第5讲 一元一次不等式

合集下载

《一元一次不等式》5

《一元一次不等式》5
明(1)答求对甲x、道乙题两,队则每他天答各错能或修不建答多的少题米数?为20-x. 3x-.5张(2老0-师x和x-学5生(2们0-一x起)≤步12行0去植树,他们步行的速度是4 km/h,出发1 h后,学校打电话通知张老师在10 min内(含10 min)返校开会, 并解让:张 设老小师韦在买原x本地笔等记候本.才学能校享立受即打派折人优骑惠摩,托车去接他,摩托车的速度至少是多少才能保证张老师按时参加会议? 2x-.5去(2年0-大x石x-桥5市(2空0-气x质)<量12良0好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过75%,那么明年 空2.气去质年量大良石好桥的市天空数气比质去量年良至好少(二要级增以加上__)_的_天__数天与.全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过75%,那么明年 答空:气小 质韦量至良少好买的天14数本比笔去记年本至才少能要享增受加打_折__优_惠__.天. ∵某x文为具整店数在,一∴x次的促最销小活值动为中14规. 定:消费者消费满200元就可享受打折优惠.期中考试后,小韦同学在该店为班级买奖品,准备买6支钢 第笔九和章 若干不本等笔式记与本不.等已式知组每支钢笔15元,每本笔记本8元,那么她至少买多少本笔记本才能享受打折优惠? 解 某:文设具小 店韦 在买 一次x本促笔销记活本动才中能规享定受:打消折费优者惠消,费满200元就可享受打折优惠.期中考试后,小韦同学在该店为班级买奖品,准备买6支钢 2笔.和去若年干大本石笔桥记市本空.气已质知量每良支好钢(二笔级15以元上,)每的本天笔数记与本全8年元天,数那(3么65她)之至比少达买到多6少0本%,笔如记果本明才年能(享36受5天打)折这优样惠的?比值要超过75%,那么明年 空答气:质 小量韦良至好少的买天14数本比笔去记年本至才少能要享增受加打_折__优_惠__.天. x2-.5去(2年0-大x石x-桥5市(2空0-气x质)<量12良0好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过75%,那么明年 第空5气课质量一良元好一的次天不数等比式去的年应至用少(1要) 增加______天. 2第.九去章年大不石等桥式市与空不气等质式量组良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过75%,那么明年 空气质量良好的天数比去年至少要增加______天.

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。

②能根据条件列出不等式。

③能用实际生活背景和数学背景解释简单不等式的意义。

2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。

教学重点:①通过探寻实际问题中的不等式关系,认识不等式。

②根据实际问题建立合理的不等关系。

教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。

设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为6cm,以后树围每年增加约3cm。

(完整版)一元一次不等式知识点总结(最新整理)

(完整版)一元一次不等式知识点总结(最新整理)

符号语言表示为:如果
,那么

基本性质 2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果
,并且
,那么
(或
基本性质 3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
)。
符号语言表示为:如果
,并且
,那么
5x 2
1
1≥
2
x 3
1,并把解集在数轴上表示出来. 5 4 3 2 1
0
1
若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为

的形式,
其一般步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化未知数的系数为 1。这五个步骤根据具体题
目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为 1 时,在不等式两边同乘以(或除以)同一个非零数时,
A
B
C
知识点 6:一元一次不等式的定义
9.下列属于一元一次不等式的是( )A.10>8 知识点 7:一元一次不等式的整数解
D
B. 2x 1 3y 2 C. 2(1 y) 1 y 1 D. x2 3 5 2
10.在不等式 3x 2 4 中, x 可取的最大整数值是( )A.0 B.1 C.2 11.不等式 2 x -1≥3 x -5 的正整数解的个数为( )A.5 个 B.2 个 C.3
知识点四:一元一次不等式的解法
1.解不等式:求不等式解的过程叫做解不等式。2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本
性质,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为 1.

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

一元一次不等式(公开课优秀课件)

一元一次不等式(公开课优秀课件)
图像法解一元一次不等式需要注意函数图像的走向和性质,以及临界点与不等式解 集的关系。
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。

二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。

2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。

一元一次不等式课件(共21张PPT)

一元一次不等式课件(共21张PPT)

随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为

合并
1

同类


练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲一元一次不等式1.掌握不等式的基本性质并能正确运用它们将不等式变形;2.理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;3.掌握解一元一次不等式的方法和步骤并准确地求出不等式的解集.知识点01 不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.【知识拓展】(2021春•萍乡期末)“实数x不小于6”是指()A.x≤6 B.x≥6 C.x<6 D.x>6【即学即练】(2021春•建平县期末)据天气预报,2021年7月5日建平县最高气温是25℃,最低气温是22℃,则当天我县气温t(℃)的变化范围是()A.t>25 B.t≤22 C.22<t<25 D.22≤t≤25知识点02 不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a c>bc).知识精讲目标导航性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c<b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 【知识拓展1】(2021春•饶平县校级期末)若2a +3b ﹣1>3a +2b ,试比较a ,b 的大小.【即学即练1】(2021•梁园区校级一模)若a >b >0,c >d >0,则下列式子不一定成立的是( ) A .a ﹣c >b ﹣dB .C .ac >bcD .ac >bd【即学即练2】(2021秋•澧县期末)若a >b ,则﹣2a ﹣2b .(用“<”号或“>”号填空) 【即学即练3】(2021春•万柏林区校级月考)利用不等式的性质,解答下列问题. (1)①如果a ﹣b <0,那么a b ; ②如果a ﹣b =0,那么a b ; ③如果a ﹣b >0,那么a b ; (2)比较2a 与a 的大小. (3)若a >b ,c >d . ①比较a +c 与b +d 的大小; ②比较a ﹣d 与b ﹣c 的大小.【即学即练4】(2021春•未央区校级月考)若m<n,且(a﹣5)m>(a﹣5)n,求a的取值范围.【即学即练5】(2021春•饶平县校级期末)根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【即学即练6】(2021•连州市模拟)已知a>b,则下列结论正确的是()A.﹣2a>﹣2b B.a+c>b+c C.3a<3b D.ac>bc【即学即练7】(2021春•潍坊期末)若a>b,则下列不等式一定成立的是.A.a+2>b+2 B.<C.﹣2a<﹣2b D.a2<b2【即学即练8】(2021•内江)已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.知识点03 一元一次不等式1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b>0(a≠0)或ax+b≥0(a≠0) ,ax+b<0(a≠0)或ax+b≤0(a≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.【知识拓展1】(2021春•皇姑区校级期中)若x2m﹣1>5是关于x的一元一次不等式,则m=.【即学即练1】(2021春•饶平县校级期末)已知(b+2)x b+1<﹣3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.【即学即练2】(2021春•平川区校级期末)在数学表达式:﹣4<0,2x+y>0,x=1,x2+2xy+y2,x≠5,x+2>y+3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个【即学即练3】(2021•南岗区校级开学)下列各式中,是一元一次不等式的有()(1)x+2+x2<2x﹣5+x2;(2)2x+xy+y;(3)3x﹣4y≥0;(4)﹣5<x;(5)x≠0;(6)a2+1>5.A.1个B.2个C.3个D.4个【即学即练4】(2021春•甘孜州期末)下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0 C.>1 D.<0【即学即练5】(2021春•冠县期末)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.【知识拓展2】(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.【即学即练1】(2021•滕州市一模)下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3 B.C.D.2【即学即练2】(2021•河南模拟)用三个不等式x>﹣4,x<﹣1,x>1中的两个组成不等式组,其中有解集的个数为()A.0 B.1 C.2 D.3【即学即练3】(2021•新野县三模)已知关于x的不等式组有实数解,则m的取值范围是.【即学即练4】(2021春•沭阳县期末)如图,是关于x的不等式的解集示意图,则该不等式的解集为.【即学即练5】(2021春•陆河县校级期末)如图,此不等式的解集为.【即学即练6】(2021春•天津期末)分别用含x的不等式表示如图数轴中所表示的不等式的解集:②;②.【即学即练7】(2021•潮阳区模拟)把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2【即学即练8】(2021春•抚州期末)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.【即学即练9】(2021春•饶平县校级期末)解不等式7﹣2x>(1﹣)2,把它的解集在数轴上表示出来,并求出它的正整数解.【即学即练10】(2019•衢江区二模)如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.【知识拓展3】(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣【即学即练1】(2021秋•济南期末)不等式﹣3x≤6的解集为.【即学即练2】(2021秋•鹿城区校级期中)若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为.【即学即练3】(2021秋•肇源县期末)若关于x的方程x+k=2x﹣1的解是负数,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1 D.k≤﹣1【即学即练4】(2021•安徽模拟)解不等式≤.【即学即练5】(2021•永定区模拟)解不等式:7x﹣2≤5x,并把解集在数轴上表示出来.【即学即练6】(2021秋•清镇市期中)已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.【知识拓展4】(2021•陕西)求不等式﹣x+1>﹣2的正整数解.【即学即练1】(2021•长兴县模拟)整数x满足不等式2x+1<8,则x的值可能是.(写出一个符合的值即可)【即学即练2】(2021春•聊城期末)解不等式,并写出它的负整数解.【即学即练3】(2021春•鞍山期末)解不等式(1﹣2x )≥;并写出它所有的非负整数解.【即学即练4】(2021秋•朝阳区校级期中)不等式4(x ﹣2)<2x ﹣3的非负整数解的个数为( ) A .2个B .3个C .4个D .5个1.比较a b +和a b -的大小.2.等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.3.解不等式:11315111x x x x ++>+-++.能力拓展分层提分题组A 基础过关练一.选择题(共4小题)1.(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣2.(2021•锦江区校级开学)若a>b,则下列不等式不一定成立的是()A.﹣2a<﹣2b B.am<bm C.a﹣3>b﹣3 D.3.(2021秋•龙凤区期末)已知a<b,则下列不等式错误的是()A.a﹣7<b﹣7 B.ac2<bc2C.D.1﹣3a>1﹣3b4.(2021秋•杜尔伯特县期末)若m<n,则下列各式正确的是()A.﹣2m<﹣2n B.C.1﹣m>1﹣n D.m2<n2二.填空题(共6小题)5.(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.6.(2021秋•瓯海区月考)根据“3x与5的和是负数”可列出不等式.7.(2021秋•青羊区校级期中)﹣<x<的所有整数的和是.8.(2021秋•济南期末)不等式﹣3x≤6的解集为.9.(2021秋•澧县期末)若a>b,则﹣2a﹣2b.(用“<”号或“>”号填空)10.(2020秋•开化县期末)若x<y,且(a﹣3)x≥(a﹣3)y,则a的取值范围是.三.解答题(共2小题)11.(2021春•澄城县期末)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,求这个不等式的解集.12.(2021春•秦都区月考)解不等式:3x ﹣4<4+2(x ﹣2).题组B 能力提升练一、单选题1.在数学表达式:30-<,+a b ,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ). A .1个B .2个C .3个D .4个2.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( ) A .B .C .D .3.不等式2﹣3x≥2x﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个4.如图,是关于x 的不等式2x ﹣a≤﹣1的解集,则a 的取值是( )A .a≤﹣1B .a≤﹣2C .a=﹣1D .a=﹣25.已知关于x 的不等式(1)2a x ->的解集为21x a<-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a <6.若方程3(1)1(3)5m x m x x ++=--的解是正数,则m 的取值范围是( )A .54m >B .54m <C .54m >-D .54m <-7.若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( ) A .43x >B .43x <C .43x >-D .43x <-二、填空题8.不等式5x-9≤3(x+1)的解集是________.9.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________. 10.不等式112943x x ->+的正整数解的个数为___________________. 11.当x _____________时,21x -的值小于32x +的值. 12.不等式442x x ->-的最小整数解为_____. 13.(1)已知x a <的解集中的最大整数为3,则a 的取值范围是________. (2)已知x a >的解集中最小整数为-2,则a 的取值范围是________.14.若不等式2113x -≤中的最大值是m ,不等式317x --≤-中的最小值为n ,则不等式nx mn mx +<的解集是________. 三、解答题15.解一元一次不等式532122x x ++-<.16.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤.17.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<10 7.(1)求ba的值.(2)求关于x的不等式ax>b的解集.题组C 培优拔尖练1.列式计算:求使的值不小于的值的非负整数x.2.已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.3.为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512处理污水量(吨/月)250220经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?。

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组讲义

一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。

若a>b ,则a+c>b+c (a-c>b-c )。

性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。

若a>b 且c>0,则ac>bc 。

性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。

若a>b 且c<0,则ac<bc 。

2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。

知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。

2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。

3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:, 。

要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)

作者为你精心整理了9篇《一元一次不等式教案》的内容,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的内容。

篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

知识重点寻找实际问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。

一元一次不等式解

一元一次不等式解

一元一次不等式解
一、教学目标
1. 掌握一元一次不等式的解法。

2. 通过实例了解不等式与方程的联系,感受不等式的基本性质。

3. 培养学生分析和解决实际问题的能力。

二、教学内容与步骤
1. 引入新课:通过生活中的实例,如购物时找零、速度与时间的关系等,引出一元一次不等式的基本概念和性质。

2. 讲解知识点:介绍一元一次不等式的解法,包括移项、合并同类项、系数化为1等步骤。

同时,通过例题演示解题过程。

3. 练习与讨论:给出几个一元一次不等式的问题,让学生自己尝试求解。

同时,分组讨论,总结解一元一次不等式时需要注意的问题。

4. 拓展知识:通过一些具体的实例,介绍一元一次不等式在实际生活中的应用,如旅游预算、时间安排等。

5. 课堂小结:总结本节课的主要内容,强调一元一次不等式的解法及其在实际问题中的应用。

三、教学重点与难点
重点:一元一次不等式的解法。

难点:如何将实际问题转化为数学模型,即如何根据问题建立一元一次不等式。

四、作业与要求
1. 完成相关练习题,巩固所学知识。

2. 尝试解决一些生活中的实际问题,如购物时找零、时间安排等,并写出解题过程。

3. 分组讨论,总结解一元一次不等式时需要注意的问题。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。

例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。

三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。

X=2 是不等式 x+3<2 的解。

X=2 是不等式 3x<7 的解。

不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。

解是 x<2。

X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。

-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。

例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。

②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

中考数学第1编教材知识梳理篇第2章不等式组与方程组第5讲不等式与不等式组精讲试题

中考数学第1编教材知识梳理篇第2章不等式组与方程组第5讲不等式与不等式组精讲试题

第二章不等式(组)与方程(组)第五讲不等式与不等式组,考标完全解读)考点考试内容考试要求一元一次不等式不等式、不等式解、解集概念了解在数轴上表示不等式的解集掌握不等式性质掌握一元一次不等式概念了解解一元一次不等式掌握一元一次不等式组列一元一次不等式组解决实际问题理解一元一次不等式组解集了解解一元一次不等式组理解,感受宜宾中考)1.(2016宜宾中考)宜宾市某化工厂,现有A 种原料52 kg ,B 种原料64 kg ,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3 kg ,B 种原料2 kg ;生产1件乙种产品需要A 种原料2 kg ,B种原料4 kg ,则生产方案的种数为( B )A .4种B .5种C .6种D .7种2.(2013宜宾中考改编)对于实数a ,b ,定义一种运算“*”为:a*b =a 2+ab -2,则不等式组⎩⎪⎨⎪⎧(-2)*x -4<0,1*x -3<0的解集为__-1<x <4__. 3.(2015宜宾中考)一元一次不等式组⎩⎪⎨⎪⎧x +2≥0,5x -1>0的解集是__x >15__.4.(2014宜宾中考)在我市举行的中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题. 解:(1)设小李答对了x 道题. 依题意,得 5x -3(20-x)=60. 解得x =15.答:小李答对了15道题; (2)设小王答对了y 道题.依题意,得⎩⎪⎨⎪⎧5y -3(20-y )≥75,5y -3(20-y )≤85,解得1358≤y ≤1458.∵y 是正整数,∴y =17或18. 答:小王答对了17道题或18道题.,核心知识梳理)不等式的概念及性质1.不等式:一般地,用不等号连接的式子叫做__不等式__.2.不等式的解:能使不等式成立的未知数的__值__叫做不等式的解;一个含有未知数的不等式的解的全体,叫做不等式的__解集__.3.不等式的基本性质性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向__不变__;性质2:不等式两边同乘(或除)以一个正数,不等号的方向__不变__;性质3:不等式两边同乘(或除)以一个负数,不等号的方向__改变__.【针对练习】已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的是( D) A.a+c>b+c B.c-a<c-bC.ac2>bc2D.a2>ab>b2一元一次不等式的解法及数轴表示4.一元一次不等式:只含有__一个__未知数,且未知数的次数是__1次__的不等式,叫做一元一次不等式,其一般形式是__ax+b>0__或ax+b<0(a≠0).5.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)__合并同类项__;(5)系数化为1.6.一元一次不等式的解集在数轴上的表示解集解集在数轴上的表示x<a一元一次不等式组的解法及数轴表示7.一元一次不等式组:含有相同未知数的若干个__一元一次__不等式所组成的不等式组叫做一元一次不等式组.8.一元一次不等式组的解集:一元一次不等式组中各个不等式的__解集__的公共部分.9.解一元一次不等式组的步骤:(1)先求出各个不等式的__解集__;(2)再利用数轴找它们的__公共部分__;(3)写出不等式组的解集.10.几种常见的不等式组的解集如表(a<b,且a,b为常数)续表11.求不等式(组)的特殊解,一方面要先求不等式(组)的__解集__,然后在解集中找__特殊__解.12.列不等式(组)解应用题的步骤:(1)找出实际问题中的__不等__关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.【针对练习】(眉山中考)已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B)一元一次不等式的实际应用13.审题→设一个未知数→找出题中所有的数量关系→列出不等式→解不等式→检验不等式的解集是否合理、是否符合实际情况.正确理解“至少”“最多”“不低于”“不大于”和“不等于”等词的含义.【针对练习】一个工程队原定在10天内至少要挖土600 m3,在前两天一共完成了120 m3,由于整个工程调整工期,要求提前两天完成挖土任务,则后6天平均每天要挖土__80____m3__.,重点难点解析)不等式的性质及应用【例1】如果a>b,那么下列不等式一定成立的是( )A.a2>b2B.1-a>1-bC.1+a>1-bD.1+a>b-1【解析】根据不等式的性质即可得出答案.A.不等式两边都平方,不等号可能改变,如-2>-3,则(-2)2<(-3)2,错误;B.a>b两边同乘以-1不等号改变,得-a<-b,两边再加1,得1-a<1-b,错误;C.不等式右边的b变为-b,不等式符号可能改变,错误;D.不等式左边加1,右边减1,正确.【答案】D【针对训练】1.下列四个命题中,正确的有( C)①若a>b,则a+1>b+1;②若a>b ,则a -1>b -1; ③若a>b ,则-2a>-2b ; ④若a>b ,则2a>2b.A .1个B .2个C .3个D .4个求解不等式(组)中的字母【例2】若不等式12x<2的解集都能使关于x 的一次不等式(a -3)x<a +5成立,则a 的取值范围是________.【解析】先求出12x<2的解集,再根据不等式(a -3)x<a +5用a 表示出x 的解集,再由题意可知不等式(a -3)x<a +5的解集包含12x<2的解集,列关于a 的不等式求解即可得到a 的取值范围.【答案】3<a≤173【针对训练】2.关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x<m 的解集为x<3,那么m 的取值范围为(D )A .m =3B .m>3C .m<3D .m ≥3一元一次不等式(组)的解法【命题规律】考查一元一次不等式(组)的解法,根据不等式的解集找出不等式组的公共解集,以解答题为主.【例3】 解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -22≥2x-4,并指出它的所有非负整数解.【解析】求出每一个不等式的解集,根据找不等式组解集的规律找出即可. 【答案】解:⎩⎪⎨⎪⎧3(x -1)<5x +1,①x -22≥2x-4,②由①,得x>-2,由②,得x≤2.∴原不等式解集为-2<x≤2,非负整数解为0,1,2.【点评】本题主要考查对不等式的性质、解一元一次不等式组、在数轴上表示不等式组的解集等知识点的理解和掌握,按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.能根据不等式的解找出不等式组的解集是解本题的关键.注意在数轴上表示不等式的解集时,点是用实心圆圈还是空心圆圈.【针对训练】3.(巴中中考)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x+1的最大整数解为(C )A .1B .-3C .0D .-14.(广安中考)函数y =3x +6中自变量x 的取值范围在数轴上表示正确的是( A )一元一次不等式(组)应用【例4】我国从2017年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分,小明参加本次竞赛得分要超过100分.他至少要答对________道题.【解析】根据题意列不等式,设答对x题,则答错(或不答)(20-x)题,所以10x-5(20-x)>100即可.【答案】14【针对训练】5.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31 t,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70 t.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148 t,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解:(1)设一辆大型渣土运输车一次运输土方x t,一辆小型渣土运输车一次运输土方y t.由题意,得⎩⎪⎨⎪⎧2x +3y =31,5x +6y =70,解得⎩⎪⎨⎪⎧x =8,y =5.答:一辆大型渣土运输车一次运输土方8 t ,一辆小型渣土运输车一次运输土方5 t ;(2)设渣土运输公司决定派出大型渣土运输车m 辆,则派出小型渣土运输车(20-m)辆.由题意,得⎩⎪⎨⎪⎧8m +5(20-m )≥148,20-m≥2,解得:16≤m≤18.又∵m 为整数.∴m 可取16或17或18.因此有如下三种派车方案:方案一:派出大型渣土运输车16辆,小型渣土运输车4辆;方案二:派出大型渣土运输车17辆,小型渣土运输车3辆;方案三:派出大型渣土运输车18辆,小型渣土运输车2辆.,当堂过关检测)1.若m>n ,下列不等式不一定成立的是( D )A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 22.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是( D )3.(2017毕节中考)关于x 的一元一次不等式m -2x 3≤-2的解集为x≥4,则m 的值为( D ) A .14 B .7 C .-2 D .24.(2017内江中考)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是( B )A .4B .5C .6D .75.(2017泰安中考)不等式组⎩⎪⎨⎪⎧2x +9>6x +1,x -k <1的解集为x <2.则k 的取值范围为( C )A .k >1B .k <1C .k ≥1D .k ≤16.(2017武汉中考)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,则该公司有哪几种不同的购买方案?解:(1)设购买甲种奖品x 件,则购买乙种奖品(20-x)件.40x +30(20-x)=650,解得x =5,20-x =15.答:购买甲种奖品5件,乙种奖品15件;(2)设购买甲种奖品m 件,则购买乙种奖品(20-m)件.由题意,得⎩⎪⎨⎪⎧20-m≤2m,40m +30(20-m )≤680,解得203≤m ≤8. ∵m 为整数,∴m =7或m =8,当m =7时,20-m =13;当m =8时,20-m =12.即该公司有两种不同的进货方案:方案一:购买甲种奖品7件,乙种奖品13件;方案二:购买甲种奖品8件,乙种奖品12件.7.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设购买球拍x个.依题意,得1.5×20+22x≤200,解得x≤7811.又x为整数,∴x最大=7.答:孔明应该买7个球拍.教后反思:______________________________________________________________________________________________________________________________________________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________________ ________________________________________________________________________。

一元一次不等式的解法教案

一元一次不等式的解法教案

一元一次不等式的解法教案一元一次不等式是数学学科中较为基础的内容之一,也是各种数学问题的必要组成部分。

在解一元一次不等式时,首先需要明确其基本概念和解题思路,以此为基础进行实际操作,从而达到正确解题的目的。

本文将从概念和解题思路两个方面讲解一元一次不等式的解法。

一、概念一元一次不等式的概念可以从以下三个方面入手,进而掌握其基本含义:1.一元一元指的是不等式中只有一个未知量,通常用x表示。

2.一次一次指的是不等式中未知量的最高次数为1,即不含平方项及以上次数的项。

3.不等式不等式指的是不等关系,不同于等式的等于关系,包括大于、小于、大于等于、小于等于等多种形式。

在掌握了一元、一次和不等式这三个概念之后,就能够对一元一次不等式有更为深入的理解和认识。

二、解题思路在解一元一次不等式时,需要掌握以下基本思路:1.移项将不等式中含有未知量的项移至一侧,将不含未知量的项移至另一侧,以求得未知量的取值范围。

2.变形通过运用数学公式和基本变形方式,将求解一元一次不等式的问题转化为更简单的问题进行求解。

3.分段讨论对于复杂的一元一次不等式,可以将其拆分为多个不等式进行讨论求解,从而得到最终的解法。

4.画图法对于一元一次不等式,还可以通过在坐标系中绘制对应函数的图像,从而更直观地理解其解法和结果。

以上为解一元一次不等式的基本思路,当然,具体操作方法还需要根据不同的题型进行具体分析和求解。

综上所述,一元一次不等式的解法是数学学科中的基础内容,也是芝士经验悠久的领域。

掌握了一元一次不等式的基本概念和解题思路,就能够更轻松地解决各种数学问题,并在日常生活中发挥出更大的作用。

小专题(五) 一元一次不等式的特殊解法

小专题(五) 一元一次不等式的特殊解法

小专题(五) 一元一次不等式的特殊解法一元一次不等式的常规解法是按去分母,去括号,移项,合并同类项,系数化为1等步骤进行,但对于一些特殊一元一次不等式,可以不按常规套路进行,可以用特殊的方法来解,比常规解法要简单得多.类型1 小数化整数法1.解不等式0.5x+3>0.25x-1.解:不等式两边同时乘以4,得 2x+12>x-4 ,移项、合并,得x> -16 .2.解不等式2x -0.50.5−2x -1.40.2>0.5-x 0.25. 解:利用分数基本性质化小数分母为整数,得2(2x -0.5)2×0.5−5(2x -1.4)5×0.2>4(0.5-x )4×0.25, 去括号,得4x-1-10x+7>2-4x ,移项、合并同类项,得-2x>-4,系数化为1,得x<2.类型2 直接对消法3.解不等式x+22-x ≥2x+44+3. 解:原不等式可化简为x+22-x ≥ x+22 +3,即-x ≥3, 系数化为1,得x ≤ -3 .4.解不等式2x-x -32>6-2x 4+4. 解:原不等式可化为2x+3-x 2>3-x 2+4,即2x>4,系数化为1,得x>2.类型3 分数直接加减法5.解不等式2x3−37>47−x3.解:原不等式可化为2x3+x3>47+37,合并,>即x>1.6.解不等式2x+35−13<53−3x+25.解:原不等式可化为2x+35+3x+25<53+13,合并,得2x+3+(3x+2)5<5+13,即x+1<2,移项,得x<1.类型4拆项法7.解不等式x+42−6+x3>0.解:原不等式化为(x2−x3)>0,即x2−x3>0,去分母,得3x-2x>0, 合并,得x>0.8.解不等式x+24+3-4x6>1.解:原不等式化为(x4+24)+(36-4x6)>1,即x4−2x3>0,解得x<0.类型5倒去括号法9.解不等式23[32(x-3)-6]≤2.解:先去中括号,得(x-3)-4≤2,再去小括号,得x-3-4≤2,移项并合并,得x≤9.10.解不等式35[53(x+1)-5(2-x)]>x+1.解:先去中括号,得(x+1)-3(2-x)>x+1,再去小括号,得x+1-6+3x>x+1,移项、合并,得3x>6,系数化为1,得x>2.。

一元一次不等式的解集

一元一次不等式的解集

一元一次不等式的解集
一元一次不等式的解集是指让一个变量与一个常数的乘积与另一个常数比较大小所得到的解集。

在数学中,解集的概念非常重要,特别是对于不等式这种数学工具来说更是如此。

因此,本文将主要介绍一元一次不等式的解集,以及如何根据不等式的特性来求解解集。

首先,让我们来看一下一元一次不等式的形式:ax+b<c或
ax+b>c,其中a、b、c均为实数,且a不等于0。

这种不等式的解集也就是所有解的集合,可以用不等式符号表示。

例如,一元一次不等式2x+3<7的解集可以用{x|x<2}的形式表示,也就是x的取值范围是小于2的所有实数。

接下来,让我们来看一下如何求解一元一次不等式的解集。

首先,我们需要观察不等式的符号,判断变量与常数之间的大小关系。

如果不等式符号是小于号,那么我们可以通过减去常数b,再除以系数a来得到x的取值范围。

例如,对于不等式2x+3<7,我们可以先将常数3减去,得到2x<4,然后将系数2作为分母除以2,得到x<2,因此,解集为{x|x<2}。

如果不等式符号是大于号,那么我们需要将不等式反转,先得到小于号形式,再求解。

例如,对于不等式2x+3>7,我们需要将不等式反转得到小于号形式,即2x+3<7,然后就可以按照上面的方法求解得到解集{x|x>2}。

总之,一元一次不等式的解集会影响到很多实际问题的求解,因此,对于学习数学的学生来说,掌握不等式的解集求解方法至关重要。

通过本文的介绍,相信大家能够更加清晰地了解一元一次不等式的解集概念和求解方法,也能够更加顺利地解决相关的数学问题。

一元一次不等式组教案6篇

一元一次不等式组教案6篇

一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。

一元一次不等式讲解

一元一次不等式讲解

一元一次不等式讲解
一元一次不等式是数学中的重要概念,它是指只有一个未知数的一次不等式。

在一元一次不等式中,未知数只出现一次,并且其次数为一。

如下所示:
ax+b>c
其中,a、b、c为已知数,x为未知数。

一元一次不等式的解法与一元一次方程相似,也是通过移项、化简、缩项等方法来求解。

但是在解一元一次不等式时,需要注意以下几个特殊情况:
1.当a>0时,不等式两边同时乘以正数,不等式方向不变;两边同时乘以负数,不等式方向反转。

举个例子,对于不等式2x-3>5,我们需要将其化简为x>4。

因为2>0,所以不等式方向不变。

2.当a<0时,不等式两边同时乘以正数,不等式方向反转;两边同时乘以负数,不等式方向不变。

例如,对于不等式-3x+4<1,我们需要将其化简为x>1。

因为-3<0,所以不等式方向反转。

3.当a=0时,不等式变为b>c,其中b、c为已知数。

此时不等式
的解为:当b>c时,不等式成立;当b≤c时,不等式不成立。

解一元一次不等式需要注意不等式方向的变化,以及当a=0时的特殊情况。

此外,我们还可以通过绘制数轴来更加直观地理解一元一次不等式的解法。

一元一次不等式是数学中的重要概念,掌握其解法对于我们学习和应用数学知识都有着重要的意义。

第九章不等式与不等组:一元一次不等式的应用人教版数学七年级下册

第九章不等式与不等组:一元一次不等式的应用人教版数学七年级下册
401020
20
总费用(元) 950 700
(1)《论语》和《史记》每本的价格分别是多少元?
解:设《论语》每本的价格是 x 元,《史记》每本的价格是 y 元. 根据题意,得4200xx++1200yy==975000,. 解得xy==1250., 答:《论语》每本的价格是 20 元,《史记》每本的价格是 15 元.
2.小明从图书馆借到一本有75页的书,要在10天内读完.设每天读 x页,则列不等式为___1_0_x_≥_7_5__.
知识点1 一元一次不等式的实际应用 例1 某校举行以“二十大知多少”为主题的知识竞赛,一共有25 道题,每一题答对得4分,不答或答错扣1分.若小明的总得分不低于92 分,则他至少答对了多少道题? 解:设他答对 x 道题. 根据题意,得 4x-(25-x)≥92.解得 x≥1157 . 又 x 为正整数,∴x 的最小值为 24. 答:他至少答对了 24 道题.
(2)若学校计划购买《论语》和《史记》两种图书共 110 本,《论语》的数
量至少为《史记》数量的
1 3
,则《论语》最少购买多少本?
解:设购买《论语》m 本,则购买《史记》(110-m)本.
根据题意,得 m≥13 (110-m).解得 m≥525 . 又 m 为正整数,∴m 的最小值为 28. 答:《论语》最少购买 28 本.
例2 (2022资阳)北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人 们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比 一个乙种型号多20元,购买甲、乙两种型号各10个共需1 760元.
(1)求甲、乙两种型号的“冰墩墩”单价各是多少元? 解:设乙种型号的“冰墩墩”单价是x元,则甲种型号的“冰墩墩” 单价是(x+20)元. 根据题意,得10(x+20)+10x=1 760.解得x=78. ∴x+20=78+20=98. 答:甲种型号的“冰墩墩”单价是98元,乙种型号的“冰墩墩”单 价是78元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年份
2010 2011 2012 2013 填空题 选择题
试题类型
知识点
无考 无考 解一元一次不等式 不等式的性质、解一元一次不等式, 并在数轴上表示其解集
分值
4分 6分
中山市溪角初级中学
1.从近几年广东省命题地区的考试内容来看,本讲内容命题难 度适中,考查的重点是一元一次不等式的解法、不等式解集的数轴 表示. 2.题型以解答题为主. 3.2014 年考查重点可能是一元一次不等式的解法、不等式解 集的数轴表示、不等式的整数解、列不等式解决实际问题的应用题.
解:⑴设购买一个足球需要 x 元,则购买一个排球也需要 x 元,购买一个篮球 y 元, 由题意得:
x=50 2x+3y=340 ,解得: 4x+5y=600 y=80 答:购买一个足球需要 50 元,购买一个篮球需要 80 元; ⑵设该中学购买篮球 m 个 由题意得:80m+50(100-m)≤6000 1 解得:m≤33 3 ∵m 是整数 ∴m 最大可取 33 答:这所中学最多可以购买篮球 33 个.
中山市溪角初级中学
5.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮 球, 排球和足球的单价相同, 同一种球的单价相同, 若购买 2 个足球和 3 个篮球共需 340 元,购买 4 个排球和 5 个篮球共需 600 元. ⑴求购买一个足球,一个篮球分别需要多少元? ⑵该中学根据实际情况,需从体育用品商店一次性购买三种球共 100 个,且购买三种球 的总费用不超过 6000 元,求这所中学最多可以购买多少个篮球?
中山市溪角初级中学
★课堂精讲★
考点 1.不等式的性质 1.已知实数 a、b,若 a>b,则下列结论正确的是( A.a-5<b-5 B.2+a<2+b
a b C. 3 < 3
D)
D.3a>3b
考点 2.解一元一次不等式(高频考点) 2.不等式 2x-4<0 的解集是 x﹤2 .
3.解不等式 4(x-1)+3≥3x,并把解集在数轴上表示出来. 解:去括号得:
解:去分母得:2(2x-1)-(9x+2)≤6 去括号得:4x-2-9x-2≤6 移项得:4x-9x≤6+2+2 合并同类项得:-5x≤10 把 x 的系数化为 1 得:x≥-2
4.某商店第一次用 600ห้องสมุดไป่ตู้元购进 2B 铅笔若干支,第二次又用 600 元购进该款铅笔,但这 5 次每支的进价是第一次的 4 倍,购进数量比第一次少了 30 支。 ⑴求第一次每支铅笔的进价是多少元? ⑵若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于 420 元,问每支售价 至少是多少元?
中山市溪角初级中学
5.列不等式(组)解应用题 列不等式(组)解应用题的基本步骤和列方程解应用题的步骤相类似,即: (1)审:认真审题,分清已知量.未知量及其关系,找出题目中的不等关系, 抓住题设中的关键字眼,如“大于”、“ 小于 ”、“不小于”、“不大于”、 “不少于”、“不低于”、“不多于”、“至多”、“超过”、“至少”、“不 足”等. (2)设:设出适当的未知数. (3)列:根据题目中的不等关系,列出不等式. (4)解:解出所列不等式的解集. (5)答:写出答案,并检验答案是否符合题意.
解:⑴设第一次每支铅笔进价为 x 元, ⑵设每支铅笔的售价至少为 y 元,依题意得 依题意得 第一次购进:600÷4=150(支)
6 6 30 x 5x 4
第二次购进:150-30=120(支) ∴(150+120)y-2×600≥420 解得:y≥6 答:每支铅笔的售价至少为 6 元
解得:x=4 经检验,x=4 是原方程的解 答:第一次每支铅笔的进价是 4 元。
中山市溪角初级中学
★随堂检测★
1.若 a>b,则下列不等式变形错误的是( D ) A.a+1>b+1
b a B. 2 > 2
C.3a-4>3b-4
D.4-3a>4-3b
2.不等式 2x-3≥x 的解集是 x≥3 . 2x 1 9x 2 3.解不等式: 3 6 1 ,并把解集表示在数轴上.
中山市溪角初级中学
第二章 方程与不等式
第5讲 一元一次不等式
★中考导航★
⊙考纲要求⊙
1.能够根据具体问题中的大小关系了解不等式的意义和基本性质. 2.会解简单的一元一次不等式,并能在数轴上表示出解集。 3.能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题. ⊙命题趋势⊙
2010~2013 年广东省中考题型及分值统计
4x-4+3≥3x 移项得:4x-3x≥4-3 则 x≥1. 把解集在数轴上表示为:
中山市溪角初级中学
考点 3.一元一次不等式的应用 4.某大型超市从生产基地购进一批水果,运输过程中质量损失 10%,假设不计超 市其他费用,如果超市要想至少获得 20%的利润,那么这种水果的售价在进价的 基础上应至少提高( B ) A.40% B.33.4% C.33.3% D.30%
1 x 3
3x
1 3
B.
3x
1 3
C. 3 x
1 x 3
5.解不等式: 5 x 1 3 x 7
解:5x-3x≤7+1 2x≤8 x≤4
中山市溪角初级中学
★考点梳理★
1.不等式的基本性质 ⑴不等式的两边都加上(或减去)同一个整式,不等号的方向__不改变__. ⑵不等式的两边都乘以(或除以)同一个__正数 2.解不等式:求不等式解集的过程称为解不等式. 3.一元一次不等式解题步骤 ⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为 1. 在⑴至⑸步的变形中,一定要注意不等式的性质⑵.⑶的运用,明确不等号的方向是否需 要改变. __,不等号的方向不变. ⑶不等式的两边都乘以(或除以)同一个__负数__,不等号的方向改变.
中山市溪角初级中学
★课前预习★
1.当实数 a<0 时,6+a < 2.不等式 2x-1>3 的解集是 6-a(填“<”或“>”) . x>2 . 3.不等式 5 x 1 2 x 5 的解集在数轴上表示正确的是( A )
1 4. “x 的 3 倍不小于它的 3 ”应表示为(
A.
D)
D. 3 x
相关文档
最新文档