太阳能热水器控制器原理图

合集下载

智能型太阳能热水器控制器--附带原理图(已出PCB板)

智能型太阳能热水器控制器--附带原理图(已出PCB板)

淮 阴 工 学 院毕业设计说明书(论文)作者: 吴 健 学号:1101205122系(院): 电子与电气工程学院专业: 电气工程及其自动化题目: 智能型太阳能热水器控制系统的设计——硬件部分张敏 讲 师指导者:(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2014 年06 月目前,太阳能热水器已广泛应用,并正在向高效率、全天候、智能化、大型化和普遍化方向发展,因而,研制与其相应的太阳能热水器控制器就有着很强的迫切性和广阔的应用前景。

本设计以STC89C52RC单片机控制整个系统。

通过设置水位的上限和下限来实现自动上水、停水。

当水位高于上限,断开电磁开关,水位低于下限时闭合电磁开关;DS1302实时时钟用来设定每日自动上水的时间;独立按键用以设定想要控制的温度,并由温度传感器检测水温,单片机在内部比较当前温度,当水温低于预设温度,继电器闭合开始加热,高于预设温度断开电热丝;电热丝的加热功率由双向可控硅的导通角控制,从而控制电热丝的有效加热功率,出水可调恒温控制得到解决。

关键词自动控制,实时时钟,双向可控硅,过零检测Title Design Of The Intelligent Control System Of Solar Water Heater——Hardware PartAbstractAt present, solar water heater has been applied extensively and it is stepping to the direction of high-efficiency, all daylong, intelligent, large-scale and generalization. For this reason, there is a great urgency and extensive application prospect to develop the controller of the solar water heater respectively.This design uses the STC98C52RC MCU to control the whole system. We set the level of upper and lower limits to achieve the water supply and cut-off automatically. When the water level is higher than the upper limit, we cut off the electromagnetic switch and close that as the water level below the lower limit. DS1302 real-clock can set the automatic supple time; separate button can set the controlled temperature and detect the water temperature through the temperature sensor. At the same time, MCU internally compares the current temperature. When the water temperature is lower than the set temperature, the relay will cut off and heat until it higher than the set temperature. At this point, it will close the heater strip. TRIAC conduction angle controls the heating power of heater strip, thus it can control the effective heating power. And the issue of adjustable water temperature control can be solved.Keywords automatic control, real-time clock, triac, zero-crossing detection目录1 绪论 (1)1.1 课题研究的背景 (1)1.2 智能型太阳能热水器控制器在国内外的发展情况 (2)1.3 本文所做的工作 (3)1.4 本章小结 (3)2 太阳能热水器系统结构总体设计及工作原理 (4)2.1 太阳能热水器系统总体结构 (4)2.2 太阳能热水器原理 (5)3 总体方案设计 (6)3.1 方案论证 (6)3.2 方案选择 (7)4 主要芯片的特性 (7)4.1 主控制器STC89C52 (7)4.2 时钟电路DS1302 (10)4.3 DS18B20简介 (12)4.4 光电耦合器JC817 (13)5 智能型太阳能热水器控制系统设计 (13)5.1 太阳能控制器硬件结构图 (14)5.2 水位检测电路 (14)5.3 水位控制电路 (15)5.4 定时进水电路 (16)5.5 辅助加热控制电路 (17)5.6 温度检测电路 (18)5.7 报警电路 (19)5.8 市电检测电路 (19)5.9 电源供电模块 (20)6 硬件制作 (20)6.1 PCB板制作过程中所遇到的问题 (20)6.2 焊接电路板步骤 (21)6.3 测试电路板 (21)6.4 电路板主要模块的测试 (22)结论 (27)致谢 (28)参考文献 (29)附录A 系统电路原理图 (30)附录B 系统电路PCB图 (31)附录C 系统电路实物图 (32)附录D 元器件清单 (33)图2-1 太阳能热水系统结构图 (5)图2-2 太阳能热水器水循环原理图 (6)图4-1 STC89C52引脚图 (8)图4-2 DS1302引脚及内部结构 (11)图4-3 DS1302的控制字 (11)图4-4 DS1302数据读/写时序 (12)图5-1 太阳能控制器硬件结构框图 (14)图5-2 水位检测电路 (14)图5-3 水位控制电路 (15)图5-4 定时进水模块 (16)图5-5 加热控制电路 (17)图5-6 温度检测电路 (18)图5-7 温度检测电路 (18)图5-8 报警电路 (19)图5-9 通过三极管进行过零检测 (19)图5-10 电源及电源指示灯 (20)图6-1 前期温度显示 (22)图6-2 后期温度显示 (23)图6-3 加热部分测试 (24)图6-4 定时模块的测试前期 (24)图6-5 定时模块的测试后期 (25)图6-6 整流波形 (25)图6-7 非门端输出波形 (26)表4-1 P1.0和P1.1引脚复用功能 (9)表4-2 P3口引脚复用功能 (9)表4-3 DS1302引脚功能 (11)表4-4 内部寄存器地址和内容 (12)1 绪论1.1 课题研究的背景众所周知,太阳能是大自然馈赠给我们源源不断的能源。

太阳能热水器的组成及工作原理(13页)

太阳能热水器的组成及工作原理(13页)

太阳能热水器的组成及工作原理2.1 系统总体结构设计图2-1系统结构图图2-1为系统设计的结构图,该图的系统控制原理图如下图2-2:T3T2图2-2 系统控制原理图注释:T1:热水箱的温度传感器T2:循环水管中的温度传感器T3:集热器中的温度传感器F1:循环水阀门F2:冷水阀门F3:热水阀门此款热水器利用微机控制主要有以下几种控制功能:晨水加热控制、温水循环控制、冷水集热控制、水箱加热控制。

1.早晨水温控制由于清晨太阳光较弱,所以太阳能热水器从系统发挥作用。

为了提供温度不低于30摄氏度的水,热水器在清晨4-7点之间对水箱进行电加热,具体控制过程如下:首先,关闭冷水阀门F2和循环水阀门F1,然后微机开始进行水箱的温度采集,同时进行温度的比较,当水箱的温度小于30摄氏度时,电热器D接通进行加热,同时微机继续对热水箱的温度进行采集。

当温度加热到大于30摄氏度时电热器断开,如此反复循环保证了温度的稳定。

2.循环水集热过程早晨水温控制之后(7~9点),设定当日的水箱温度N(由两位次齿轮开关设定),输入微机,再利用微机控制系统,通过太阳光能对热水箱加热以达到理想温度N。

具体控制过程如下:打开循环阀门F1,关闭冷水进水阀门F2,热水阀门F3处于空控状态。

然后开始比较温度,若(T31>5摄氏度,T2>T1)为止。

如若T1,那么循环水集热过程结束,进入冷水集热控制过程。

3.冷水集热控制此时热水箱温度已达到了N,冷水要进入太阳能集热器,这时温度为T3,和当日的设定温度值相比较,若T3>N则将已加热的水送入热水箱,每天的控制时段大概为9点~20点。

具体控制过程如下:关闭循环水阀门F2,打开冷水阀门F2,热水阀门F3处于可控状态。

若T3>N,打开热水阀门F3并将保持一段时间,若T3<N,关闭F3继续给太阳能集热器加热,知道温度答应N,当打开F3时此时比较水管水温T2与N的值,若T2>N阀门F3继续保持打开状态,否则关闭F3。

太阳能热水器的组成及工作原理

太阳能热水器的组成及工作原理

太阳能热水器的组成及工作原理2.1 系统总体结构设计排气管图2-1系统结构图图2-1为系统设计的结构图,该图的系统控制原理图如下图2-2:T3 T2箱T1D自来水F2图2-2 系统控制原理图注释:T1:热水箱的温度传感器T2:循环水管中的温度传感器T3:集热器中的温度传感器F1:循环水阀门F2:冷水阀门F3:热水阀门此款热水器利用微机控制主要有以下几种控制功能:晨水加热控制、温水循环控制、冷水集热控制、水箱加热控制。

1.早晨水温控制由于清晨太阳光较弱,所以太阳能热水器从系统发挥作用。

为了提供温度不低于30摄氏度的水,热水器在清晨4-7点之间对水箱进行电加热,具体控制过程如下:首先,关闭冷水阀门F2和循环水阀门F1,然后微机开始进行水箱的温度采集,同时进行温度的比较,当水箱的温度小于30摄氏度时,电热器D接通进行加热,同时微机继续对热水箱的温度进行采集。

当温度加热到大于30摄氏度时电热器断开,如此反复循环保证了温度的稳定。

2.循环水集热过程早晨水温控制之后(7~9点),设定当日的水箱温度N(由两位BCD次齿轮开关设定),输入微机,再利用微机控制系统,通过太阳光能对热水箱加热以达到理想温度N。

具体控制过程如下:打开循环阀门F1,关闭冷水进水阀门F2,热水阀门F3处于空控状态。

然后开始比较温度,若(T3-T1>5摄氏度,T2>T1)为止。

如若T1=N,那么循环水集热过程结束,进入冷水集热控制过程。

3.冷水集热控制此时热水箱温度已达到了N,冷水要进入太阳能集热器,这时温度为T3,和当日的设定温度值相比较,若T3>N则将已加热的水送入热水箱,每天的控制时段大概为9点~20点。

具体控制过程如下:关闭循环水阀门F2,打开冷水阀门F2,热水阀门F3处于可控状态。

若T3>N,打开热水阀门F3并将保持一段时间,若T3<N,关闭F3继续给太阳能集热器加热,知道温度答应N,当打开F3时此时比较水管水温T2与N的值,若T2>N 阀门F3继续保持打开状态,否则关闭F3。

毕业设计太阳能热水器控制电路

毕业设计太阳能热水器控制电路

太阳能热水器控制电路设计一、系统设计1.设计原理太阳能热水器自动控制电路采用AT89S52单片机作为控制关键,外围加蜂鸣器控制电路、数码显示电路、水位检测电路、电机控制电路、按键电路、温度检测电路等。

数码管实时切换显示目前温度与目前液位,当液位过高时,蜂鸣器报警,并且电机反转模拟排水过程;当液位过低时,蜂鸣器报警,并且电机正转模拟进水过程。

本系统设计简朴,成本低,性能优良,具有一定旳稳定性和实用性。

三、硬件电路设计1.基本原理框图图一:原理框图(1)太阳能热水器控制装置重要构成由CPU、显示电路、按键电路、蜂鸣器电路、电机电路、液位检测电路、温度检测电路、电源电路构成,如图一。

(2)太阳能热水器控制装置旳工作原理接通电源后,显示目前水位,水位被分为16个点。

并且显示目前温度。

液位显示与温度旳显示切换进行。

当水位显示低于或等于1时,蜂鸣器报警,并且电机正转,表达进水;当水位显示高于或等于15时,蜂鸣器报警,并且电机反转,表达排水。

液位检测运用CD40512.各部分电路原理(1)最小系统最小系统电路如图二所示。

图二:最小系统(2)显示电路采用LED数码管显示,该方案具有实现轻易、发光亮度大、驱动电路简朴等长处,其可靠性也优于LCD旳显示。

由6个数码管和6个74LS164构成,采用串行静态显示旳措施。

将数码管旳8个输入端与74LS164旳输出端Q0~Q7相连。

P1.0和74LS164旳CLK 连接,作为时钟;P1.4接74LS164旳A 端,作为显示数据旳输入端。

显示电路如图三所示。

C31104VCCC33104VCCC32104VCCC34104VCCC35104VCC图三:显示电路不过使用74LS164串显会出现消隐旳问题。

为了消除消隐,那么就必须在硬件上与软件上结合来消除消隐旳问题。

消隐电路如图四所示。

软件上,在传数据时,先传一种高电平,直到数据传完再传送一种低电平即可。

图四:消隐电路(3)按键电路键按下后,进行温度及液位检测旳切换,也可不使用。

太阳能上水自动测水电路功能和原理图

太阳能上水自动测水电路功能和原理图

电路功能简介一、功能说明本电路的主要功能是:水位过低时能实自动上水并报警,能实时显示水温。

能显示5级水位,有自动上水和手动上水功能。

手动上水功能可人为控制上升到任意水位和上水时间。

二、原理简介由五路“传感器”(五根插入水中的导线)检测液位的变化,由单片机控制液位的显示及电泵的抽放水,DS1820温度传感器,可测量水温。

控制显示部分将由传感器传过来的温度,水位信息进行显示。

并控制水位的高度。

太阳能热水器的控制器主要由传感器部分和控制显示部分组成。

传感器部分是由5个不同阻值的电阻串联组成。

因此有六个结点。

两端结点接电源,下面第二个结点引出。

为输出端,当水位上升时,串联的电阻由下到上依次被短路,输出端的电压值会依次升高,输出值经由四个比较器逐个比较组成的转换电路,转换电路把不同的电压值转换成不同的开关量,供单片机读取。

因此不同的水位就对应这不同的开关量。

传感器部分的下端有DS1820温度传感器,可测量水温。

控制显示部分将由传感器传过来的温度,水位信息进行显示。

并控制水位的高度。

1.液位采集电路五路液位检测都采用运放组成的比较器检测电路检测液位变化,将电平信号分别送入单片机。

实际检测时,从J2焊出五根导线,分别将接VCC、A、B、C和D的导线放入水杯(太阳能水箱)中,位置如图1所示。

图1模拟太阳能水箱示意图2.温度检测电路该电路主要由DS1820温度传感器测量水温,由传感器传过来的温度传输给单片机,经单片机处理后送数码管显示。

三、电路功能介绍默认为手动上水功能,通电源时,手动指示灯亮,若传感器没有插入水中,表明是最低水位,第一级水位指示灯闪烁,并发出报警声,四数码管显示实时水温。

测试手动功能:在手动功能状态下,按下“UP”键电磁阀指示灯亮,上水指示灯闪烁。

表明正在上水,随水位的上升,水位指示灯会依次点亮。

当再次按下“UP”健时。

电磁阀指示灯熄灭,上水指示灯停止闪烁。

表明停止上水。

因此可以人为控制上水的高度。

太阳能热水器控制器原理图

太阳能热水器控制器原理图

太阳能热水器控制器原理图家用太阳能热水器方便、节能、无污染,应用广泛。

本文介绍的太阳能热水器辅助控制系统以单片机为核心,对储水箱水位、水温等进行检测和显示;水位过低时进行自动上水、水满自停,防止溢水;在无光照阴雨天或寒冷季节进行辅助电加热,且温度可由用户预置;在寒冷的冬季能对上水管道的水进行排空,防止管道冻裂;具有防漏电、防干烧等多种安全保护和声光报警功能。

一、系统结构太阳能热水器辅助控制系统结构如图1所示。

在真空管太阳能热水器的保温储水箱内增加一个与电热水器类似的电热元件并固定在绝缘底座上,引出交流电源线入户,由辅助控制系统的继电器控制通断电。

水位、水温探测器从保温储水箱顶部安装在水箱中,通过电缆线接入用户室内控制器。

进行管道排空时,由控制系统关闭排空控制阀,打开热水开关和淋浴开关,将管道中的水放掉;用水时则打开排空控制阀。

系统自动上水时,通过单项电磁阀上水。

水流电开关用于检测淋浴开关是否打开、是否有水的流动,当淋浴开关打开用水时,系统自动停止上水、切断辅助电加热器的电源。

二控制系统组成太阳能热水器控制系统的组成如图2所示。

整个系统以AT89C51单片机为核心,对水温、水位等参数进行智能检测和显示,读取水流开关、排空阀门的状态,经键盘操作和单片机内部运算比较,控制相应得执行机构进行通、断电;进行防漏电、防干烧等保护,并进行相应得声光报警。

对水箱水温信号的检测采用DALLAS公司生产的一线式数字温度传感器DS18B20,它具有3引脚TO-92小体积封装形式,CPU只需一根端口线就能与DS18B20通信控制读取温度值。

水流开关信号的检测采用开关式传感器,其内部是一个霍尔开关,排空阀是一个带行程开关的球型阀,由5W交流伺服电机带动,每旋转90度输出一个开关信号,排空阀的开闭状态对应于该开关信号。

上水电磁阀采用12V直流单项电磁阀;辅助电加热体的通断电采用继电器控制;排空阀由36V(5W)交流伺服电机带动,由排空阀的开闭状态信号确定并通过继电器控制交流伺服电机电源通断电。

太阳能热水器的工作原理图解与结构图解

太阳能热水器的工作原理图解与结构图解

太阳能热水器的工作原理图解与结构图解太阳能热水器具有安装使用方便、节能效果明显的优点,可以吸收太阳能辐射能,并且把能量转换成热能,从而产生热水的一种设备。

在家庭用热水、商业用热水、工业制造用热水等方面都有广泛的应用,下面小编就为大家介绍一下太阳能热水器的工作原理与结构图解。

太阳能热水器工作原理太阳能热水器工作原理图1、吸热过程真空管式太阳能热水器:太阳辐射透过真空管的外管,然后被集热镀膜吸收后沿内管壁传递到管内的水,此时水受热而温度逐渐升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。

随着热水的不断上移并储存在储水箱上部,同时温度较低的水沿管的另一侧不断补充如此循环往复,最终整箱水都升高至一定的温度。

平板式太阳能热水器:其中介质在集热板内因热虹吸自然循环,随后将太阳辐热量及时传送到水箱内,介质也可通过泵循环实现热量传递,因此就有源源不断的人能来保持水温的稳定。

2、循环管路直插式结构的真空管式太阳能热水器,热水是因为通过重力的作用而提供动力;然而平板式则通过自来水的压力提供动力。

不过这两种太阳能集中供热系统均采用泵循环。

由于太阳能热水器集热面积不大,考虑到热能损失,一般不采用管道循环。

太阳能热水器自然循环集热原理示意图3、系统工作1)温差控制集热循环集热器温测器和水温感应器置入在太阳能热水地暖系统中,能够很好地吸收太阳能辐射后,促使集热管温度上升,然后当集热器温度和水箱温度水温差到达△t设定值时,通过检测系统发出指令,循环泵将中央热水器中的冷水输入集热器中,然而水被加热后又再次回到水箱中,使水箱内的水达到设定的温度。

2)地暖管道循环系统这个系统是增加热水循环泵作为不同点,然后通过控制器更好得控制地暖管道循环为工作原理。

然后再通过当水温达到设定温度时,自动启动地暖循环泵,使高温水通过地暖盘管在室内循环,从而使室内温度不断提高。

如果水箱水温开始低于某一设定值时,应当将地暖管道循环泵进行自动停止为最好的方式。

毕业设计太阳能热水器控制电路

毕业设计太阳能热水器控制电路

太阳能热水器控制电路设计一、系统设计1.设计原理太阳能热水器自动控制电路采用AT89S52单片机作为控制核心,外围加蜂鸣器控制电路、数码显示电路、水位检测电路、电机控制电路、按键电路、温度检测电路等。

数码管实时切换显示当前温度与当前液位,当液位过高时,蜂鸣器报警,并且电机反转模拟排水过程;当液位过低时,蜂鸣器报警,并且电机正转模拟进水过程。

本系统设计简单,成本低,性能优良,具有一定的稳定性和实用性。

三、硬件电路设计1.基本原理框图图一:原理框图(1)太阳能热水器控制装置主要组成由CPU、显示电路、按键电路、蜂鸣器电路、电机电路、液位检测电路、温度检测电路、电源电路组成,如图一。

(2)太阳能热水器控制装置的工作原理接通电源后,显示当前水位,水位被分为16个点。

并且显示当前温度。

液位显示与温度的显示切换进行。

当水位显示低于或等于1时,蜂鸣器报警,并且电机正转,表示进水;当水位显示高于或等于15时,蜂鸣器报警,并且电机反转,表示排水。

液位检测利用CD40512.各部分电路原理(1)最小系统最小系统电路如图二所示。

P10/TP11/T P12 P13P14 P15 P16 P1712 INT114 T1 VCCEA/VP X1 X2 RXD 10 ALE/P 30TXD VCC 14 VCC 14 A A Q7 13 h1 Q7 13 h2 B VCC B Q6 12 g1 Q6 12 g2 Q0 Q0 Q5 11 f1 Q5 11 f2 Q1 Q1 6 Q4 10 e1 VCC 6 Q4 10 e2 VCC Q2 Q2 Q3 CLEAR 9 Q3 CLEAR 9 CLK 8 74164-CLK CLK 874164-CLK GND GND 164B VCC 14A Q7 13 h3VCC VCC B Q6 12 g3 Q0 Q5 11 f3 Q16 Q4 10 e3VCCQ2 Q3 CLEAR9 CLK8 74164-CLKGND VCC 14 AQ7 13 h4 BQ6 12 g4 Q0Q5 11 f4Q16 Q4 10 e4VCCQ2 Q3 CLEAR9 CLK 8 74164-CLKGND VCC h4a5 VCC 14 AQ7 13 h5 BQ6 12 g5 Q0Q5 11 f5 Q1 6 Q4 10 e5VCCQ2Q3 CLEAR 9 CLK8 74164-CLKGND VCCS1C1 10uF+RSTR2 1KCY130p Y11 2 3 4 5 MOSI 6 MISO 7 SCK 813 1531 19 18 U2INT0 T0A T89S52P00 39 P01 38 P02 37 P03 36 P04 35 P05 34 P06 33 P07 32 P20 21 P21 22 P22 23 P23 24 P24 25 P25 26 P26 27 P27 28CY2 11.0592M RES 9 17 30p16RESET R D WR11 PSEN 29图二:最小系统(2)显示电路采用 LED 数码管显示,该方案具有实现容易、发光亮度大、驱动电路简单等优点,其可靠性也优 于 LCD 的显示。

太阳能热水器工作原理图

太阳能热水器工作原理图

:一、吸热过程太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。

吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。

随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度。

现有的平板式集热器,基本上都采用结合良好的多管组合方式,如滚压或压延方法等,其中走水管子与吸热板之间的热阻几乎可以忽略。

影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。

设计良好的集热器的板芯肋片效率应该在93%以上。

集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。

集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。

也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。

选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。

用于热水器场合时,这类产品的实际集热效果与选择性差一些(甚至没有选择性)但肋片厚一些的集热器不会有太大的区别。

二、循环管路家用太阳能热水器通常按自然循环方式工作,没有外在的动力,设计良好的系统只要有5~6℃以上的温差就可以循环很好。

水循环管路管径及管路分布的合理性直接影响到集热器的热交换效率。

多数情况下,自然循环家用热水器系统管路中的流态都可以视为层流。

集热器内管路系统的阻力主要来自沿程阻力,局部阻力的影响要小得多,其中支管的沿程阻力又比主管要大得多。

当水温升高后,由于运动粘度减小,沿程阻力变小,局部阻力的影响变大。

在一定范围内,当主管管径不变时,加大支管管径,不仅沿程阻力迅速减小,而且局部阻力也将跟着减小。

一般地,支管的水力半径应在10mm以上。

当主管管径达到一定值以后,增加主管管径对减小系统阻力意义不大。

三、顶水式使用过程家用太阳能热水器的用水方式分为落水式和顶水式。

落水使用方式不受自来水供水影响,其缺点是使用过程中水温先低后高,掌握不好的话容易造成突然缺水的尴尬。

太阳能热水器工作原理图

太阳能热水器工作原理图

太阳能热水器工作原理图太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。

太阳热水器是由全玻璃真空集热管、储水箱、支架及相关附件组成,把太阳能转换成热能主要依靠玻璃真空集热管。

集热管受阳光照射面温度高,集热管背阳面温度低,而管内水便产生温差反应,利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。

一、吸热过程太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。

吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。

随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度。

现有的平板式集热器,基本上都采用结合良好的多管组合方式,如滚压或压延方法等,其中走水管子与吸热板之间的热阻几乎可以忽略。

影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。

设计良好的集热器的板芯肋片效率应该在93%以上。

集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。

集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。

也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。

选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。

用于热水器场合时,这类产品的实际集热效果与选择性差一些(甚至没有选择性)但肋片厚一些的集热器不会有太大的区别。

二、循环管路家用太阳能热水器通常按自然循环方式工作,没有外在的动力,设计良好的系统只要有5~6?以上的温差就可以循环很好。

水循环管路管径及管路分布的合理性直接影响到集热器的热交换效率。

多数情况下,自然循环家用热水器系统管路中的流态都可以视为层流。

集热器内管路系统的阻力主要来自沿程阻力,局部阻力的影响要小得多,其中支管的沿程阻力又比主管要大得多。

太阳能热水器工作原理图

太阳能热水器工作原理图

太阳能热水器工作原理图一、吸热过程太阳辐射透过玻璃盖板,被集热板吸收后沿肋片和管壁传递到吸热管内的水。

吸热管内的水吸热后温度升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。

随着热水的不断上移并储存在储水箱上部,同时通过下循环管不断补充温度较低的水,如此循环往复,最终整箱水都升高至一定的温度. 现有的平板式集热器,基本上都采用结合良好的多管组合方式,如滚压或压延方法等,其中走水管子与吸热板之间的热阻几乎可以忽略。

影响平板式集热器板芯性能的主要因素,一是结构设计,二是表面吸收涂层。

设计良好的集热器的板芯肋片效率应该在93%以上。

集热器的板芯肋片效率与板芯结构、表面处理以及集热器整体结构有关。

集热器整体结构的影响可以用总传热系数来描述,其影响程度与自身的几何尺寸(肋片厚度、材质)是一样。

也就是说,在同等效率的情况下,集热器热损小时板芯可以薄一些。

选择性吸收表面可以提高集热效率,但是市面上这类产品为了提高经济效益,往往肋片较薄。

用于热水器场合时,这类产品的实际集热效果与选择性差一些(甚至没有选择性)但肋片厚一些的集热器不会有太大的区别。

二、循环家用太阳能热水器通常按自然循环方式工作,没有外在的动力,设计良好的系统只要有5~6℃以上的温差就可以循环很好.水循环管路管径及管路分布的合理性直接影响到集热器的热交换效率。

多数情况下,自然循环家用热水器系统管路中的流态都可以视为层流. 集热器内管路系统的阻力主要来自沿程阻力,局部阻力的影响要小得多,其中支管的沿程阻力又比主管要大得多。

当水温升高后,由于运动粘度减小,沿程阻力变小,局部阻力的影响变大.在一定范围内,当主管管径不变时,加大支管管径,不仅沿程阻力迅速减小,而且局部阻力也将跟着减小。

一般地,支管的水力半径应在10mm以上。

当主管管径达到一定值以后,增加主管管径对减小系统阻力意义不大。

三、顶水式使用过程家用太阳能热水器的用水方式分为落水式和顶水式.落水使用方式不受自来水供水影响,其缺点是使用过程中水温先低后高,掌握不好的话容易造成突然缺水的尴尬。

太阳能热水器的组成及工作原理

太阳能热水器的组成及工作原理

太阳能热水器的组成及工作原理 2.1 系统总体结构设计排气管不锈钢保温水箱图2-1系统结构图图2-1为系统设计的结构图,该图的系统控制原理图如下图2-2:T3 T2F 3热集太阳光F1箱器T1D自来水F2图2-2 系统控制原理图注释:T1:热水箱的温度传感器T2:循环水管中的温度传感器T3:集热器中的温度传感器F1:循环水阀门F2:冷水阀门F3:热水阀门此款热水器利用微机控制主要有以下几种控制功能:晨水加热控制、温水循环控制、冷水集热控制、水箱加热控制。

1.早晨水温控制由于清晨太阳光较弱,所以太阳能热水器从系统发挥作用。

为了提供温度不低于30摄氏度的水,热水器在清晨4-7点之间对水箱进行电加热,具体控制过程如下:首先,关闭冷水阀门F2和循环水阀门F1,然后微机开始进行水箱的温度采集,同时进行温度的比较,当水箱的温度小于30摄氏度时,电热器D接通进行加热,同时微机继续对热水箱的温度进行采集。

当温度加热到大于30摄氏度时电热器断开,如此反复循环保证了温度的稳定。

2.循环水集热过程早晨水温控制之后(7~9点),设定当日的水箱温度N(由两位BCD次齿轮开关设定),输入微机,再利用微机控制系统,通过太阳光能对热水箱加热以达到理想温度N。

具体控制过程如下:打开循环阀门F1,关闭冷水进水阀门F2,热水阀门F3处于空控状态。

然后开始比较温度,若(T3-T1>5摄氏度,T2>T1)为止。

如若T1=N,那么循环水集热过程结束,进入冷水集热控制过程。

冷水集热控制3.和T3,此时热水箱温度已达到了N,冷水要进入太阳能集热器,这时温度为则将已加热的水送入热水箱,每天的控制时当日的设定温度值相比较,若T3>N 20点。

具体控制过程如下:段大概为9点~,T3>N,热水阀门F3处于可控状态。

若关闭循环水阀门F2,打开冷水阀门F2继续给太阳能集热器加F3打开热水阀门F3并将保持一段时间,若T3<N,关闭阀与N的值,若T2>N热,知道温度答应N,当打开F3时此时比较水管水温T2。

太阳能热水器原理

太阳能热水器原理

太阳能热水器原理-真空管,平板太阳能热水器工作原理<图解)太阳能热水器是太阳能成果应用中的一大产业,它以环保、安全、节能、卫生等优点,迅速赢得了广大消费者的青睐,中国,是一个能源消耗大国,每年全国能耗约占全世界能耗总量的1∕3,而全国总能耗中,有1∕3是来自建筑能耗。

“向屋顶要能源”,太阳能热水器就是吸收太阳的辐射热能,加热冷水提供给人们在生活、生产中使用的节能设备。

一、太阳能热水器的结构示意图太阳能热水器是迄今为止人类利用太阳能工业产品中普及率最高的产品。

普通太阳能热水器主机由三部分组成:真空集热管、保温水箱和支架<如图所示)。

常用的配件有:上下水管、测控仪表、水阀开关等。

二、集热和循环原理系统中的集热元件。

其功能相当于电热水器中的电热管。

和其它热水器不同的是,太阳能集热器是利用太阳的辐射热能加热冷水,故而加热时间只能在有太阳光照射的白天。

如图所示,真空集热管就像一个细长的暖瓶胆,内外层之间为真空,常用尺寸有:1800mm×58mm、1500 mm×47mm等。

真空管内管的外表面是特种材料涂层,可以有效吸收太阳辐射能。

当光子撞击膜层的时候,光能转化为热能,并传导给管内的水,水温便逐渐升高。

因为冷水比重大、热水比重小的原理,真空管和保温水箱便形成了冷水向下,热水向上的自然循环,使最热的水循环到保温水箱中。

三、保温储存原理和其它保温水箱一样,是储存热水的容器。

因为太阳能热水器只能白天工作,而人们一般在晚上才使用热水,为了使白天生产的热水在到晚上或隔天使用时保持一定的温度,所以必须通过保温水箱把热水储存起来。

1、水箱内胆水箱内是储存热水的重要部分,其用材料强度和耐腐蚀性至关重要,优质的选材应是进口SUS2B304板材,厚度在0。

4mm--0。

8mm之间不锈钢板,氩气保护,高频自动焊接,提高钢板在各种水质或各种环境耐腐蚀性能。

2、水箱保温材料性能特点及技术参数:保温材料的好坏直接关系着热效率和晚间清晨的使用,在寒冷的东北尤其重要。

太阳能热水器控制器原理图

太阳能热水器控制器原理图

太阳能热水器控制器原理图家用太阳能热水器方便、节能、无污染,应用广泛。

本文介绍的太阳能热水器辅助控制系统以单片机为核心,对储水箱水位、水温等进行检测和显示;水位过低时进行自动上水、水满自停,防止溢水;在无光照阴雨天或寒冷季节进行辅助电加热,且温度可由用户预置;在寒冷的冬季能对上水管道的水进行排空,防止管道冻裂;具有防漏电、防干烧等多种安全保护和声光报警功能。

一、系统结构太阳能热水器辅助控制系统结构如图1所示。

在真空管太阳能热水器的保温储水箱内增加一个与电热水器类似的电热元件并固定在绝缘底座上,引出交流电源线入户,由辅助控制系统的继电器控制通断电。

水位、水温探测器从保温储水箱顶部安装在水箱中,通过电缆线接入用户室内控制器。

进行管道排空时,由控制系统关闭排空控制阀,打开热水开关和淋浴开关,将管道中的水放掉;用水时则打开排空控制阀。

系统自动上水时,通过单项电磁阀上水。

水流电开关用于检测淋浴开关是否打开、是否有水的流动,当淋浴开关打开用水时,系统自动停止上水、切断辅助电加热器的电源。

二控制系统组成太阳能热水器控制系统的组成如图2所示。

整个系统以AT89C51单片机为核心,对水温、水位等参数进行智能检测和显示,读取水流开关、排空阀门的状态,经键盘操作和单片机内部运算比较,控制相应得执行机构进行通、断电;进行防漏电、防干烧等保护,并进行相应得声光报警。

对水箱水温信号的检测采用DALLAS公司生产的一线式数字温度传感器DS18B20,它具有3引脚TO-92小体积封装形式,CPU只需一根端口线就能与DS18B20通信控制读取温度值。

水流开关信号的检测采用开关式传感器,其内部是一个霍尔开关,排空阀是一个带行程开关的球型阀,由5W交流伺服电机带动,每旋转90度输出一个开关信号,排空阀的开闭状态对应于该开关信号。

上水电磁阀采用12V直流单项电磁阀;辅助电加热体的通断电采用继电器控制;排空阀由36V(5W)交流伺服电机带动,由排空阀的开闭状态信号确定并通过继电器控制交流伺服电机电源通断电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能热水器控制器原理图
家用太阳能热水器方便、节能、无污染,应用广泛;本文介绍的太阳能热水器辅助控制系统以单片机为核心,对储水箱水位、水温等进行检测和显示;水位过低时进行自动上水、水满自停,防止溢水;在无光照阴雨天或寒冷季节进行辅助电加热,且温度可由用户预置;在寒冷的冬季能对上水管道的水进行排空,防止管道冻裂;具有防漏电、防干烧等多种安全保护和声光报警功能;
一、系统结构
太阳能热水器辅助控制系统结构如图1所示;在真空管太阳能热水器的保温储水箱内增加一个与电热水器类似的电热元件并固定在绝缘底座上,引出交流电源线入户,由辅助控制系统的继电器控制通断电;水位、水温探测器从保温储水箱顶部安装在水箱中,通过电缆线接入用户室内控制器;进行管道排空时,由控制系统关闭排空控制阀,打开热水开关和淋浴开关,将管道中的水放掉;用水时则打开排空控制阀;系统自动上水时,通过单项电磁阀上水;水流电开关用于检测淋浴开关是否打开、是否有水的流动,当淋浴开关打开用水时,系统自动停止上水、切断辅助电加热器的电源;
二控制系统组成
太阳能热水器控制系统的组成如图2所示;整个系统以AT89C51单片机为核心,对水温、水位等参数进行智能检测和显示,读取水流开关、排空阀门的状态,经键盘操作和单片机内部运算比较,控制相应得执行机构进行通、断电;进行防漏电、防干烧等保护,并进行相应得声光报警;
对水箱水温信号的检测采用DALLAS公司生产的一线式数字温度传感器DS18B20,它具有3引脚TO-92小体积封装形式,CPU只需一根端口线就能与DS18B20通信控制读取温度值;水流开关信号的检测采用开关式传感器,其内部是一个霍尔开关,排空阀是一个带行程开关的球型阀,由5W交流伺服电机带动,每旋转90度输出一个开关信号,排空阀的开闭状态对应于该开关信号;上水电磁阀采用12V直流单项电磁阀;辅助电加热体的通断电采用继电器控制;排空阀由36V5W交流伺服电机带动,由排空阀的开闭状态信号确定并通过继电器控制交流伺服电机电源通断电;
三、控制软件设计主程序流程图如图3所示;子程序流程图如图4所示;主程序首先完成串行口、定时器、中断源的初始化,设置初始运行参数、开中断,然后循环读取键盘状态、检测系统是否漏电;一旦检测到系统漏电,进行声音和显示报警,将所有执行机构断电;若系统不漏电则根据存储的键盘状态和检测的水温、水位等状态信号进行相应得处理并等待中断服务程序的执行;系统正常控制时,首先显示水温和水位,若检测到水流
开关打开用水时,自动断开上水阀和电加热体电源,即实现水电联动,用水停电;当检测到水位过低时打开电磁阀上水;到达最高水位后,自动关闭电磁阀;在水位超过第二档时,将检测的实际水温与设置水温进行比较,若实际水温低于设置水温,则加热体通电进行辅助电加热;若实际水温高于设置水温时,切断加热体电源;若检测到水位低于第二档,不管设置温度高低,总是停止加热,以防止加热体干烧;。

相关文档
最新文档