析、解决问题的能力;(2)培养学生进行数据收集、整理、分析的实际操作能力;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)激发学生学习数学的兴趣,增强学生克服困难的信心;(2)培养学生的团队合作精神,提高学生的沟通能力;(3)培养学生严谨、认真的学习态度。

三、教学难点与重点1. 教学难点:(1)平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析与处理;(3)概率的计算与应用。

2. 教学重点:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析及统计图表的选择与应用;(3)概率的计算与应用。

四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、平行四边形模型、统计图表等;2. 学具:直尺、圆规、量角器、剪刀、彩纸等。

五、教学过程1. 实践情景引入:通过展示生活中的平行四边形图形,引导学生观察、分析其性质与判定方法。

2. 例题讲解:(1)平行四边形的性质与判定;(2)矩形、菱形、正方形的性质与判定;(3)梯形的性质;(4)数据的收集、整理、分析与处理;(5)概率的计算与应用。

3. 随堂练习:设计相关习题,巩固所学知识,提高学生的实际操作能力。

4. 小组讨论:(2)讨论数据收集、整理、分析的方法,提高学生的实际操作能力;(3)探讨概率的计算与应用,培养学生的逻辑思维能力。

八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案第一章:二次根式1.1 二次根式的概念与性质教学目标:理解二次根式的概念,掌握二次根式的性质及运算方法。

教学内容:介绍二次根式的定义,探索二次根式的性质,如平方、乘除、加减等运算方法。

教学方法:通过实际例子引导学生理解二次根式的概念,通过练习题巩固二次根式的性质及运算方法。

1.2 二次根式的乘除法教学目标:掌握二次根式的乘除法运算规则。

教学内容:介绍二次根式的乘除法运算方法,如乘法、除法的规则及注意事项。

教学方法:通过实际例子讲解二次根式的乘除法运算方法,通过练习题巩固学生的理解。

第二章:角的度量2.1 角的概念与分类教学目标:理解角的概念,掌握角的分类及度量方法。

教学内容:介绍角的概念,如锐角、直角、钝角等,学习角的度量方法,如度、分、秒的换算。

教学方法:通过实际例子引导学生理解角的概念,通过练习题巩固角的分类及度量方法。

2.2 量角器的使用教学目标:掌握量角器的使用方法,能够准确测量角的大小。

教学内容:介绍量角器的结构及使用方法,如量角器的摆放、读数等。

教学方法:通过实际操作讲解量角器的使用方法,通过练习题巩固学生的掌握程度。

第三章:平行线的性质3.1 平行线的定义与性质教学目标:理解平行线的定义,掌握平行线的性质及推论。

教学内容:介绍平行线的定义,探索平行线的性质,如同位角相等、内错角相等等。

教学方法:通过实际例子引导学生理解平行线的定义,通过练习题巩固平行线的性质及推论。

3.2 平行线的判定教学目标:掌握平行线的判定方法,能够正确判断两条直线是否平行。

教学内容:介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。

教学方法:通过实际例子讲解平行线的判定方法,通过练习题巩固学生的理解。

第四章:几何图形的对称性4.1 对称性的概念与性质教学目标:理解对称性的概念,掌握对称性的性质及应用。

教学内容:介绍对称性的概念,探索对称性的性质,如轴对称、中心对称等。

北师大版八年级下学期数学教案

北师大版八年级下学期数学教案

北师大版八年级下学期数学教案北师大版八年级下学期数学教案1教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题教学重点:平行四边形的判定方法及应用教学难点:平行四边形的判定定理与性质定理的灵活应用一.引小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?二.探阅读教材P44至P45利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

证一证平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

证明:(画出图形)平行四边形判定方法2 一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)三.结两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用【例题】例、已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.【练习】1、已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).2、如图所示,在ABCD中,E,F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据来证明.作业P46练习1、2题板书设计平行四边形的性质定理:平行四边形的性质例题练习教学反思北师大版八年级下学期数学教案2一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案第一章:平行四边形与特殊平行四边形1.1 平行四边形的性质教学目标:让学生掌握平行四边形的性质,并能运用其性质解决实际问题。

教学内容:平行四边形的定义,平行四边形的对边相等,对角相等,对边平行。

教学方法:通过实物演示,引导学生发现平行四边形的性质,并通过例题巩固知识点。

1.2 特殊的平行四边形教学目标:让学生了解特殊的平行四边形(矩形、菱形、正方形)的性质,并能运用其性质解决实际问题。

教学内容:矩形的性质,菱形的性质,正方形的性质。

教学方法:通过实物演示,引导学生发现特殊平行四边形的性质,并通过例题巩固知识点。

第二章:三角形的证明2.1 三角形的性质教学目标:让学生掌握三角形的性质,并能运用其性质解决实际问题。

教学内容:三角形的定义,三角形的内角和,三角形的边关系。

教学方法:通过实物演示,引导学生发现三角形的性质,并通过例题巩固知识点。

2.2 三角形的证明教学目标:让学生学会使用三角形的性质进行证明,并能运用证明解决实际问题。

教学内容:三角形的证明方法,证明的步骤。

教学方法:通过例题,引导学生学会使用三角形的性质进行证明,并培养学生的逻辑思维能力。

第三章:二次函数3.1 二次函数的定义与性质教学目标:让学生掌握二次函数的定义与性质,并能运用其性质解决实际问题。

教学内容:二次函数的定义,二次函数的图像,二次函数的性质。

教学方法:通过实物演示,引导学生发现二次函数的性质,并通过例题巩固知识点。

3.2 二次函数的图像与解析式教学目标:让学生学会绘制二次函数的图像,并能运用解析式解决实际问题。

教学内容:二次函数的图像,二次函数的解析式。

教学方法:通过例题,引导学生学会绘制二次函数的图像,并培养学生的几何直观能力。

第四章:数据的收集、整理与分析4.1 数据的收集教学目标:让学生掌握数据收集的方法,并能运用其方法解决实际问题。

教学内容:数据的定义,数据的收集方法。

教学方法:通过实例,引导学生了解数据收集的方法,并通过练习巩固知识点。

八年级数学的教学计划北师大版(通用20篇)

八年级数学的教学计划北师大版(通用20篇)

八年级数学的教学计划北师大版(通用20篇)八年级数学的教学计划北师大版篇1一、指导思想教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

,学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。

在学习能力上,学生课外主动获取知识的能力较差,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,部分学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教学目标1.知识与技能目标学生通过探究实际问题,认识全等三角形、轴对称、实数、一次函数、整式乘除和因式分解,掌握有关规律、概念、性质和定理,并能进行简单的应用。

进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2.过程与方法目标掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3.情感与态度目标通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。

体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。

新北师大版八年级数学下册全册教案

新北师大版八年级数学下册全册教案

新北师大版八年级数学下册全册教案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第一章三角形的证明【单元分析】本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了 8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。

运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。

在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。

【单元目标】1.知识与技能(1)等腰三角形的性质和判定定理;(2)直角三角形的性质定理和判定定理;2.过程与方法(1)会运用等腰三角形的性质和判定定理解决相关问题;(2)直角三角形的性质定理和判定定理解决简单的实际问题;3.情感态度与价值观(1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;(2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

【单元重点】在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。

【单元难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

【教学思路】1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。

2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。

北师大初中数学八年级下册教案(全册)

北师大初中数学八年级下册教案(全册)

北师大初中数学八年级下册教案(全册)第一章三角形的证明下一节课预习要求教后记课题§1.2 直角三角形(1)教学目标1.能证明并会应用直角三角形全等的“HL”判定定理。

2.体会转化的数学思想。

3.逐步学会分析的思考方法,发展演绎推理的能力。

教学重点证明直角三角形全等的“HL”判定定理及其应用教学难点证明直角三角形全等的“HL”判定定理及其应用教学过程复备一.【预习指导】1、直角三角形全等的条件有哪些?2、你认为具备这样条件的两个直角三角形一定全等吗?为什么?思考:我们知道:斜边和一对锐角相等的两个直角三角形,可以根据“AAS”判定它们全等;一对直角边和一对锐角相等的两个直角三角形,可以根据“ASA”或“AAS”判定它们全等;两对直角边相等的两个直角三角形,可以根据“SAS”判定它们全等.如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否可能全等呢?二.【效果检测】1.如图1 (1),在△ABC与△A'B'C'中,若AB=A'B',AC=A'C',∠C=∠C'=90°,这时Rt△ABC与Rt△A'B'C'是否全等?导学:把Rt△ABC与Rt△A'B'C'拼合在一起,如图1(2),因为∠ACB=∠A'C'B'=90°,所以B、C(C')、B'三点在一条直线上,因此,△ABB'是一个等腰三角形,可以知道∠B=∠B'.根据AAS公理可C=90度,点D在BC上,课外作业第二章 一元一次不等式与一元一次不等式组2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。

从问题中来,到问题中去。

1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。

(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。

北师大八年级数学下学期全套教案〔整套)

北师大八年级数学下学期全套教案〔整套)

目录第一章一元一次不等式和一元一次不等式组1 不等关系2 不等式的基本性质3 不等式的解集4 一元一次不等式5 一元一次不等式与一次函数6 一元一次不等式组第二章分解因式1 分解因式2 提公因式法3 运用公式法第三章分式1 分式2 分式的乘除法3 分式的加减法4 分式方程第四章相似图形1 线段的比2 黄金分割3 形状相同的图形4 相似多边形5 相似三角形6 探索三角形相似的条件7 测量旗杆的高度8 相似多边形的性质9 图形的放大与缩小第五章数据的收集与处理1 每周干家务活的时间2 数据的收集3 频数与频率4 数据的波动第六章证明(一)1 你能肯定吗2 定义与命题3 为什么他们平行4 如果两条直线平行5 三角形内角和定理的证明6 关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1 不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。

能够根据具体的事例列出不等关系式。

二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。

(1)如果要使正方形的面积不大于25㎝²,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝²,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。

在上面的问题中,所谓成的正方形的面积可以表示为(L/4)²,远的面积可以表示为π(L/2π)²。

(1)要是正方形的面积不大于25㎝²,就是(L/4)²≤25,即L²/16≤25。

(2)要使原的面积大于100㎝²,就是π(L/2π)²>100即L²/4π>100。

(3)当L=8时,正方形的面积为8²/16=6,圆的面积为8²/4π≈5.1,4<5.1此时圆的面积大。

当L=12时,正方形的面积为12²/16=9,圆的面积为12²/4π≈11.5,9<11.5,此时还是圆的面积大。

八年级数学下册教学工作计划

八年级数学下册教学工作计划

八年级数学下册教学工作计划北师大版八年级数学下册教学工作计划(精选6篇)日子如同白驹过隙,不经意间,为了以后教学质量不断提高,该写为自己下阶段的教学工作做一个教学计划了,是不是无从下笔、没有头绪?下面是店铺为大家收集的八年级数学下册教学工作计划,欢迎大家分享。

八年级数学下册教学工作计划篇1一、上一学期学生学习情况(基本知识、基本技能掌握情况、能力发展)和教学工作中的经验、问题:上学期期末考试的成绩不及格,总体来看,成绩比较不理想。

在学生所学知识的掌握程度上,大部分学生能够透彻理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。

在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。

二、本学期教学内容(概念、法则、原理等)和目的要求:本学期教学内容,共计六章,第一章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系。

最后研究一元一次不等式组的解集和应用。

第二章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第三章《分式》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题。

第四章《相似图形》本章通过对两条线段的比和成比例线段等概念的学习,全面探索相似三角形、相似多边形的性质与识别方法。

第五章《数据的收集与处理》主要是概念的'理解与运用。

第六章《证明一》本章主要内容是命题的相关概念、分类及应用。

八年级下册北师大版数学全册教案

八年级下册北师大版数学全册教案

1.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。

从问题中来,到问题中去。

1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。

(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。

(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。

(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π, 4<5.1,此时圆的面积大。

当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。

(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。

已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。

北师大版八年级数学下册教案(完整版)全册教学设计

北师大版八年级数学下册教案(完整版)全册教学设计
A.80°B.100°
C.140°D.160°
【互动探索】(引发学生思考)由边相等可以得到什么?这与∠BCD有什么关系?
【分析】∵∠BAD=80°,∴∠B+∠BCD+∠D=360°-∠BAD=280°.又∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=∠ACB+∠ACD=280°÷2=140°.
4.如图所示,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连结DE,则图中等腰三角形共有( D )
A.2个B.3个
C.4个D.5个
环节2 合作探究,解决问题
活动1 小组讨论(师生互学)
【例1】 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
【例1】 如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E,求证:DE∥BC.
【互动探索】(引发学生思考)要证DE∥BC,需证∠ADE=∠ABC,从而结合已知条件考虑证△BEC≌△CDB即可.
【证明】∵AB=AC,∴∠ABC=∠ACB.又∵CD⊥AB于点D,BE⊥AC于点E,∴∠AEB=∠ADC=90°,∴∠ABE=∠ACD,∴∠ABC-∠ABE=∠ACB-∠ACD,∴∠EBC=∠DCB.在△BEC和△CDB中,∵ ∴△BEC≌△CDB,∴BD=CE,∴AB-BD=AC-CE,即AD=AE,∴∠ADE=∠AED.又∵∠A是△ADE和△ABC的顶角,∴∠ADE=∠ABC,∴DE∥BC.
【3min反馈】
1.两角分别相等且其中一组等角的对边相等的两个三角形全等.
2.全等三角形的对应边相等、对应角相等.
3.等腰三角形的两底角相等,简述为:等边对等角.

2024年北师大版八年级下册数学教案5篇

2024年北师大版八年级下册数学教案5篇

北师大版八年级下册数学教案5篇北师大版八年级下册数学教案(篇1)一、学习目标:1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点重点:平方差公式的推导和应用;难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习你能用简便方法计算下列各题吗?(1)20_×1999(2)998×1002导入新课:计算下列多项式的积.(1)(_+1)(_—1);(2)(m+2)(m—2)(3)(2_+1)(2_—1);(4)(_+5y)(_—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2四、精讲精练例1:运用平方差公式计算:(1)(3_+2)(3_—2);(2)(b+2a)(2a—b);(3)(—_+2y)(—_—2y)。

例2:计算:(1)102×98;(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习计算:(1)(a+b)(—b+a);(2)(—a—b)(a—b);(3)(3a+2b)(3a—2b);(4)(a5—b2)(a5+b2);(5)(a+2b+2c)(a+2b—2c);(6)(a—b)(a+b)(a2+b2)。

五、小结(a+b)(a—b)=a2—b2北师大版八年级下册数学教案(篇2)教学目标:1.知道负整数指数幂=(a≠0,n是正整数). 2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.教学重点:掌握整数指数幂的运算性质。

难点:会用科学计数法表示小于1的数。

情感态度与价值观:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。

能利用事物之间的类比性解决问题.教学过程:一、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);(2)幂的乘方:(am)n = amn (m,n是正整数);(3)积的乘方:(ab)n = anbn (n是正整数);(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);(5)商的乘方:()n = (n是正整数);2.回忆0指数幂的规定,即当a≠0时,a0 = 1.3.你还记得1纳米=10?9米,即1纳米=米吗?4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

最新北师版初中八年级数学下册全册教案

最新北师版初中八年级数学下册全册教案

第一章三角形的证明1.等腰三角形(一)一、教学目标如:1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;熟悉证明的基本步骤和书写格式。

2.能力目标:经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;3.情感与价值目标:启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;二.教学重、难点重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法;难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

三、教学过程分析第一环节:回顾旧知导出公理请学生回忆并整理已经学过的8条基本事实。

其中证明三角形全等的有以下三条:两边夹角对应相等的两个三角形全等(SAS);两角及其夹边对应相等的两个三角形全等(ASA);三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS ),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。

已知:如图,∠A =∠D ,∠B =∠E ,BC =EF .求证:△ABC ≌△DEF .证明:∵∠A =∠D ,∠B =∠E (已知),又∠A +∠B +∠C =180°,∠D +∠E +∠F =180°(三角形内角和等于180°), ∴∠C =180°-(∠A +∠B ),∠F =180°-(∠D +∠E ),∴∠C =∠F (等量代换)。

又BC =EF (已知),∴△ABC ≌△DEF (ASA )。

第二环节:折纸活动 探索新知提问:“等腰三角形有哪些性质?如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”第三环节:明晰结论和证明过程让学生明晰证明过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级下册数学教案5篇最新北师大版八年级下册数学教案5篇培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”这里给大家分享一些关于最新北师大版八年级下册数学教案,供大家参考学习。

最新北师大版八年级下册数学教案(篇1)一、学习目标:1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点重点:平方差公式的推导和应用;难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习你能用简便方法计算下列各题吗?(1)20_×1999(2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x—1);(2)(m+2)(m—2)(3)(2x+1)(2x—1);(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x—2);(2)(b+2a)(2a—b);(3)(—x+2y)(—x—2y)。

例2:计算:(1)102×98;(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习计算:(1)(a+b)(—b+a);(2)(—a—b)(a—b);(3)(3a+2b)(3a—2b);(4)(a5—b2)(a5+b2);(5)(a+2b+2c)(a+2b—2c);(6)(a—b)(a+b)(a2+b2)。

五、小结(a+b)(a—b)=a2—b2最新北师大版八年级下册数学教案(篇2)教学目标:1.知道负整数指数幂=(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.教学重点:掌握整数指数幂的运算性质。

难点:会用科学计数法表示小于1的数。

情感态度与价值观:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。

能利用事物之间的类比性解决问题.教学过程:一、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:aman = am+n(m,n是正整数);(2)幂的乘方:(am)n = amn (m,n是正整数);(3)积的乘方:(ab)n = anbn (n是正整数);(4)同底数的幂的除法:am÷an = amn(a≠0,m,n是正整数,m>n);(5)商的乘方:()n = (n是正整数);2.回忆0指数幂的规定,即当a≠0时,a0 = 1.3.你还记得1纳米=109米,即1纳米=米吗?4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = amn (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a35 = a2,于是得到a2 =(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;aman = am+n(m,n是整数)这条性质也是成立的.三、科学记数法:我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×105.即小于1的正数可以用科学记数法表示为a×10n的形式,其中a是整数位数只有1位的正数,n是正整数。

启发学生由特殊情形入手,比如0.012 =1.2×102,0.0012 = 1.2×103,0.00012 = 1.2×104,以此发现其中的规律,从而有0.0000000012 = 1.2×109,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m1.最新北师大版八年级下册数学教案(篇3)一、学习目标:1、使学生了解运用公式法分解因式的意义;2、使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式、难点:将单项式化为平方形式,再用平方差公式分解因式;学习方法:归纳、概括、总结三、合作学习创设问题情境,引入新课在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式、如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法、1、请看乘法公式(a+b)(a-b)=a2-b2(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=(a+b)(a-b)(2)左边是一个多项式,右边是整式的乘积、大家判断一下,第二个式子从左边到右边是否是因式分解利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式、a2-b2=(a+b)(a-b)2、公式讲解如x2-16=(x)2-42=(x+4)(x-4)、9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)四、精讲精练例1、把下列各式分解因式:(1)25-16x2; (2)9a2- b2、例2、把下列各式分解因式:(1)9(m+n)2-(m-n)2; (2)2x3-8x、补充例题:判断下列分解因式是否正确、(1)(a+b)2-c2=a2+2ab+b2-c2、(2)a4-1=(a2)2-1=(a2+1)(a2-1)、五、课堂练习教科书练习六、作业1、教科书习题2、分解因式:x4-16 x3-4x 4x2-(y-z)23、若x2-y2=30,x-y=-5求x+y最新北师大版八年级下册数学教案(篇4)一、学习目标1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。

2.提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______2.本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。

最新北师大版八年级下册数学教案(篇5)一、内容和内容解析1.内容三角形中相关元素的概念、按边分类及三角形的三边关系.2.内容解析三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.本节课的教学重点:三角形中的相关概念和三角形三边关系.本节课的教学难点:三角形的三边关系.二、目标和目标解析1.教学目标(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.(2)理解并且灵活应用三角形三边关系.2.教学目标解析(1)结合具体图形,识三角形的概念及其基本元素.(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.三、教学问题诊断分析在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.四、教学过程设计1.创设情境,提出问题问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.2.抽象概括,形成概念动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.师生活动:三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力. 补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.3.概念辨析,应用巩固如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.1.以AB为一边的三角形有哪些2.以∠D为一个内角的三角形有哪些3.以E为一个顶点的三角形有哪些4.说出ΔBCD的三个角.师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.4.拓广延伸,探究分类我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢小组之间同学进行交流并说说你们的想法.师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.。

相关文档
最新文档