北师大版八年级初二数学下册知识点总结归纳
北师大版初二下册数学知识点汇总
北师大版初二下册数学知识点汇总
下面是小编为了帮助同学们学习数学知识而整理的北师大版初二下册数学知识点汇总,希望可以帮助到同学们!
第一章一元一次不等式和一元一次不等式组
一、不等关系
※1、一般地,用符号(或), (或)连接的式子叫做不等式.
2、要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.
※3、准确翻译不等式,正确理解非负数、不小于等数学术语.
非负数大于等于0(=== 0和正数不小于0
非正数小于等于0(=== 0和负数不大于0
二、不等式的基本性质
※1、掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果ab,那么a+cb+c, a-cb-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果ab,并且c0,那么acbc, .
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果ab,并且c0,那么ac
※2、比较大小:(a、b分别表示两个实数或整式)
一般地:
如果ab,那么a-b是正数;反过来,如果a-b是正数,那么a
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:
a===0
a=b a-b=0
a a-b0
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
三、不等式的解集:
※1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
※2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.
(完整版)新北师大版初二数学下册知识点总结
初二数学下册总结
第一章三角形的证明
一、全等三角形的判定
定理:三边分别相等的两个三角形全等.(SSS)
定理:两边及其夹角分别相等的两个三角形全等。(SAS)
定理:两角及其夹边分别相等的两个三角形全等.(ASA)
定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)
定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)
二、全等三角形的性质
全等三角形对应边相等、对应角相等.
三、等腰(边)三角形的性质
定理:等腰三角形的两底角相等.(等边对等角)
推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
定理:等边三角形的三个内角都相等,并且每个角都等于60°.
四、等腰(边)三角形的判定
定理:有两个角相等的三角形是等腰三角形.(等角对等边)
定理:三个角都相等的三角形是等边三角形。
定理:有一个角等于60°的等腰三角形是等边三角形.
五、反证法
在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法。
六、直角三角形的性质
定理:直角三角形的两个锐角互余。
定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
七、直角三角形的判定
定理:有两个角互余的三角形是直角三角形。
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
八、线段垂直平分线
定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
北师大版初二数学下册知识点归纳
北师大版初二数学下册知识点归纳
北师大版初二数学下册知识点归纳1
第一章分式
1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3整数指数幂的加减乘除法
4分式方程及其解法
第二章反比例函数
1反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2反比例函数在实际问题中的应用
第三章勾股定理
1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
初二下册数学知识点归纳北师大版
初二下册数学知识点归纳北师大版
一、内容概要
在数与代数方面,学生将深入学习实数、代数式的性质及其运算,掌握二次根式、分式等概念,并对一元一次方程和不等式进行深入探讨。函数概念的进一步学习也是本阶段的重要内容,特别是与实际问题结合的函数应用。
几何图形部分,学生将继续学习平面几何的基础知识,如三角形、四边形等图形的性质与判定。同时通过丰富的实例引入坐标法,帮助学生理解坐标系与几何图形之间的关系,为日后的解析几何学习打下基础。
在统计与概率方面,学生将加强对数据的收集、整理和分析能力,学习绘制图表、计算概率等基本技能,并应用这些技能解决实际问题。此外概率的初步应用以及数据分析和推断也是本阶段的重要内容。
此外还将介绍一些拓展性的知识,如视图与投影、图形的变换等,以帮助学生从多个角度理解数学,拓宽数学视野。通过对这些内容的深入学习,学生将更好地理解和掌握数学知识,为将来的学习和生活打下坚实的基础。
二、代数式与方程
在初二下册的数学学习中,我们将继续深化对代数式的学习。代数式是由数字、字母通过加、减、乘、除、乘方等运算所构成的数学表达式。这一阶段学生需要熟练掌握代数式的性质,如交换律、结合律和分配律等。此外学生还需要理解代数式的值,即当给代数式中的字母赋予具体数值时,代数式的计算结果。
方程是含有未知数的等式,在初二下册,我们将学习如何解一元一次方程和二元一次方程。解方程的过程中,需要掌握等式的性质,如等式两边同时加减、乘除一个数,等式依然成立。此外还需掌握如何移项、合并同类项等解方程的基本技巧。对于二元一次方程,还需要学习代入法和消元法等方法来求解。
北师大版初二数学下册知识点汇总
北师大版八年级数学下册各章知识要点总结
第一章三角形的证明
一、全等三角形判定定理:
1、三组对应边分别相等的两个三角形全等(SSS)
2、有两边及其夹角对应相等的两个三角形全等(SAS)
3、有两角及其夹边对应相等的两个三角形全等(ASA)
4、有两角及一角的对边对应相等的两个三角形全等(AAS)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)
二、等腰三角形的性质
定理:等腰三角形有两边相等;(定义)
定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,
这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;
三、等腰三角形的判定
1. 有关的定理及其推论
定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。)
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知件相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法
四、直角三角形
1、直角三角形的性质
直角三角形两条直角边的平方和等于斜边的平方;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
在直角三角形中,斜边上的中线等于斜边的一半。
北师版初二下册数学知识点总结(精选)
最新北师大版《数学》(八年级下册)知识点总结
第一章三角形的证明
1、等腰三角形
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等
判定:SSS、SAS、ASA、AAS。
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边,简称:HL)
3、线段的垂直平分线(中垂线)
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
新北师大版初二数学下册知识点总结
初二数学下册总结
第一章三角形的证明
一、全等三角形的判断
定理:三边分别相等的两个三角形全等.(SSS)
定理:两边及其夹角分别相等的两个三角形全等.(SAS)
定理:两角及其夹边分别相等的两个三角形全等.(ASA)
定理:两角分别相等且此中一组等角的对边相等的两个三角形全等.(AAS)
定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)二、全等三角形的性质
全等三角形对应边相等、对应角相等.
三、等腰(边)三角形的性质
定理:等腰三角形的两底角相等.(等边平等角 )
推论:等腰三角形顶角的均分线、底边上的中线及底边上的高线相互重合 .
定理:等边三角形的三个内角都相等,而且每个角都等于60°.四、等腰(边)三角形的判断
定理:有两个角相等的三角形是等腰三角形.(等角平等边)
定理:三个角都相等的三角形是等边三角形.
定理:有一个角等于 60°的等腰三角形是等边三角形.
五、反证法
在证明时,先假定命题的结论不建立,而后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,进而证明命题的结论必定建立 .这类证明方法称为反证法.
六、直角三角形的性质
定理:直角三角形的两个锐角互余.
定理:在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半 .
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
七、直角三角形的判断
定理:有两个角互余的三角形是直角三角形.
定理:假如三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 .
八、线段垂直均分线
定理:线段垂直均分线上的点到这条线段两个端点的距离相等.
最新北师大版初二数学下册知识点汇总资料
北师大版八年级数学下册各章知识要点总结
第一章三角形的证明
一、全等三角形判定定理:
1、三组对应边分别相等的两个三角形全等(SSS)
2、有两边及其夹角对应相等的两个三角形全等(SAS)
3、有两角及其夹边对应相等的两个三角形全等(ASA)
4、有两角及一角的对边对应相等的两个三角形全等(AAS)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)
二、等腰三角形的性质
定理:等腰三角形有两边相等;(定义)
定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,
这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;
三、等腰三角形的判定
1. 有关的定理及其推论
定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。)
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知件相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法
四、直角三角形
1、直角三角形的性质
直角三角形两条直角边的平方和等于斜边的平方;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
在直角三角形中,斜边上的中线等于斜边的一半。
初二数学下册全部知识点
数学八年级下册全册知识点汇总
(北师大版)
第一章三角形的证明
一、全等三角形判定、性质:
1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)
2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质
定理:等腰三角形有两边相等;(定义)
定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。(三线合一)
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;
三、等腰三角形的判定
1. 有关的定理及其推论
定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。)
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法
四、直角三角形
1、直角三角形的性质
直角三角形的两锐角互余
直角三角形两条直角边的平方和等于斜边的平方;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;
3、互逆命题、互逆定理
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.
北师大版初二下册数学总复习知识点考点
北师大版初二下册数学总复习知识点考点
1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零.
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:(a≠0);
(5)商的乘方:;(b≠0)
7.分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
最新北师大版初二下册数学知识点归纳
最新北师大版初二下册数学知识点归纳
篇一
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
新北师大版八年级初二数学下册知识点总结归纳
欢迎阅读北师大版八年级数学下册各章知识要点总结
第一章三角形的证明
一、全等三角形判定、性质:
1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)
2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质
定理:等腰三角形有两边相等;(定义)
定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1
推论2
1.
推论1
推论2
2.
1
2
3
1
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(外心)
判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。(内心)
判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组
1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变. 如果a>b,那么
a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)
性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,
c
b c a >. 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac
a>b <===> a-b>0 a=b <===> a-b=0 a a-b<0
初二数学下册知识点
初二数学下册知识点
初二下册数学知识点归纳北师大版
第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
初二下册数学知识点
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
初二数学下册基础知识点总结
初二数学下册基础知识点总结
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的学习方法都是不断重复学习。下面是小编给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二下册数学知识点归纳北师大版
第一章一元一次不等式和一元一次不等式组
一、不等关系
1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.
2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.
3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.
非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0 非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0
二、不等式的基本性质
1、掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,并且c<0,那么ac
2、比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
初二下册数学知识点归纳北师大版
初二下册数学知识点归纳北师大版第一章分式
1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
初二下册数学知识点
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
新北师大版初二数学下册知识点总结
新北师(Shi)大版初二数学下册知识点总
结
第一章三(San)角形的证明
一、全等三角形(Xing)的判定
定(Ding)理:三边(Bian)分别相等的两个三角形全等.(SSS)
定(Ding)理:两边及其夹角分别相等(Deng)的两个三角形全等.(SAS)
定(Ding)理:两角及其夹边分别相等的两个三角形全等.(ASA)
定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.(AAS)
定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)
二、全等三角形的性质
全等三角形对应边相等、对应角相等.
三、等腰(边)三角形的性质
定理:等腰三角形的两底角相等.(等边对等角)
推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.
定理:等边三角形的三个内角都相等,并且每个角都等于60°.
四、等腰(边)三角形的判定
定理:有两个角相等的三角形是等腰三角形.(等角对等边)
定理:三个角都相等的三角形是等边三角形.
定理:有一个角等于60°的等腰三角形是等边三角形.
五、反证法
在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.
六、直角三角形的性质
定理:直角三角形的两个锐角互余.
定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
七、直角三角形的判定
定理:有两个角互余的三角形是直角三角形.
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎阅读
第一章 一元一次不等式和一元一次不等式组
一. 不等关系
1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.
2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质
1. 掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果a>b,那么a+c>b+c, a-c>b-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果a>b,并且c>0,那么ac>bc,
c b
c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,并且c<0,那么ac c b c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果ab <===> a-b>0 a=b <===> a-b=0 a a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集: 1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式. 2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. 3. 不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左 四. 一元一次不等式: 1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式. 2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. 3. 解一元一次不等式的步骤: ①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax0时,解为a b x >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a b x < ; 5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即: ①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数; ③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集; ⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组 1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组. 2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a 一元一次不等式 解集 图示 叙述语言表达 x>b 两大取较大 x>a 两小取小 a 大小交叉中间找 无解 在大小分离没有解 (是空集) 第二章 分解因式 一. 分解因式 1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2. 因式分解与整式乘法是互逆关系。因式分解与整式乘法的区别和联系: (1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法 1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+ 2. 概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”; (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法 1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. 2. 主要公式: (1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 3. 因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.