2018年四川省泸州市中考数学试卷(含答案解析版)

合集下载

2018年四川省泸州市中考数学试题含答案解析

2018年四川省泸州市中考数学试题含答案解析

2018年四川省泸州市中考数学试题(解析版)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)若二次根式在实数范围内有意义,则x的取值范围是x≥1 .【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)分解因式:3a2﹣3= 3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6 .【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG 是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18 .【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)计算:π0++()﹣1﹣|﹣4|.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)化简:(1+)÷.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C 点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b 求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB 的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE ∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G 点坐标为(,),此时点E 坐标为(,)当点G、E位置对调时,依然满足条件∴点G 坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.21。

2018年四川省泸州市中考数学试卷解析版

2018年四川省泸州市中考数学试卷解析版

2018年四川省泸州市中考数学试卷解析版一、选择题(本大题共12个小题,每小题3分,共36分),2四个数中,最小的是()1.在﹣2,0,12D.2A.﹣2 B.0 C.12【考点】18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得<2,﹣2<0<12﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B. C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b 于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16 17人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.BC,由AE+EO=4,推出AB+BC=8即可解决问题;【分析】首先证明:OE=12【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,BC,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【考点】KR :勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab=12×8=4, ∴4×12ab+(a ﹣b )2=25, ∴(a ﹣b )2=25﹣16=9,∴a ﹣b=3,故选:D .【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.已知关于x 的一元二次方程x 2﹣2x+k ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k ≤2B .k ≤0C .k <2D .k <0【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是()A.43B.54C.65D.76【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【专题】556:矩形菱形正方形.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32a,∴FM=52a,∵AE∥FM,∴AGGF =AEFM=3a52a=65,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=√3x+ 2√3上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.√3D.√2【考点】MC :切线的性质;F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】如图,直线y=√3x+2√3与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,先利用一次解析式得到D (0,2√3),C (﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=√3,连接OA ,如图,利用切线的性质得OA ⊥PA ,则PA=√OP 2−1,然后利用垂线段最短求PA 的最小值.【解答】解:如图,直线y=√3x+2√3与x 轴交于点C ,与y 轴交于点D ,作OH⊥CD 于H ,当x=0时,y=√3x+2√3=2√3,则D (0,2√3),当y=0时,√3x+2√3=0,解得x=﹣2,则C (﹣2,0),∴CD=√22+(2√3)2=4,∵12OH•CD=12OC•OD,∴OH=2×2√34=√3,连接OA ,如图,∵PA 为⊙O 的切线,∴OA ⊥PA ,∴PA=√OP 2−OA 2=√OP 2−1,当OP 的值最小时,PA 的值最小,而OP 的最小值为OH 的长,∴PA 的最小值为√(√3)2−1=√2.故选:D .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.−√2或√2C.√2D.1【考点】H3:二次函数的性质;H7:二次函数的最值.【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),=﹣1,∴对称轴是直线x=﹣2a2a∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣b2a ,4ac−b24a),对称轴直线x=﹣b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣b2a 时,y随x的增大而减小;x>﹣b2a时,y随x的增大而增大;x=﹣b2a时,y取得最小值4ac−b 24a,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣b2a 时,y随x的增大而增大;x>﹣b2a时,y随x的增大而减小;x=﹣b2a 时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.若二次根式√x−1在实数范围内有意义,则x的取值范围是x≥1 .【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子√x−1在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.分解因式:3a2﹣3= 3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解. 【解答】解:3a 2﹣3, =3(a 2﹣1), =3(a+1)(a ﹣1).故答案为:3(a+1)(a ﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则12x 1+1+12x 2+1的值是 6 .【考点】AB :根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x 1+x 2=2、x 1x 2=﹣1、x 12=2x 1+1、x 22=2x 2+1,将其代入12x 1+1+12x 2+1=(x 1+x 2)2−2x 1x 2(x 1x 2)中即可得出结论.【解答】解:∵x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 1+x 2=2,x 1x 2=﹣1,x 12=2x 1+1,x 22=2x 2+1, ∴12x 1+1+12x 2+1=1x 12+1x 22=x 12+x 22(x 1x 2)2=(x 1+x 2)2−2x 1x 2(x 1x 2)2=22−2×(−1)(−1)2=6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式12x 1+1+12x 2+1变形为(x 1+x 2)2−2x 1x 2(x 1x 2)2是解题的关键.16.如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18 .【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】552:三角形.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,•BC•AH=120,∵12∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分))﹣1﹣|﹣4|.17.(6分)计算:π0+√16+(12【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【考点】KD :全等三角形的判定与性质. 【专题】552:三角形.【分析】欲证明∠F=∠C ,只要证明△ABC ≌△DEF (SSS )即可; 【解答】证明:∵DA=BE , ∴DE=AB ,在△ABC 和△DEF 中, {AB =DE AC =DF BC =EF, ∴△ABC ≌△DEF (SSS ), ∴∠C=∠F .【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)化简:(1+2a−1)÷a 2+2a+1a−1.【考点】6C :分式的混合运算. 【专题】11 :计算题.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可. 【解答】解:原式=a−1+2a−1•a−1(a+1)2=1a+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解. 【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人), 1200×1050=240,所以估计该校喜爱看电视的学生人数为240人; (3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6, 所以恰好抽到2名男生的概率=612=12.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用. 【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:800x ﹣8002.5x=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【考点】TA :解直角三角形的应用﹣仰角俯角问题. 【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD 表示出AE 、DE ,用BC 表示出CE 、BE .根据BC=6AD ,AE+BE=AB=90m ,求出AD 、DE 、CE 的长.在直角三角形DEC 中,利用勾股定理求出CD 的长.【解答】解:由题意知:BC=6AD ,AE+BE=AB=90m 在Rt △ADE 中,tan30°=ADAE,sin30°=ADDE∴AE=√33=√3AD ,DE=2AD ;在Rt △BCE 中,tan60°=BC BE,sin60°=BCCE,∴BE=√3=2√3AD ,CE=2√3BC 3=4√3AD ;∵AE+BE=AB=90m ∴√3AD+2√3AD=90 ∴AD=10√3(m ) ∴DE=20√3m ,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°, ∴∠DEC=90°∴CD=√DE 2+CE 2=√√39(m )答:这两座建筑物顶端C 、D间的距离为20√39m .【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(m>0)的图象相交于点C(x1,(2)如图,该一次函数的图象与反比例函数y=mxy1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:{12=−2k +b −3=8k +b解得:{k =−32b =9∴一次函数解析式为:y=﹣32x +9 (2)分别过点C 、D 做CA ⊥y 轴于点A ,DB ⊥y 轴于点B设点C 坐标为(a ,b ),由已知ab=m由(1)点E 坐标为(0,9),则AE=9﹣b∵AC ∥BD ,CD=CE∴BD=2a ,EB=2(9﹣b )∴OB=9﹣2(9﹣b )=2b ﹣9∴点D 坐标为(2a ,2b ﹣9)∴2a•(2b ﹣9)=m整理得m=6a∵ab=m∴b=6则点D 坐标化为(a ,3)∵点D 在y=﹣32x +9图象上 ∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4√2,PB=4,求GH 的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得ODOP =OFOC,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴ODOP =OFOC,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4√2)2+r2=(r+4)2,∴r=2,∵CM=OC⋅PCOP =43√2,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=43√2,在Rt△OEF中,OF=√EO2−EF2=23,∴EC=2OF=43,∵EC∥OB,∴ECOB =CGGO=23,∵GH∥CM,∴GHCM =OGOC=35,∴GH=4√25.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣34)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣34)x+3可求a,应用待定系数法可求直线AB 的解析式;(2)用m 表示DE 、AC ,易证△DEF ∽△AEC ,S 1=4S 2,得到DE 与AE 的数量关系可以构造方程;(3)用n 表示GH ,由平行四边形性质DE=GH ,可得m ,n 之间数量关系,利用相似用GM 表示EG ,表示▱DEGH 周长,利用函数性质求出周长最大时的m 值,可得n 值,进而求G 点坐标.【解答】解:(1)把点A (4,0)代入,得0=a•42﹣(2a ﹣34)×4+3 解得a=﹣34 ∴函数解析式为:y=−34x 2+94x +3 设直线AB 解析式为y=kx+b把A (4,0),B (0,3)代入{0=4k +b b =3解得{k =−34b =3∴直线AB 解析式为:y=﹣34x +3 (2)由已知,点D 坐标为(m ,﹣34m 2+94m +3) 点E 坐标为(m ,﹣34m +3)∴AC=4﹣mDE=(﹣34m 2+94m +3)﹣(﹣34m +3)=﹣34m 2+3m ∵BC ∥y 轴∴ACEC =AOOB=43∴AE=54(4−m)∵∠DFA=∠DCA=90°,∠FBD=∠CEA ∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴54(4−m)=2(−34m2+3m)解得m1=56,m2=4(舍去)故m值为56(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣34m2+3m同理HG=﹣34n2+3n∵四边形DEGH是平行四边形∴﹣34m2+3m=﹣34n2+3n整理得:(n﹣m)[34(n+m)−3]=0 ∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG ∽△BOA∴MG EM =43∴EG=54(4−2m)∴▱DEGH 周长L=2[﹣34m 2+3m +54(4−2m)]=﹣32m 2+m +10 ∵a=﹣32<0∴m=﹣b 2a =−12×(−32)=13时,L 最大. ∴n=4﹣13=113 ∴G 点坐标为(113,14),此时点E 坐标为(13,114) 当点G 、E 位置对调时,依然满足条件∴点G 坐标为(113,14)或(13,114) 【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

2018年四川省泸州市中考数学试卷+答案

2018年四川省泸州市中考数学试卷+答案

2018年四川省泸州市中考数学试卷(满分120分 时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.在-2,0,12,2四个数中,最小的是( )A .-2B .0C .12D .22.2017年,全国参加汉语考试的人数约为6 500 000,将6 500 000用科学记数法表示为( )A .6.5×105B .6.5×106C .6.5×107D .65×1053.下列计算,结果等于a 4的是( ) A .a +3a B .a 5-a C .(a 2)2D .a 8÷a 2 4.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A B C D5.如图,直线a ∥b ,直线c 分别交a 、b 于点A 、C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是( ) A .16,15 B .16,14 C .15,15D .14,157.如图,□ABCD 的对角线AC 、BD 相交于点O ,E 是AB 中点,且AE +EO =4,则□ABCD 的周长为( )A .20B .16C .12D .88.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.已知关于x 的一元二次方程x 2-2x +k -1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k ≤2B .k ≤0C .k <2D .k <010.如图,正方形ABCD 中,E 、F 分别在边AD 、CD 上,AF 、BE 相交于点G ,若AE =3ED ,DF =CF ,则AGGF的值是( )A .43B .54C .65D .7611.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =3x +23上运动,过点P 作该圆的一条切线,切点为A ,则P A 的最小值为( )A .3B .2C . 3D . 212.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为( )A .1或-2B .-2或 2C . 2D .1二、填空题(每小题3分,共12分)13.若二次根式x -1在实数范围内有意义,则x 的取值范围是________. 14.分解因式:3a 2-3=________.15.已知x 1、x 2是一元二次方程x 2-2x -1=0的两实数根,则12x 1+1+12x 2+1的值是________.16.如图,等腰△ABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为________.三、(每小题6分,共18分) 17.计算:π0+16+⎝⎛⎭⎫12-1-|-4|.18.如图,EF =BC ,DF =AC ,DA =E B .求证:∠F =∠C .19.化简:⎝⎛⎭⎫1+2a -1÷a 2+2a +1a -1.四、(每小题7分,共14分)20.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8分,共16分)22.如图,甲建筑物AD ,乙建筑物BC 的水平距离AB 为90 m ,且乙建筑物的高度是甲建筑物高度的6倍,从E (A 、E 、B 在同一水平线上)点测得D 点的仰角为30°,测得C 点的仰角为60°,求这两座建筑物顶端C 、D 间的距离(计算结果用根号表示,不取近似值).23.一次函数y =kx +b 的图象经过点A (-2,12)、B (8,-3). (1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y =mx (m >0)的图象相交于点C (x 1,y 1)、D (x 2,y 2),与y 轴交于点E ,且CD =CE ,求m 的值.六、(每小题12分,共24分)24.如图,已知AB 、CD 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,⊙O 的弦DE 交AB 于点F ,且DF =EF .(1)求证:CO 2=OF ·OP ;(2)连结EB 交CD 于点G ,过点G 作GH ⊥AB 于点H ,若PC =42,PB =4,求GH 的长.。

2018年四川省泸州市中考数学真题及参考解析

2018年四川省泸州市中考数学真题及参考解析

四川省泸州市二○一八年初中学业考试暨高中阶段统一招生考试数学试题注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。

2.答第Ⅰ卷时,必须使用2B铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。

务必在题号所指示的答题区域内作答。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)在﹣2,0,,2四个数中,最小的是()A.﹣2B.0C.D.22.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1053.(3分)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是4.()A.B.C.D.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直5.线b于点D,若∠1=50°,则∠2的度数是()A.50° B.70°C.80°D.110°6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:则这些学生年龄的众数和中位数分别是()A.16,15B.16,14C.15,15D.14,157.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20B.16C.12D.8(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄8.傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则9.实数k的取值范围是()A.k≤2B.k≤0C.k<2D.k<0(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点10.G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x 的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.或C.D.1二、填空题(每小题3分,共12分)13.(3分)若二次根式在实数范围内有意义,则x的取值范围是.14.(3分)分解因式:3a2﹣3=.15 3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.三、(每小题6分,共18分)17.(6分)计算:π0+ +()﹣1﹣|﹣4|.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6分)化简:(1+)÷ .四、(每小题7分,共14分)(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电20.视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一.并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中项)提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24 本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算.结果用根号表示,不取近似值)23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y= (m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.。

2018四川泸州中考数学解析

2018四川泸州中考数学解析

2018年四川省泸州市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.(2018四川泸州,1题,3分) 在-2,0,12,2四个数中,最小的是( ) A.-2 B.0 C.12D.2 【答案】A【解析】有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,故选A 【知识点】有理数比较大小2.(2018四川泸州,2题,3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A. 56.510⨯B. 66.510⨯C. 76.510⨯D. 56510⨯【答案】B【解析】650000=6.5×106.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【知识点】科学记数法3.(2018四川泸州,3题,3分) 下列计算,结果等于4a 的是( )A.3a a +B. 5a a -C. 22()a D.82a a ÷【答案】C【解析】A.原式=4a ,B.原式不可以化简,C.原式=a 2×2=a 4,D.原式=a 8-2=a 6 【知识点】合并同类项,幂的乘方,同底数幂的除法4.(2018四川泸州,4题,3分) 左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )第4题图 A. B. C. D. 【答案】B【解析】考察由正方体组成的简单几何体的三视图,从上往下看,上面一行有三个正方形,第二行在左边有一个正方形,故选B【知识点】常见几何体(组合体)的三视图5.(2018四川泸州,5题,3分) 如图1,直线a //b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°DCBAc12第5题图 【答案】C【解析】因为a//b ,所以∠BAD=∠1,因为∠1=50°,所以∠BAD=50°,因为AD 平分∠BAC ,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC= 80° 【知识点】平行线性质,角平分线,邻补角6.(2018四川泸州,6题,3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄 13 14 15 16 17 人数12231则这些学生年龄的众数和中位数分别是( )A.16,15B.16,14C.15,15D.14,15【答案】A【解析】由表可知,人数最多的是16岁,因此年龄的众数为16,总共有9人,因此中位数为第5个人的年龄,由表可知,第5个人的年龄为15岁,因此中位数为15 【知识点】众数,中位数7.(2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8E OA C第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线8.(2018四川泸州,8题,3分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( ) A. 9 B.6 C. 4 D.3第8题图 【答案】D【解析】因为ab=8,所以三角形的面积为21ab=4,则小正方形的面积为25-4×4=9,边长为3 【知识点】勾股定理,三角形面积,平方根9.(2018四川泸州,9题,3分)已知关于x 的一元一次方程2210x x k -+-=有两个不相等的实数根,则实数k 的取值范围是( )A. 2k ≤B. 0k ≤C.2k <D.0k < 【答案】C【解析】由题可知,△>0,即 (-2)2-4(k-1)>0,解得k <2 【知识点】一元二次方程跟的判别式,解不等式10.(2018四川泸州,10题,3分)如图4,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( ) A.43 B.54 C.65 D.76G FEDCB A第10题图【答案】C【解析】因为正方形中,AE=3ED ,DF=CF ,所以设边长为4a ,则AE=3a ,ED=a ,DF=CF=2a ,延长BE 、CD 交于点M ,易得△ABE ∽△MDE ,可得MD=a 34,因为△ABG ∽△MFG ,AB=4a ,MF=a 310,所以56==MF AB GF AG第10题解图【知识点】相似三角形11.(2018四川泸州,10题,3分)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线33y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A. 3 B. 2 C. 3 2【答案】D【解析】由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP⊥BC 于点P ,此时PO=3,PA=2【知识点】一次函数,圆的切线,勾股定理12.(2018四川泸州,10题,3分)已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( ) A.1或2- B.2-2 2 D.1【答案】D【解析】原函数可化为y=a(x+1)2+3a 2-a+3,对称轴为x=-1,当2x ≥时,y 随x 的增大而增大,所以a>0,抛物MG FEDCB AP A Oy xC B线开口向上,因为21x -≤≤时,y 的最大值为9,结合对称轴及增减性可得,当x=1时,y=9,带入可得,a 1=1,a 2=-2,又因为a>0,所以a=1 【知识点】二次函数,增减性二、填空题(每小题3分,共12分)13.(2018四川泸州,题,3分) 1x -在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥1【解析】根号下的数为非负数,即x-1≥0,x ≥1 【知识点】二次根式的定义14.(2018四川泸州,题,3分)分解因式:233a -= .【答案】3(a+1)(a-1)【解析】原式=3(a 2-1)=3(a+1)(a-1)【知识点】因式分解(提公因式法,公式法)15.(2018四川泸州,题,3分) 已知1x ,2x 是一元二次方程2210x x --=的两实数根,则12112121x x +++的值是 .【答案】6【解析】由韦达定理可得x 1+x 2=2,x 1x 2=-1,6122)1(42221)(242)(2)12)(12(12122121212121=+⨯+-⨯+⨯=+++++=+++++=x x x x x x x x x x 原式【知识点】韦达定理,分式加减16.(2018四川泸州,题,3分) 如图5,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .GFEDC第16题图 【答案】18【解析】做△ABC 的高AH ,因为S=120,BC=20,所以AH=12,△CDF 的周长=CF+CD+DF ,CF=5,因为EG 是腰AC 的垂直平分线,连接AD ,AF ,可得DA=DC ,所以AD+DF 的最小值为AF 的长度,在Rt △AHF 中,HF=5,AH=12,由勾股定理可得AF=13,因此△CDF 周长的最小值为18【知识点】三角形面积,垂直平分线,勾股定理三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018四川泸州,17题,6分) 计算:01116()|4|2π---.【思路分析】本题考查零指数幂,负指数幂,平方根,绝对值 【解题过程】原式=1+4+2-4=3【知识点】零指数幂,负指数幂,平方根,绝对值18.(2018四川泸州,19题,6分) 如图6,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .FED CBA第18题图【思路分析】△FDE 和△CAB 全等,得到对应角相等【解题过程】因为DA=EB ,所以DE=AB ,又因为EF=BC ,DF=AC ,所以△FDE ≌△CAB ,所以∠F=∠C 【知识点】三角形全等的判定和性质19.(2018四川泸州,19题,6分) 化简:2221(1)11a a a a +++÷--.【思路分析】先算括号里的分式加减,再算乘除,先因式分解 【解题过程】()1111·1212+=+--+-=a a a a a 原式 【知识点】分式运算,因式分解20.(2018四川泸州,20题,7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、GFEDCH社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题: (1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.第20题图【思路分析】(1)总数=频数÷频率(2)频率估计概率,频数=总数×频率(3)抽取两名,即不放回抽取 【解题过程】(1)n=5÷10%=50(人)(2)喜爱看电视的百分比:(50-15-20-5)÷50×100%=20%,该校喜爱看电视的人数1200×20%=240(人) (3)设三名男生为男A ,男B ,男C ,从这4名学生中任意抽取2名学生,所有可能的情况如下表 男A 男B男C女男A(男A ,男B ) (男A ,男C ) (男A ,女)男B (男B ,男A )(男B ,男C ) (男B ,女)男C (男C ,男A ) (男C ,男B )(男C ,女)女(女,男A ) (女,男B ) (女,男C )由表可知,总共有12中可能的结果,每种结果的可能性都相同,其中,抽到两名男生的结果有6种,所以P(抽到两名男生)=21126 【知识点】条形统计图,扇形统计图,概率21.(2018四川泸州,21题,7分) 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?社会实践看电视体育活动看课外书人数体育活动看电视看课外书10%社会实践【思路分析】(1)根据甲乙图书价格和数量的等量关系可列分式方程;(2)设出乙图书的数量,根据费用的要求,列出不等式,进一步进行求解【解题过程】(1)设乙图书每本价格为x 元,则甲图书每本价格为2.5x 元,根据题意得245.2800800=-xx ,解得,x=20,经检验得,x=20是原分式方程的解,2.5x=50,因此,甲乙两种图书每本价格分别为50元、20元。

四川省泸州市中考数学试题含答案解析(word版).doc

四川省泸州市中考数学试题含答案解析(word版).doc

2018年四川省泸州市中考数学试题(解析版)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y 随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)分解因式:3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)计算:π0++()﹣1﹣|﹣4|.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)化简:(1+)÷.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

【推荐】四川省泸州市2018年中考数学试题(含详细解答)

【推荐】四川省泸州市2018年中考数学试题(含详细解答)

2018 年四川省泸州市中考数学试卷一、选择题(本大题共12 个小题,每小题 3 分,共36 分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3 分)在﹣2,0,,2 四个数中,最小的是()A.﹣2 B.0 C.D.22.(3 分)2017 年,全国参加汉语考试的人数约为 6500000,将 6500000 用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107 D.65×1053.(3 分)下列计算,结果等于 a4 的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a24.(3 分)如图是一个由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3 分)如图,直线 a∥b,直线 c 分别交 a,b 于点 A,C,∠BAC 的平分线交直线 b 于点 D,若∠1=50°,则∠2 的度数是()A.50°B.70°C.80°D.110°6.(3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果第 1 页(共23 页)如下表:年龄13 14 15 16 17人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,E 是 AB 中点,且 AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.88.(3 分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为 a,较短直角边长为 b.若 ab=8,大正方形的面积为 25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3 分)已知关于 x 的一元二次方程 x2﹣2x+k﹣1=0 有两个不相等的实数根,则实数 k 的取值范围是()A.k≤2 B.k≤0 C.k<2D.k<010.(3 分)如图,正方形 ABCD 中,E,F 分别在边 AD,CD 上,AF,BE 相交于点 G,若 AE=3ED,DF=CF,则的值是()第 2 页(共23 页)A.B.C.D.11.(3 分)在平面直角坐标系内,以原点 O 为原心,1 为半径作圆,点 P 在直线 y= 上运动,过点 P 作该圆的一条切线,切点为 A,则 PA 的最小值为()A.3 B.2 C.D.12.(3 分)已知二次函数y=ax2+2ax+3a2+3(其中x 是自变量),当x≥2 时,y 随 x 的增大而增大,且﹣2≤x≤1 时,y 的最大值为 9,则 a 的值为()A.1 或﹣2 B.或C.D.1二、填空题(每小题 3 分,共12 分)13.(3 分)若二次根式在实数范围内有意义,则 x 的取值范围是.14.(3 分)分解因式:3a2﹣3= .15.(3 分)已知 x1,x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,则的值是.16.(3 分)如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为.三、(每小题 6 分,共18 分)17.(6 分)计算:π0+ +()﹣1﹣|﹣4|.18.(6 分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.第 3 页(共23 页)19.(6 分)化简:(1+ )÷.四、(每小题7 分,共14 分)20.(7 分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取 n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图 7 所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求 n 的值;(2)若该校学生共有 1200 人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的 4 名学生中有 3 名男生和 1 名女生,现从这 4 名学生中任意抽取 2 名学生,求恰好抽到 2 名男生的概率.21.(7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的 2.5 倍,用800 元单独购买甲图书比用 800 元单独购买乙图书要少 24 本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的 2 倍多 8 本,且用于购买甲、乙两种图书的总经费不超过 1060 元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8 分,共16 分)22.(8 分)如图,甲建筑物 AD,乙建筑物 BC 的水平距离 AB 为 90m,且乙建筑物的高度是甲建筑物高度的 6 倍,从 E(A,E,B 在同一水平线上)点测得 D 点第 4 页(共23 页)的仰角为 30°,测得 C 点的仰角为 60°,求这两座建筑物顶端 C 、D 间的距离(计 算结果用根号表示,不取近似值).23.(8 分)一次函数 y=kx+b 的图象经过点 A (﹣2,12),B (8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数 y= (m >0)的图象相交于点 C (x 1, y 1),D (x 2,y 2),与 y 轴交于点 E ,且 CD=CE ,求 m 的值.六、(每小题 12 分,共 24 分)24.(12 分)如图,已知 AB ,CD 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延 长线于点 P ,⊙O 的弦 DE 交 AB 于点 F ,且 DF=EF .(1)求证:CO 2=OF •OP ;(2)连接 EB 交 CD 于点 G ,过点 G 作 GH ⊥AB 于点 H ,若 PC=4,PB=4,求GH 的长.第 5 页(共 23 页)25.(12 分)如图 11,已知二次函数 y=ax2﹣(2a﹣)x+3 的图象经过点 A(4,0),与y 轴交于点 B.在 x 轴上有一动点 C(m,0)(0<m<4),过点 C 作 x 轴的垂线交直线 AB 于点 E,交该二次函数图象于点 D.(1)求 a 的值和直线 AB 的解析式;(2)过点 D 作 DF⊥AB 于点 F,设△ACE,△DEF 的面积分别为 S1,S2,若S1=4S2,求 m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且▱DEGH 周长取最大值时,求点 G 的坐标.第 6 页(共23 页)2018 年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12 个小题,每小题 3 分,共36 分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3 分)在﹣2,0,,2 四个数中,最小的是()A.﹣2 B.0 C.D.2【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2 最小,故选:A.2.(3 分)2017 年,全国参加汉语考试的人数约为 6500000,将 6500000 用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107 D.65×105【解答】解:6500000=6.5×106,故选:B.3.(3 分)下列计算,结果等于 a4 的是()A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2【解答】解:A、a+3a=4a,错误;B、a5 和 a 不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.第7 页(共23 页)4.(3 分)如图是一个由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.5.(3 分)如图,直线 a∥b,直线 c 分别交 a,b 于点 A,C,∠BAC 的平分线交直线 b 于点 D,若∠1=50°,则∠2 的度数是()A.50°B.70°C.80°D.110°【解答】解:∵∠BAC 的平分线交直线 b 于点 D,∴∠BAD=∠CAD,∵直线 a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.6.(3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16 17第8 页(共23 页)人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【解答】解:由表可知 16 岁出现次数最多,所以众数为 16 岁,因为共有 1+2+2+3+1=9 个数据,所以中位数为第 5 个数据,即中位数为 15 岁,故选:A.7.(3 分)如图,▱ABCD 的对角线 AC,BD 相交于点 O,E 是 AB 中点,且 AE+EO=4,则▱ABCD 的周长为()A.20 B.16 C.12 D.8【解答】解:∵四边形 ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴OE= BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形 ABCD 的周长=2×8=16,故选:B.8.(3 分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为 a,较短直角边长为 b.若 ab=8,大正方形的面积为 25,则小正方形的边长为()第9 页(共23 页)A .9B .6C .4D .3【解答】解:由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为: ab= ×8=4,∴4× ab+(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b=3,故选:D .9.(3 分)已知关于 x 的一元二次方程 x 2﹣2x+k ﹣1=0 有两个不相等的实数根, 则实数 k 的取值范围是( )A .k ≤2B .k ≤0C .k <2D .k <0【解答】解:根据题意得△=(﹣2)2﹣4(k ﹣1)>0,解得 k <2.故选:C .10.(3 分)如图,正方形 ABCD 中,E ,F 分别在边 AD ,CD 上,AF ,BE 相交于 点G ,若 AE=3ED ,DF=CF ,则 的值是( )A .B .C .D .【解答】解:如图作,FN ∥AD ,交 AB 于 N ,交 BE 于 M .第 10 页(共 23 页)∵四边形 ABCD 是正方形,∴AB∥CD,∵FN∥AD,∴四边形 ANFD 是平行四边形,∵∠D=90°,∴四边形 ANFD 是解析式,∵AE=3DE,设 DE=a,则 AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN= a,∴FM= a,∵AE∥FM,∴= = = ,故选:C.11.(3 分)在平面直角坐标系内,以原点 O 为原心,1 为半径作圆,点 P 在直线 y= 上运动,过点 P 作该圆的一条切线,切点为 A,则 PA 的最小值为()A.3 B.2 C.D.【解答】解:如图,直线 y= x+2 与 x 轴交于点 C,与 y 轴交于点 D,作 OH ⊥CD 于 H,当 x=0 时,y= x+2 =2 ,则 D(0,2),当 y=0 时,x+2 =0,解得 x=﹣2,则 C(﹣2,0),∴CD= =4,第11 页(共23 页)∵OH•CD= OC•OD,∴OH= = ,连接 OA,如图,∵PA 为⊙O 的切线,∴OA⊥PA,∴PA= = ,当 OP 的值最小时,PA 的值最小,而 OP 的最小值为 OH 的长,∴PA 的最小值为= .故选:D.12.(3 分)已知二次函数y=ax2+2ax+3a2+3(其中x 是自变量),当x≥2 时,y 随 x 的增大而增大,且﹣2≤x≤1 时,y 的最大值为 9,则 a 的值为()A.1 或﹣2 B.或C.D.1【解答】解:∵二次函数 y=ax2+2ax+3a2+3(其中 x 是自变量),∴对称轴是直线 x=﹣=﹣1,∵当 x≥2 时,y 随 x 的增大而增大,∴a>0,∵﹣2≤x≤1 时,y 的最大值为 9,∴x=1 时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或 a=﹣2(不合题意舍去).第12 页(共23 页)故选:D.二、填空题(每小题 3 分,共12 分)13.(3 分)若二次根式在实数范围内有意义,则 x 的取值范围是x≥1 .【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得 x≥1.故答案为:x≥1.14.(3 分)分解因式:3a2﹣3= 3(a+1)(a﹣1).【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).15.(3 分)已知 x1,x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,则的值是 6 .【解答】解:∵x1、x2是一元二次方程 x2﹣2x﹣1=0 的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴= + = = = =6.故答案为:6.16.(3 分)如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为13 .第13 页(共23 页)【解答】解:如图作 AH⊥BC 于 H,连接 AD.∵EG 垂直平分线段 AC,∴DA=DC,∴DF+DC=AD+DF,∴当 A、D、F 共线时,DF+DC 的值最小,最小值就是线段 AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF= = =13,∴DF+DC 的最小值为 13.故答案为 13.三、(每小题 6 分,共18 分)17.(6 分)计算:π0+ +()﹣1﹣|﹣4|.【解答】解:原式=1+4+2﹣4=3.18.(6 分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.第14 页(共23 页)【解答】证明:∵DA=BE,∴DE=AB,在△ABC 和△DEF 中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.19.(6 分)化简:(1+ )÷.【解答】解:原式= •= .四、(每小题7 分,共14 分)20.(7 分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取 n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图 7 所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求 n 的值;(2)若该校学生共有 1200 人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的 4 名学生中有 3 名男生和 1 名女生,现从这 4 名学生中任意抽取 2 名学生,求恰好抽到 2 名男生的概率.第15 页(共23 页)【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为 50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为 240 人;(3)画树状图为:共有 12 种等可能的结果数,其中恰好抽到 2 名男生的结果数为 6,所以恰好抽到 2 名男生的概率= = .21.(7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的 2.5 倍,用800 元单独购买甲图书比用 800 元单独购买乙图书要少 24 本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的 2 倍多 8 本,且用于购买甲、乙两种图书的总经费不超过 1060 元,那么该图书馆最多可以购买多少本乙图书?【解答】解:(1)设乙图书每本价格为 x 元,则甲图书每本价格是 2.5x 元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20 是原方程的根,则 2.5x=50,第16 页(共23 页)答:乙图书每本价格为20 元,则甲图书每本价格是 50 元;(2)设购买甲图书本数为 x,则购买乙图书的本数为:2x+8,故 50x+20(2x+8)≤1060,解得:x≤10,故 2x+8≤28,答:该图书馆最多可以购买 28 本乙图书.五、(每小题8 分,共16 分)22.(8 分)如图,甲建筑物 AD,乙建筑物 BC 的水平距离 AB 为 90m,且乙建筑物的高度是甲建筑物高度的 6 倍,从 E(A,E,B 在同一水平线上)点测得 D 点的仰角为30°,测得 C 点的仰角为60°,求这两座建筑物顶端 C、D 间的距离(计算结果用根号表示,不取近似值).【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在 Rt△ADE 中,tan30°=,sin30°=∴AE= = AD,DE=2AD;在 Rt△BCE 中,tan60°=,sin60°=,∴BE= =2 AD,CE= =4 AD;∵AE+BE=AB=90m∴AD+2 AD=90∴AD=10 (m)第17 页(共23 页)∴DE=20 m ,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD= = =20 (m )答:这两座建筑物顶端 C 、D 间的距离为 20 m .23.(8 分)一次函数 y=kx+b 的图象经过点 A (﹣2,12),B (8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数 y= (m >0)的图象相交于点 C (x 1, y 1),D (x 2,y 2),与 y 轴交于点 E ,且 CD=CE ,求 m 的值.【解答】解:(1)把点 A (﹣2,12),B (8,﹣3)代入 y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点 C 、D 做 CA ⊥y 轴于点 A ,DB ⊥y 轴于点 B设点 C 坐标为(a ,b ),由已知 ab=m第 18 页(共 23 页)由(1)点 E 坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点 D 坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得 m=6a∵ab=m∴b=6则点 D 坐标化为(a,3)∵点 D 在 y=﹣图象上∴a=4∴m=ab=24六、(每小题12 分,共24 分)24.(12 分)如图,已知 AB,CD 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延长线于点 P,⊙O 的弦 DE 交 AB 于点 F,且 DF=EF.(1)求证:CO2=OF•OP;(2)连接 EB 交 CD 于点 G,过点 G 作 GH⊥AB 于点 H,若 PC=4 ,PB=4,求GH 的长.第19 页(共23 页)【解答】(1)证明:∵PC 是⊙O 的切线,∴OC⊥PC,∴∠PCO=90°,∵AB 是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠O CP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴= ,∵OD=OC,∴OC2=OF•OP.(2)解:如图作 CM⊥OP 于 M,连接 EC、EO.设 OC=OB=r.在 Rt△POC 中,∵PC2+OC2=PO2,∴(4 )2+r2=(r+4)2,∴r=2,∵CM= = ,∵DC 是直径,∴∠CEF=∠EFM=∠CMF=90°,第20 页(共23 页)∴四边形 EFMC 是矩形,∴EF=CM= ,在 Rt△OEF 中,OF= = ,∴EC=2OF= ,∵EC∥OB,∴= = ,∵GH∥CM,∴= = ,∴GH= .25.(12 分)如图 11,已知二次函数 y=ax2﹣(2a﹣)x+3 的图象经过点 A(4,0),与y 轴交于点 B.在 x 轴上有一动点 C(m,0)(0<m<4),过点 C 作 x 轴的垂线交直线 AB 于点 E,交该二次函数图象于点 D.(1)求 a 的值和直线 AB 的解析式;(2)过点 D 作 DF⊥AB 于点 F,设△ACE,△DEF 的面积分别为 S1,S2,若S1=4S2,求 m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点 G 是线段 AB 上的动点,当四边形 DEGH 是平行四边形,且▱DEGH 周长取最大值时,求点 G 的坐标.【解答】解:(1)把点 A(4,0)代入,得0=a•42﹣(2a﹣)×4+3第21 页(共23 页)解得a=﹣∴函数解析式为:y=设直线 AB 解析式为 y=kx+b把 A (4,0),B (0,3)代入解得∴直线 AB 解析式为:y=﹣(2)由已知,点 D 坐标为(m ,﹣ ) 点 E 坐标为(m ,﹣ )∴AC=4﹣mDE=(﹣ )﹣(﹣ )=﹣ ∵BC ∥y 轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA ∴△DEF ∽△AEC∵S 1=4S 2∴AE=2DE∴解得 m 1= ,m 2=﹣ (舍去)故 m 值为(3)如图,过点 G 做 GM ⊥DC 于点 M 第 22 页(共 23 页)由(2)DE=﹣同理 HG=﹣∵四边形 DEGH 是平行四边形 ∴﹣ =﹣整理得:(n ﹣m )[ ]=0 ∵m ≠n∴m+n=4,即 n=4﹣m∴MG=n ﹣m=4﹣2m由已知△EMG ∽△BOA∴∴EG=∴▱DEGH 周长 L=2[﹣ + ]=﹣ ∵a=﹣ <0∴m=﹣ 时,L 最大. ∴n=4﹣ =∴G 点坐标为( , )第 23 页(共 23 页)。

2018年四川省泸州市中考数学试卷(含答案解析版)资料

2018年四川省泸州市中考数学试卷(含答案解析版)资料

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.22.(3分)(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1053.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.88.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<010.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是.14.(3分)(2018•泸州)分解因式:3a2﹣3=.15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6分)(2018•泸州)化简:(1+)÷.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C (x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【考点】18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【考点】KR:勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【专题】556:矩形菱形正方形.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【考点】MC:切线的性质;F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【考点】H3:二次函数的性质;H7:二次函数的最值.【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)(2018•泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【考点】AB:根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为18.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】552:三角形.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)(2018•泸州)化简:(1+)÷.【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C (x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

四川省泸州市中考数学试题含答案解析(word版).doc

四川省泸州市中考数学试题含答案解析(word版).doc

学校班级姓名2018年四川省泸州市中考数学试题(解析版)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y 随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)分解因式:3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)计算:π0++()﹣1﹣|﹣4|.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)化简:(1+)÷.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

2018年泸州市中考数学试卷及答案解析版

2018年泸州市中考数学试卷及答案解析版
函数自变量的取值范围.
分析:
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
解答:
解:根据题意得,x﹣1≥0且x﹣3≠0,
解得x≥1且x≠3.
故选A.
点评:
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
8.(2分)(2018•泸州)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.
AB∥DC,AD∥BC
B.
AB=DC,AD=BC
C.
AO=CO,BO=DO
D.
AB∥DC,AD=BC
考点:
平行四边形的判定.
分析:
根据平行四边形判定定理进行判断.
解答:
解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;
B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;
故选D
点评:
此题考查了幂的乘方与积的乘方,同底数幂的乘法,以及合并同类项,熟练掌握运算法则是解本题的关键.
4.(2分)(2018•泸州)如图所示为某几何体的示意图,则该几何体的主视图应为( )
A.
B.
C.
D.
考点:
简单组合体的三视图.
分析:
几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.
2.(2分)(2018•泸州)某校七年级有5名同学参加设计比赛,成绩分为为7,8,9,10,8(单位:环).则这5名同学成绩的众数是( )
A.
7
B.
8
C.

[精品]2018年四川省泸州市中考数学试卷及解析

[精品]2018年四川省泸州市中考数学试卷及解析

21. (7 分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书 每本价格的 2.5 倍, 用 800 元单独购买甲图书比用 800 元单独购买乙图书要少 24 本. (1)甲、乙两种图书每本价格分别为多少元? (2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的 2 倍多 8 本,且 用于购买甲、乙两种图书的总经费不超过 1060 元,那么该图书馆最多可以购买 多少本乙图书?
五、 (每小题 8 分,共 16 分) 22. (8 分)如图,甲建筑物 AD,乙建筑物 BC 的水平距离 AB 为 90m,且乙建筑 物的高度是甲建筑物高度的 6 倍,从 E(A,E,B 在同一水平线上)点测得 D 点 的仰角为 30°,测得 C 点的仰角为 60°,求这两座建筑物顶端 C、D 间的距离(计 算结果用根号表示,不取近似值) .
A.50° B.70° C.80° D.110° 6. (3 分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果 如下表:
年龄 人数
13 1
14 2
15 2
16 3 )
17 1
则这些学生年龄的众数和中位数分别是(
A.16,15 B.16,14 C.15,15 D.14,15 7. (3 分) 如图, ▱ABCD 的对角线 AC, BD 相交于点 O, E 是 AB 中点, 且 AE+EO=4, 则▱ABCD 的周长为( )
三、 (每小题 6 分,共 18 分) 17. (6 分)计算:π0+ +( )﹣1﹣|﹣4|.
18. (6 分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.
19. (6 分)化简: (1+
)÷

四、 (每小题 7 分,共 14 分)

四川省泸州市中考数学试卷含答案解析版

四川省泸州市中考数学试卷含答案解析版

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000 2.(3分)用科学记数法表示为()A.×105B.×106C.×107D.65×1053.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.88.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<010.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA 的最小值为()A.3 B.2 C.D.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是.14.(3分)(2018•泸州)分解因式:3a2﹣3= .15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6分)(2018•泸州)化简:(1+)÷.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D 间的距离(计算结果用根号表示,不取近似值).23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y 1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH 的长.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【考点】18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000(3分)2.用科学记数法表示为()A.×105B.×106C.×107D.65×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【考点】KR:勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)(2018•泸州)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【专题】556:矩形菱形正方形.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA 的最小值为()A.3 B.2 C.D.【考点】MC:切线的性质;F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【考点】H3:二次函数的性质;H7:二次函数的最值.【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c (a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是x≥1 .【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)(2018•泸州)分解因式:3a2﹣3= 3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是 6 .【考点】AB:根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)(2018•泸州)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF 周长的最小值为18 .【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】552:三角形.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)(2018•泸州)计算:π0++()﹣1﹣|﹣4|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)(2018•泸州)化简:(1+)÷.【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D 间的距离(计算结果用根号表示,不取近似值).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y 1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH 的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF 中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE ∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

2018年四川省泸州市中考数学试卷(解析版)

2018年四川省泸州市中考数学试卷(解析版)

2018年四川省泸州市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.22.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1053.下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.88.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.39.已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<010.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.12.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二、填空题(共4小题)13.若二次根式在实数范围内有意义,则x的取值范围是.14.分解因式:3a2﹣3=﹣.15.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.三、解答题(共9小题)17.计算:π0++()﹣1﹣|﹣4|.18.如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.化简:(1+)÷.20.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22.如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.24.如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.25.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷(解析版)参考答案一、单选题(共12小题)1.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【知识点】有理数大小比较2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000=6.5×106,故选:B.【知识点】科学记数法—表示较大的数3.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【知识点】合并同类项、幂的乘方与积的乘方、同底数幂的除法4.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【知识点】简单组合体的三视图5.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【知识点】平行线的性质6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【知识点】中位数、众数7.【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【知识点】平行四边形的性质、三角形中位线定理8.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【知识点】勾股定理的证明9.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【知识点】根的判别式10.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【知识点】正方形的性质、相似三角形的判定与性质11.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【知识点】切线的性质、一次函数图象上点的坐标特征12.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【知识点】二次函数的最值、二次函数的性质二、填空题(共4小题)13.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【知识点】二次根式有意义的条件14.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【知识点】提公因式法与公式法的综合运用15.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【知识点】根与系数的关系16.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【知识点】线段垂直平分线的性质、等腰三角形的性质、轴对称-最短路线问题三、解答题(共9小题)17.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【知识点】实数的运算、负整数指数幂、零指数幂18.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【知识点】全等三角形的判定与性质19.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【知识点】分式的混合运算20.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【知识点】列表法与树状图法、条形统计图、扇形统计图、用样本估计总体21.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【知识点】一元一次不等式的应用、二元一次方程组的应用22.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【知识点】解直角三角形的应用-仰角俯角问题23.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b 求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(2a,3)∵点D在y=﹣图象上∴a=2∴m=ab=12【知识点】反比例函数与一次函数的交点问题24.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【知识点】切线的性质、相似三角形的判定与性质、圆周角定理25.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DF A=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【知识点】二次函数综合题。

2018年四川省泸州市中考数学试卷

2018年四川省泸州市中考数学试卷

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每题3分,共36分)在每题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.22.(分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.×105B.×106C.×107D.65×1053.(分)以下计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.(分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(分)如图,直线a∥b,直线c别离交a,b于点A,C,∠BAC的平分线交直线b于点D,假设∠1=50°,那么∠2的度数是()A.50°B.70°C.80° D.110°6.(分)某校对部份参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231那么这些学生年龄的众数和中位数别离是()A.16,15 B.16,14 C.15,15 D.14,157.(分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,那么▱ABCD的周长为()A.20 B.16 C.12 D.88.(分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的自豪.如下图的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.假设ab=8,大正方形的面积为25,那么小正方形的边长为()A.9 B.6 C.4 D.39.(分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,那么实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<010.(分)如图,正方形ABCD中,E,F别离在边AD,CD上,AF,BE相交于点G,假设AE=3ED,DF=CF,那么的值是()A. B. C. D.11.(分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P 作该圆的一条切线,切点为A,那么PA的最小值为()A.3 B.2 C. D.12.(分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,那么a的值为()A.1或﹣2 B.或C. D.1二、填空题(每题3分,共12分)13.(分)假设二次根式在实数范围内故意义,那么x的取值范围是.14.(分)分解因式:3a2﹣3=.15.(分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,那么的值是.16.(分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC 的垂直平分线,假设点D在EG上运动,那么△CDF周长的最小值为.三、(每题6分,共18分)17.(分)计算:π0++()﹣1﹣|﹣4|.18.(分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(分)化简:(1+)÷.四、(每题7分,共14分)20.(分)为了解某中学学生课余生活情形,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采纳问卷调查的方式搜集数据(参与问卷调查的每名学生只能选择其中一项).并依照调查取得的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答以下问题:(1)求n的值;(2)假设该校学生共有1200人,试估量该校喜爱看电视的学生人数;(3)假设调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(分)某图书馆打算选购甲、乙两种图书.已知甲图书每本价钱是乙图书每本价钱的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价钱别离为多少元?(2)假设是该图书馆打算购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多能够购买多少本乙图书?五、(每题8分,共16分)22.(分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.(分)一次函数y=kx+b的图象通过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每题12分,共24分)24.(分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,假设PC=4,PB=4,求GH的长.25.(分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象通过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积别离为S1,S2,假设S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH 是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每题3分,共36分)在每题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C. D.2【分析】依照正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,应选:A.【点评】此题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.×105B.×106C.×107D.65×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确信n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000=×106,应选:B.【点评】此题考查科学记数法的表示方式.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确信a的值和n的值.3.(分)以下计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【分析】依照同底数幂的除法法那么:底数不变,指数相减;同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加;幂的乘方式那么:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能归并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;应选:C.【点评】此题要紧考查了同底数幂的乘除法,和幂的乘方,关键是正确把握计算法那么.4.(分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】依照从上面看取得的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,应选:B.【点评】此题考查了简单组合体的三视图,从上面看取得的图形是俯视图.5.(分)如图,直线a∥b,直线c别离交a,b于点A,C,∠BAC的平分线交直线b于点D,假设∠1=50°,那么∠2的度数是()A.50°B.70°C.80°D.110°【分析】直接利用角平分线的概念结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.应选:C.【点评】此题要紧考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(分)某校对部份参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231那么这些学生年龄的众数和中位数别离是()A.16,15 B.16,14 C.15,15 D.14,15【分析】依照中位数和众数的概念求解:众数是一组数据中显现次数最多的数据,注意众数能够不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁显现次数最多,因此众数为16岁,因为共有1+2+2+3+1=9个数据,因其中位数为第5个数据,即中位数为15岁,应选:A.【点评】此题考查了确信一组数据的中位数和众数的能力.一些学生往往对那个概念把握不清楚,计算方式不明确而误选其它选项,注意找中位数的时候必然要先排好顺序,然后再依照奇数和偶数个来确信中位数,假设是数据有奇数个,那么正中间的数字即为所求,假设是是偶数个那么找中间两位数的平均数.7.(分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,那么▱ABCD的周长为()A.20 B.16 C.12 D.8【分析】第一证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,应选:B.【点评】此题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练把握三角形的中位线定理,属于中考常考题型.8.(分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的自豪.如下图的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.假设ab=8,大正方形的面积为25,那么小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,依照勾股定理和题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,应选:D.【点评】此题考查勾股定理,解题的关键是熟练运用勾股定理和完全平方公式,此题属于基础题型.9.(分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,那么实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【分析】利用判别式的意义取得△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:依照题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.应选:C.【点评】此题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(分)如图,正方形ABCD中,E,F别离在边AD,CD上,AF,BE相交于点G,假设AE=3ED,DF=CF,那么的值是()A. B. C. D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,那么AE=3a,利用平行线分线段成比例定明白得决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,那么AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,应选:C.【点评】此题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常常利用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P 作该圆的一条切线,切点为A,那么PA的最小值为()A.3 B.2 C. D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式取得D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,那么利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,那么PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,那么D(0,2),当y=0时,x+2=0,解得x=﹣2,那么C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.应选:D.【点评】此题考查了切线的性质:圆的切线垂直于通过切点的半径.假设显现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,那么a的值为()【分析】先求出二次函数的对称轴,再依照二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).应选:D.【点评】此题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的极点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即极点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即极点是抛物线的最高点.二、填空题(每题3分,共12分)13.(分)假设二次根式在实数范围内故意义,那么x的取值范围是x≥1.【分析】先依照二次根式故意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内故意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】此题考查的是二次根式故意义的条件,即被开方数大于等于0.14.(分)分解因式:3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),故答案为:3(a+1)(a﹣1).【点评】此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式第一提取公因式,然后再用其他方式进行因式分解,同时因式分解要完全,直到不能分解为止.15.(分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,那么的值是6.【分析】依照根与系数的关系及一元二次方程的解可得出x1+x2=二、x1x2=﹣一、=2x1+一、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】此题考查了根与系数的关系和一元二次方程的解,将代数式变形为是解题的关键.16.(分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC 的垂直平分线,假设点D在EG上运动,那么△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可适当A、D、F共线时,DF+DC的值最小,最小值确实是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值确实是线段AF的长,∵•BC•AH=120,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】此题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每题6分,共18分)17.(分)计算:π0++()﹣1﹣|﹣4|.【分析】此题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每一个考点别离进行计算,然后按如实数的运算法那么求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】此题要紧考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练把握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.此题考查全等三角形的判定和性质、解题的关键是熟练把握全等三角形的判定方式,属于中考基础题目.19.(分)化简:(1+)÷.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】此题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每题7分,共14分)20.(分)为了解某中学学生课余生活情形,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采纳问卷调查的方式搜集数据(参与问卷调查的每名学生只能选择其中一项).并依照调查取得的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答以下问题:(1)求n的值;(2)假设该校学生共有1200人,试估量该校喜爱看电视的学生人数;(3)假设调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比取得n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估量该校喜爱看电视的学生人数;(3)画树状图展现12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后依照概率公式求解.(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,因此估量该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,因此恰好抽到2名男生的概率==.【点评】此题考查了列表法与树状图法:利用列表法或树状图法展现所有等可能的结果n,再从被选出符合事件A或B的结果数量m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(分)某图书馆打算选购甲、乙两种图书.已知甲图书每本价钱是乙图书每本价钱的倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价钱别离为多少元?(2)假设是该图书馆打算购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多能够购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)依照题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价钱为x元,那么甲图书每本价钱是元,依照题意可得:﹣=24,解得:x=20,经查验得:x=20是原方程的根,那么=50,答:乙图书每本价钱为20元,那么甲图书每本价钱是50元;(2)设购买甲图书本数为x,那么购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多能够购买28本乙图书.此题要紧考查了分式方程的应用和一元一次不等式的应用,正确表示出图书的价钱是解题关键.五、(每题8分,共16分)22.(分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.依照BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】此题考查了解直角三角形的应用及勾股定理.题目难度不大,解决此题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(分)一次函数y=kx+b的图象通过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,取得相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)别离过点C、D做CA⊥y轴于点A,DB⊥y轴于点B由(1)点E坐标为(0,9),那么AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6那么点D坐标化为(2a,3)∵点D在y=﹣图象上∴a=2∴m=ab=12【点评】此题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每题12分,共24分)24.(分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,假设PC=4,PB=4,求GH的长.【分析】(1)想方法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】此题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象通过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积别离为S1,S2,假设S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH 是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,取得DE与AE的数量关系能够构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)DE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此刻点E坐标为(,)当点G、E位置对调时,仍然知足条件∴点G坐标为(,)或(,)【点评】此题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

2018年四川省泸州市中考数学试题(解析版)

2018年四川省泸州市中考数学试题(解析版)

2018年四川省泸州市中考数学试题(解析版)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k≤2 B.k≤0 C.k<2 D.k<0【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y 随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)若二次根式在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)分解因式:3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)计算:π0++()﹣1﹣|﹣4|.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)化简:(1+)÷.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

四川泸州-解析版

四川泸州-解析版

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分)1、(2018•泸州)25的算术平方根是()A、5B、﹣5C、±5D、考点:算术平方根。

专题:计算题。

分析:根据算术平方根的定义进行解答即可.解答:解:∵(5)2=25,∴25的算术平方根是5.故选A.点评:本题考查的是算术平方根的概念,即如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.2、(2018•泸州)如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A、72°B、108°C、144°D、216°考点:旋转对称图形。

专题:常规题型。

分析:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.解答:解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选B.点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3、(2018•泸州)已知函数,则自变量x的取值范围是()A、x≠2B、x>2C、D、且x≠2考点:函数自变量的取值范围。

分析:要使函数有意义,则根式里被开方数不小于0,分母不为0,列出不等式解出答案.解答:解:要使函数有意义,则,解得x≥且x≠2,故选D.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4、(2018•泸州)如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°考点:平行线的判定与性质;对顶角、邻补角。

2018年四川省泸州市中考数学试题及参考答案案

2018年四川省泸州市中考数学试题及参考答案案

2018年四川省泸州市高中阶段学校招生考试数学试卷数 学一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.(2018四川泸州中考,1,3分,★☆☆)在-2,0,12,2四个数中,最小的是( ) A.-2 B.0 C.12D.2 2.(2018四川泸州中考,2,3分,★☆☆)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A.56.510⨯B.66.510⨯C.76.510⨯D.56510⨯ 3.(2018四川泸州中考,3,3分,★☆☆)下列计算,结果等于4a 的是( ) A.3a a + B. 5a a - C. 22()a D.82a a ÷4.(2018四川泸州中考,4,3分,★☆☆)左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .5.(2018四川泸州中考,5,3分,★★☆)如图,直线a //b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( ) A. 50° B. 70° C. 80° D. 110°DCBAc126.(2018四川泸州中考,6,3分,★★☆)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表: 年龄1314151617人数 1 2 2 3 1则这些学生年龄的众数和中位数分别是( )A.16,15B.16,14C.15,15D.14,157.(2018四川泸州中考,7,3分,★★☆)如图,□ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则□ABCD 的周长为( ) A.20 B. 16 C. 12 D.8E ODA CB8.(2018四川泸州中考,8,3分,★★☆)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( ) A.9 B.6 C.4 D.39.(2018四川泸州中考,9,3分,★★☆)已知关于x 的一元一次方程2210x x k -+-=有两个不相等的实数根,则实数k 的取值范围是( )A. 2k ≤B. 0k ≤C.2k <D.0k <10.(2018四川泸州中考,10,3分,★★☆)如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( ) A.43 B.54 C.65 D.76G FEDCB A11.(2018四川泸州中考,11,3分,★★☆)在平面直角坐标系内,以原点O 为原心,1 为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A. 3B. 2C.12.(2018四川泸州中考,12,3分,★★★)已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或-2B.D.1 二、填空题(每小题3分,共12分)13.(2018四川泸州中考,13,3分,★☆☆)在实数范围内有意义,则x的取值范围是 .14.(2018四川泸州中考,14,3分,★☆☆)分解因式:233a -= . 15.(2018四川泸州中考,15,3分,★★☆)已知1x ,2x 是一元二次方程2210x x --=的两实数根,则12112121x x +++的值是 .16.(2018四川泸州中考,16,3分,★★☆)如图,等腰△ABC 的底边BC=20,面积为120, 点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .C三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018四川泸州中考,17,6分,★★☆)计算:011()|4|2π---.18.(2018四川泸州中考,18,6分,★★☆)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(2018四川泸州中考,19,6分,★★☆)化简:2221 (1)11a aa a++ +÷--.20.(2018四川泸州中考,20,7分,★★☆)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(2018四川泸州中考,21,7分,★☆☆)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22.(2018四川泸州中考,22,8分,★★☆)如图,甲建筑物AD, 乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E, B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.(2018四川泸州中考,23,8分,★★☆)一次函数y kx b =+的图象经过点A(-2,12),B(8,-3) .(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数my x=(0m >)的图象相交于点C (11,x y ), D (22,x y ),与y 轴交于点E ,且CD=CE ,求m 的值.24.(2018四川泸州中考,24,12分,★★★)如图,已知AB ,CD 是⊙O 的直径,过点C作⊙O 的切线交AB 的延长线于点P ,⊙O 的弦DE 交AB 于点F ,且DF=EF . (1)求证:2CO OF OP =⋅;(2)连接EB 交CD 于点G ,过点G 作GH ⊥AB 于点H ,若PC=PB =4,求GH 的长.A25.(2018四川泸州中考,25,12分,★★★)如图,已知二次函数23(2)34y ax a x =--+的图象经过点A(4,0),与y 轴交于点B.在x 轴上有一动点C(m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D. (1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为1S ,2S ,若124S S =, 求m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且□DEGH 周长取最大值时,求点G 的坐标.2018年四川省泸州市高中阶段学校招生考试数学试卷答案全解全析1.答案:A解析:有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,故选A. 考查内容:有理数的大小比较命题意图:本题主要考查学生有理数大小比较的方法和规则,难度较低. 2.答案:B解析:先把原数写成整数位为一位数的数6.5,再把原数的整数位减1,即7-1=6,6就是科学记数法中10的指数,从而写出结果.即6500000=6.5×106.故选B . 考查内容:科学记数法命题意图:本题主要考查学生对学记数法表示绝对会较大的数的基础知识,难度较低. 3.答案:C解析:A 选择项中,原式=4a ,B 选择项中,原式不可以化简,C 选择项中,原式=a 2×2=a 4,D 选择项中,原式=a 8-2=a 6.故选择C.考查内容:合并同类项;幂的乘方;同底数幂的除法命题意图:本题主要考查学生整式的运算法则的基础知识的识记,难度较低. 4.答案:B解析:从上往下看,上面一行有三个正方形,第二行在左边有一个正方形,故选B. 考查内容:三视图命题意图:本题主要考查正方体组成的简单几何体的三视图的知识,难度较小. 5.答案:C解析:∵a//b ,∴∠B AD=∠1,∵∠1=50°,∴∠B AD=50°,∵AD 平分∠B AC ,∴∠B AC=2∠B AD=100°,∴∠2=180°-∠B AC=80°. 考查内容:平行线性质,角平分线,邻补角命题意图:本题主要考查学生应用平行线的性质、角平分线的性质以及邻补角的知识进行计算,难度不大. 6.答案:A解析:由表可知,人数最多的是16岁,因此年龄的众数为16,总共有9人,因此中位数为第5个人的年龄,由表可知,第5个人的年龄为15岁,因此中位数为15.故选择A. 考查内容:众数和中位数命题意图:本题主要考查学生对众数和中位数相关基础知识的识记,难度中等. 7.答案:B解析:∵四边形ABCD 为平行四边形,∴O 为AC 的中点,又∵E 是AB 中点,∴EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,∵AE+EO=4,∴AB+BC=2(AE+EO)=8,∵四边形ABCD 为平行四边形,∴AD=BC ,AB=CD ,∴周长为2(AB+BC)=16. 考查内容:平行四边形的性质,三角形中位线命题意图:本题主要考查学生应用三角形中位线的性质、平行四边形的性质进行计算的问题,难度中等. 8.答案:D解析:因为ab =8,所以三角形的面积为21ab =4,则小正方形的面积为25-4×4=9,所以小正方形的边长为3.考查内容:勾股定理;三角形面积命题意图:本题主要考查学生应用赵爽弦图解决问题的能力,难度中等. 9.答案:C解析:由题可知,△>0,即 (-2)2-4(k-1)>0,解得k <2.故选C . 考查内容:一元二次方程根的判别式;解不等式命题意图:本题主要考查应用一元二次方程根的判别式求字母范围的知识,难度中等. 10.答案:C解析:因为正方形中,AE=3ED ,DF=CF ,所以设边长为4a ,则AE=3a ,ED=a ,DF=CF=2a ,延长BE 、CD 交于点M ,易得△ABE ∽△MDE ,可得MD=a 34,因为△ABG ∽△MFG ,AB=4a ,MF=a 310,所以56==MF AB GF AG .故选C .考查内容:正方形的性质;相似三角形的判定和性质命题意图:本题主要考查相似三角形的判定和性质、正方形的性质的知识,难度中等. 11.答案:D解析:由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP ⊥BC 于点P ,此时PO=3,PA=2.故选D .考查内容:一次函数;圆的切线的性质;勾股定理;最小值问题命题意图:本题主要考查学生利用一次函数、圆的切线的性质、勾股定理解决最小值问题,难度较大 12.答案:D解析:原函数可化为y=a(x+1)2+3a 2-a+3,对称轴为x=-1,当x≥2时,y 随x 的增大而增大,所以a >0,抛物线开口向上,因为-2≤x≤1时,y 的最大值为9,结合对称轴及增减性可得,当x=1时,y=9,代入二次函数解析式可得,a 1=1,a 2=-2,又因为a >0,所以a=1.故选D . 考查内容:二次函数的图象和性质命题意图:本题主要考查应用二次函数的图象和性质解决问题的能力,难度较大. 13.答案:x≥1解析:根号下的数为非负数,即x-1≥0,x≥1. 考查内容:二次根式有意义的条件命题意图:本题主要考查学生对二次根式有意义条件的判断,难度较低. 14.答案:3(a+1)(a-1)解析:原式=3(a 2-1)=3(a+1)(a-1). 考查内容:因式分解命题意图:本题主要考查学生应用因式分解的方法分解因式的能力,难度中等. 15.答案:6解析:由根与系数的关系可得:x 1+x 2=2,x 1x 2=-1,6122)1(42221)(242)(2)12)(12(12122121212121=+⨯+-⨯+⨯=+++++=+++++=x x x x x x x x x x 原式.考查内容:根与系数的关系命题意图:本题主要考查应用根与系数的关系求对称式的值的问题,难度中等. 16.答案:18解析:过点A 作AH ⊥BC ,垂足为H ,∵S=120,BC=20,∴AH=12,∵△CDF 的周长=CF+CD+DF ,且CF=5,∴△CDF 的周长=5+CD+DF ,又∵EG 是腰AC 的垂直平分线,连接AD ,AF ,∴DA=DC ,∴AD+DF 的最小值为AF 的长度,在Rt △AHF 中,HF=5,AH=12,由勾股定理可得AF=13,因此△CDF 周长的最小值为18.考查内容:三角形面积;垂直平分线;勾股定理命题意图:本题综合考查线段垂直平分线的性质、三角形的面积公式、勾股定理以及最值的知识,难度较大.17.解析:原式=1+4+2-4=3.考查内容:零指数幂;负指数幂;平方根;绝对值;实数的运算命题意图:本题主要考查学生应用零指数幂、负指数幂、平方根、绝对值的相关知识进行计算,难度中等.18.解析:证明:∵DA=BE, ∴DE=AB,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ), ∴∠C=∠F .考查内容:全等三角形的判定和性质命题意图:本题主要考查学生应用全等三角形的判定和性质进行证明的能力,难度中等. 19.解析:()1111·1212+=+--+-=a a a a a 原式. 考查内容:分式的混合运算命题意图:本题主要考查学生对分式混合运算顺序和法则的理解,难度中等. 20.解析:(1)n=5÷10%=50(人)(2)喜爱看电视的百分比:(50-15-20-5)÷50×100%=20%,该校喜爱看电视的人数1200×20%=240(人)(3)设三名男生为男A ,男B ,男C ,从这4名学生中任意抽取2名学生,所有可能的情况如下表由表可知,总共有12中可能的结果,每种结果的可能性都相同,其中,抽到两名男生的结果有6种,所以P(抽到两名男生)=21126=. 考查内容:统计图;画树状图或列表法求概率命题意图:本题综合考查扇形图和条形统计图,以及画树状图或列表法求概率的知识,难度中等.21.解析:(1)设乙图书每本价格为x 元,则甲图书每本价格为2.5x 元, 根据题意得:245.2800800=-xx , 解得,x=20,经检验得,x=20是原分式方程的解, ∴2.5x=50,所以甲、乙两种图书每本价格分别为50元、20元. (2)设购买乙图书y 本,则购买甲图书28-y 本, 根据题意得1060202850≤+-⋅y y , 解得y ≤28,因为y 最大可以取28, 所以图书馆最多可以购买28本乙图书.考查内容:列分式方程解决实际问题;列一元一次不等式解决实际问题命题意图:本题主要考查应用分式方程和一元一次不等式解决实际问题的能力,难度中等. 22.解析:设AD=x ,则CB=6x ,∵DA ⊥AB ,CB ⊥AB ,∴△DAE 和△CBE 为直角三角形,∴在Rt △DAE 中,tan ∠DEA=DAAE ,∠DEA=30°,所以,在Rt △CBE 中,tan ∠CEB=CBBE,∠CEB=60°,所以,∵AB=90m ,∴x 3+x 32=90,∴x=103, 过点D 作DF ⊥CB 于点F ,则四边形DABF 为矩形, ∴DF=AB=90,∴CF=CB-BF=CB-AD=5x=350,在Rt △CDF 中,由勾股定理得,CD=22CF DF +=.考查内容:解直角三角形命题意图:本题主要考查学生利用解直角三角形的知识解决实际问题的能力,难度中等.23.解析:(1)把点A(-2,12),B(8,-3)代入一次函数解析式得:122k b 38k b=-+⎧⎨-=+⎩,解得:329kb⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:y=-1.5x+9;(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B,设点C坐标为(a,b),由已知ab=m,由(1)点E坐标为(0,9),则AE=9-b,∵AC∥BD,CD=CE,∴12 CE AC AEED BD EB===,∴BD=2a,EB=2(9-b),∴OB=9-2(9-b)=2b-9,∴点D坐标为(2a,2b-9),∴2a•(2b-9)=m,整理得m=6a,∵ab=m,∴b=6,则点D坐标化为(2a,3),∵点D在y=32-x+9图象上,∴a=2,∴m=ab=12.考查内容:一次函数的解析式;反比例函数的解析式;相似三角形的判定和性质命题意图:本题综合考查一次函数和反比例函数的图象和性质、相似三角形的判定和性质的知识,难度较大.24.解析:(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OC P,∴OD OFOP OC=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(2)2+r2=(r+4)2,∴r=2,∵CM=423 OC PCOP⋅=∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°, ∴四边形EFMC 是矩形, ∴EF=在Rt△OEF 中,23, ∴EC=2OF=43,∴MB=43, ∵EC∥OB, ∴23EC CG OB GO ==, ∵GH∥CM,∴35GH OC =, ∴GH=65.考查内容:切线的性质;相似三角形的判定和性质;矩形的判定和性质;平行线分线段成比例定理;勾股定理命题意图:本题是一道几何综合题,主要考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,难度较大.25.解析:(1)把点A (4,0)代入23(2)34y ax a x =--+得:0=16a 3(2)434a --⨯+,解 得a=34-,∴二次函数的解析式为349432++-=x x y , 令x=0,得y=3,∴B(0,3),设直线AB 的表达式为y=kx+b ,将A(4,0),B (0,3)代入得:403k b b +=⎧⎨=⎩,解得343k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为:343+-=x y ; (2)∵DC⊥x 轴,C (m,0),∴D(m,349432++-m m ),E(m,343+-m ),∴m m m m m DE 3433433494322+-=⎪⎭⎫⎝⎛+--++-=, ∵A(4,0),B (0,3),∴OA=4,OB=3,∴AB=5,在Rt△CAE 中,所以cos∠CAE=AC AE =54, ∴AC=4-m ,AE=5-45m , ∵△EFD∽△ECA,124S S =,∴AE=2DE,∴5-45m=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--++-3433494322m m m ,解得m 1=65,m 2=4(舍去),∴m 的值为65;(3)如图,过点G 做GM⊥DC 于点M ,由(2)DE=-34m 2+3m 同理HG=-34n 2+3n ∵四边形DEGH 是平行四边形∴-34m 2+3m=-34n 2+3n 整理得:(n-m )[34(n+m)-3]=0∵m≠n∴m+n=4,即n=4-m ∴MG=n -m=4-2m 由已知△EMG∽△BOA∴43MG EM =,∴EG=54(4-2m)∴□DEGH 周长L=2[-34m 2+3m+54(4-2m)]=-32m 2+m+10∵a=-32<0∴m=-2b a =13时,L 最大. ∴n=4-13=113,∴G 点坐标为(113,14),此时点E 坐标为(13,114)当点G 、E 位置对调时,依然满足条件, ∴点G 坐标为(113,14)或(13,114). 考查内容:二次函数的图性质;相似三角形的性质;待定系数法;平行四边形的性质 命题意图:本题是一道二次函数的综合性质,主要考查相似三角形的性质、待定系数法求解析式、三角函数、平行四边形的性质、二次函数的最值等问题,难度很大.。

2018年初中数学中考泸州试题解析

2018年初中数学中考泸州试题解析

四川省泸州市2018年中考数学试卷一、选择题(共12小题,每小题2分,共24分).2.(2分)(2018•泸州)某校七年级有5名同学参加设计比赛,成绩分为为7,8,9,10,8(单4.(2分)(2018•泸州)如图所示为某几何体的示意图,则该几何体的主视图应为()....5.(2分)(2018•泸州)第六次全国人口普查数据显示:泸州市常住人口大约有4220000人,这6.(2分)(2018•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()7.(2分)(2018•泸州)函数自变量x的取值范围是()8.(2分)(2018•泸州)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实9.(2分)(2018•泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且.cm .cm .cm或cm .cm或cmOM==3cm==4==210.(2分)(2018•泸州)设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()==11.(2分)(2018•泸州)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()12.(2分)(2018•泸州)如图,在等腰直角△ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;(3)CD+CE=OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()二、填空题(共4个小题,每小题4分,共16分)13.(4分)(2008•云南)分解因式:x2y﹣4y=y(x+2)(x﹣2).14.(4分)(2018•泸州)在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=4.15.(4分)(2018•泸州)如图,从半径为9cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为3cm.则弧长是:=12=3(.16.(4分)(2018•泸州)如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P3的坐标是(+,﹣);点P n的坐标是(+,﹣)(用含n的式子表示).b=的坐标为(,F=2,c+2,﹣的坐标为(+﹣+1﹣+)(,﹣+﹣+﹣三、(共3个小题,每小题6分,共18分)17.(6分)(2018•泸州)计算:.18.(6分)(2018•泸州)先化简:,再求值,其中a=.÷×,﹣19.(6分)(2018•泸州)如图,已知▱ABCD中,F是BC边的中点,连接DF并延长,交AB 的延长线于点E.求证:AB=BE.四、(共2个小题,每小题7分,共14分)20.(7分)(2018•泸州)某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画.要求每位同学必须参加,且限报一项活动.以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图.请你结合图示所给出的信息解答下列问题.(1)求出参加绘画比赛的学生人数占全班总人数的百分比?(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?×21.(7分)(2011•枣庄)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?,解不等式组然后去整数即可求解.由题意,得,五、(共2个小题,每小题8分,共16分)22.(8分)(2018•泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).=20mAD=AE+EB=20=10+1010+1023.(8分)(2018•泸州)如图,已知函数y=x与反比例函数y=(x>0)的图象交于点A.将y=x 的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C.(1)求点C的坐标;(2)若=2,求反比例函数的解析式.则== ===2y=.六、(共2个小题,其中第24小题10分,第25小题12分,共22分)24.(10分)(2018•泸州)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD2=CA•CB;(2)求证:CD是⊙O的切线;(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.=,即OEB====25.(12分)(2018•泸州)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号),﹣,﹣﹣x(+,解得:x,﹣)x+y(x+(﹣x x+ x+的面积最大,最大值为﹣+,的坐标为(﹣,)。

2018年四川省泸州中考数学试题及答案

2018年四川省泸州中考数学试题及答案

泸州市2018年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.在-2,0,12,2四个数中,最小的是()A.-2B.0C.12D.22.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A. 56.510⨯ B. 66.510⨯ C. 76.510⨯ D. 56510⨯3.下列计算,结果等于4a的是()A.3a a+ B. 5a a- C. 22()a D.82a a÷4. 左下图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B. C. D.5. 如图1,直线a//b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A. 50°B. 70°C. 80°D. 110°6.某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16 17人数 1 2 2 3 1A.16,15B.16,14C.15,15D.14,157.如图2,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A.20B. 16C. 12D.88.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为()A. 9B.6C. 4D.3DCBAc12E OAC9.已知关于x 的一元一次方程2210x x k -+-=有两个不相等的实数根,则实数k 的取值 范围是( )A. 2k ≤B. 0k ≤C.2k <D.0k <10.如图4,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG GF的值是( ) A.43 B.54 C.65 D.7611.在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P在直线y =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A. 3 B. 2C.12.已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或2-B.D.1第Ⅱ卷 (非选择题 共84分)注意事项:用0.5毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效. 二、填空题(每小题3分,共12分)13.x 的取值范围是 . 14.分解因式:233a -= .15.已知1x ,2x 是一元二次方程2210x x --=的两实数根,则12112121x x +++的值是 .16.如图5,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .三、(每小题6分,共18分) 17.计算:011()|4|2π---.18.如图6,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .FEDCBAE GF D CBA19.化简:2221(1)11a a a a +++÷--.四、(每小题7分,共14分)20. 为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题: (1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?实践视活动外书22.如图8,甲建筑物AD, 乙建筑物BC 的水平距离AB 为90m ,且乙建筑物的高度是甲建筑物高度的6倍,从E(A ,E, B 在同一水平线上)点测得D 点的仰角为30°,测得C 点的仰角为60°,求这两座建筑物顶端C 、D 间的距离(计算结果用根号表示,不取近似值).23. 一次函数y kx b =+的图象经过点A(-2,12),B(8,-3) . (1)求该一次函数的解析式;(2)如图9,该一次函数的图象与反比例函数my x=(0m >)的图象相交于点C (11,x y ), D (22,x y ),与y 轴交于点E ,且CD=CE ,求m 的值.24.如图10,已知AB ,CD 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,⊙O 的弦DE 交AB 于点F ,且DF=EF . (1)求证:2CO OF OP =⋅;(2)连接EB 交CD 于点G ,过点G 作GH ⊥AB 于点H ,若PC=PB=4,求GH 的长.A25. 如图11,已知二次函数23(2)34y ax a x =--+的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D.(1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为1S ,2S ,若124S S =,求m 的值;(3)点H 是该二次函数图象上位于第一象限的动点,点G 是线段AB 上的动点,当四边形DEGH是平行四边形,且DEGH 周长取最大值时,求点G 的坐标.泸州市2018年高中阶段学校招生考试数学试卷参考答案1-5:ABCBC 6-12:ABDCC DD13.1x ≥ 14. 3(a + 1 )(a - 1) 15. 6 16.18 10题:法一:设ED x =,则3AE x =,作FH //AD ,交BE 于H,∴ HF=115()(4)222ED BC x x x +=+=,∴ △AEG ∽△FHG ,AG AE GF HF ∴==65法二:延长BE,CD 交于点H ,△EDH ∽△EAB,∴13HD DE AB AE == △FGH ∽△AGB, ∴AG ABGF HF =HF=HD+DF=115326AB AB AB +=65AG GF ∴= 11题:(2,0)B -,(0,C∴tan ∠CBO=OCOB,∴ ∠CBO=60° 作OP ⊥BC ,则PA ∴=12题: 22233y ax ax a =+++=22(1)33a x a a ++-+,∴ 对称轴1x =- 又 当2x ≥时,y 随x 的增大而增大,∴ 抛物线开口向上,0a ∴> ∴ 21x -≤≤时,1x =,y 的最大值为9,∴22339y a a a =+++=,解得11a =,22a =-(舍去)15题:∴12112121x x +++=121212*********()2(21)(21)42()1x x x x x x x x x x +++++=+++++又 12122,1x x x x +==-,∴ 原式=616题:作AH ⊥BC,连接AF 交EG 于'D12ABCS BC AH ∆=⋅,212ABC S AH BC∆∴== 又13==∴最小值13518CDF C ∆=+=17.3 18.略 19.11a +20. (1)510%50÷=(名)答:此次调查中一共抽取了50名学生。

2018年泸州市中考数学试卷(含答案解析版)

2018年泸州市中考数学试卷(含答案解析版)

2018年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,12,2四个数中,最小的是( )A .﹣2B .0C .12D .22.(3分)(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A .6.5×105B .6.5×106C .6.5×107D .65×1053.(3分)(2018•泸州)下列计算,结果等于a 4的是( ) A .a +3aB .a 5﹣aC .(a 2)2D .a 8÷a 24.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .5.(3分)(2018•泸州)如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表: 年龄 13 14 15 16 17 人数12231则这些学生年龄的众数和中位数分别是( ) A .16,15 B .16,14 C .15,15 D .14,157.(3分)(2018•泸州)如图,▱ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO=4,则▱ABCD 的周长为( )A .20B .16C .12D .88.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.(3分)(2018•泸州)已知关于x 的一元二次方程x 2﹣2x +k ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k ≤2B .k ≤0C .k <2D .k <010.(3分)(2018•泸州)如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .7611.(3分)(2018•泸州)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线y=√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A .3B .2C .√3D .√212.(3分)(2018•泸州)已知二次函数y=ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或﹣2 B .−√2或√2 C .√2 D .1二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式√x −1在实数范围内有意义,则x 的取值范围是 .14.(3分)(2018•泸州)分解因式:3a 2﹣3= .15.(3分)(2018•泸州)已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则12x 1+1+12x 2+1的值是 . 16.(3分)(2018•泸州)如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .三、(每小题6分,共18分) 17.(6分)(2018•泸州)计算:π0+√16+(12)﹣1﹣|﹣4|. 18.(6分)(2018•泸州)如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .19.(6分)(2018•泸州)化简:(1+2a−1)÷a2+2a+1a−1.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=mx(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4√2,PB=4,求GH的长.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣34)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•泸州)在﹣2,0,12,2四个数中,最小的是( )A .﹣2B .0C .12D .2【考点】18:有理数大小比较. 【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案. 【解答】解:由正数大于零,零大于负数,得﹣2<0<12<2,﹣2最小, 故选:A .【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)(2018•泸州)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A .6.5×105B .6.5×106C .6.5×107D .65×105 【考点】1I :科学记数法—表示较大的数. 【专题】511:实数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:6500000=6.5×106, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2018•泸州)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)(2018•泸州)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2018•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC 的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)(2018•泸州)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2018•泸州)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【考点】KR:勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)(2018•泸州)已知关于x 的一元二次方程x 2﹣2x +k ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k ≤2B .k ≤0C .k <2D .k <0【考点】AA :根的判别式. 【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k ﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k ﹣1)>0, 解得k <2. 故选:C .【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2018•泸州)如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .76【考点】S9:相似三角形的判定与性质;LE :正方形的性质. 【专题】556:矩形菱形正方形.【分析】如图作,FN ∥AD ,交AB 于N ,交BE 于M .设DE=a ,则AE=3a ,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN ∥AD ,交AB 于N ,交BE 于M .∵四边形ABCD 是正方形, ∴AB ∥CD ,∵FN ∥AD , ∴四边形ANFD 是平行四边形, ∵∠D=90°,∴四边形ANFD 是解析式,∵AE=3DE ,设DE=a ,则AE=3a ,AD=AB=CD=FN=4a ,AN=DF=2a , ∵AN=BN ,MN ∥AE , ∴BM=ME ,∴MN=32a ,∴FM=52a ,∵AE ∥FM ,∴AG GF =AE FM =3a 52a =65, 故选:C .【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)(2018•泸州)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线y=√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A .3B .2C .√3D .√2【考点】MC :切线的性质;F8:一次函数图象上点的坐标特征. 【专题】11 :计算题.【分析】如图,直线y=√3x +2√3与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,先利用一次解析式得到D (0,2√3),C (﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=√3,连接OA ,如图,利用切线的性质得OA ⊥PA ,则PA=√OP 2−1,然后利用垂线段最短求PA 的最小值.【解答】解:如图,直线y=√3x +2√3与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,当x=0时,y=√3x +2√3=2√3,则D (0,2√3), 当y=0时,√3x +2√3=0,解得x=﹣2,则C (﹣2,0), ∴CD=√22+(2√3)2=4,∵12OH•CD=12OC•OD , ∴OH=2×2√34=√3,连接OA ,如图,∵PA 为⊙O 的切线, ∴OA ⊥PA ,∴PA=√OP 2−OA 2=√OP 2−1, 当OP 的值最小时,PA 的值最小, 而OP 的最小值为OH 的长, ∴PA 的最小值为√(√3)2−1=√2. 故选:D .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)(2018•泸州)已知二次函数y=ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且﹣2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或﹣2 B .−√2或√2C .√2D .1【考点】H3:二次函数的性质;H7:二次函数的最值. 【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a >0,然后由﹣2≤x ≤1时,y 的最大值为9,可得x=1时,y=9,即可求出a . 【解答】解:∵二次函数y=ax 2+2ax +3a 2+3(其中x 是自变量), ∴对称轴是直线x=﹣2a 2a=﹣1,∵当x ≥2时,y 随x 的增大而增大, ∴a >0,∵﹣2≤x ≤1时,y 的最大值为9, ∴x=1时,y=a +2a +3a 2+3=9, ∴3a 2+3a ﹣6=0,∴a=1,或a=﹣2(不合题意舍去). 故选:D .【点评】本题考查了二次函数的性质,二次函数y=ax 2+bx +c (a ≠0)的顶点坐标是(﹣b2a ,4ac−b 24a ),对称轴直线x=﹣b2a,二次函数y=ax 2+bx +c (a ≠0)的图象具有如下性质:①当a >0时,抛物线y=ax 2+bx +c (a ≠0)的开口向上,x <﹣b 2a时,y 随x 的增大而减小;x >﹣b 2a时,y 随x 的增大而增大;x=﹣b 2a时,y 取得最小值4ac−b 24a,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax 2+bx +c(a ≠0)的开口向下,x <﹣b 2a 时,y 随x 的增大而增大;x >﹣b2a时,y 随x 的增大而减小;x=﹣b 2a 时,y 取得最大值4ac−b 24a,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)(2018•泸州)若二次根式√x −1在实数范围内有意义,则x 的取值范围是x≥1.【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子√x−1在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)(2018•泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2018•泸州)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则12x1+1+12x2+1的值是6.【考点】AB:根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、x12=2x1+1、x22=2x2+1,将其代入12x1+1+12x2+1=(x1+x2)2−2x1x2(x1x2)中即可得出结论.【解答】解:∵x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 1+x 2=2,x 1x 2=﹣1,x 12=2x 1+1,x 22=2x 2+1,∴12x 1+1+12x 2+1=1x 1+1x 2=x 12+x 22(x 1x 2)=(x 1+x 2)2−2x 1x 2(x 1x 2)=22−2×(−1)(−1)=6. 故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式12x 1+1+12x 2+1变形为(x 1+x 2)2−2x 1x 2(x 1x 2)是解题的关键.16.(3分)(2018•泸州)如图,等腰△ABC 的底边BC=20,面积为120,点F 在边BC 上,且BF=3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 18 .【考点】PA :轴对称﹣最短路线问题;KG :线段垂直平分线的性质;KH :等腰三角形的性质.【专题】552:三角形.【分析】如图作AH ⊥BC 于H ,连接AD .由EG 垂直平分线段AC ,推出DA=DC ,推出DF +DC=AD +DF ,可得当A 、D 、F 共线时,DF +DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH ⊥BC 于H ,连接AD .∵EG 垂直平分线段AC , ∴DA=DC ,∴DF +DC=AD +DF ,∴当A 、D 、F 共线时,DF +DC 的值最小,最小值就是线段AF 的长,∵12•BC•AH=120, ∴AH=12,∵AB=AC ,AH ⊥BC , ∴BH=CH=10, ∵BF=3FC , ∴CF=FH=5,∴AF=√AH 2+HF 2=√122+52=13, ∴DF +DC 的最小值为13.∴△CDF 周长的最小值为13+5=18; 故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分) 17.(6分)(2018•泸州)计算:π0+√16+(12)﹣1﹣|﹣4|. 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂. 【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•泸州)如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,{AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)(2018•泸州)化简:(1+2a−1)÷a2+2a+1a−1.【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】先把括号内通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=a−1+2a−1•a−1(a+1)2=1a+1.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)(2018•泸州)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题: (1)求n 的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n 的值; (2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×1050=240,所以估计该校喜爱看电视的学生人数为240人; (3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率=612=12.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.21.(7分)(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用. 【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案. 【解答】解:(1)设乙图书每本价格为x 元,则甲图书每本价格是2.5x 元,根据题意可得:800x ﹣8002.5x=24,解得:x=20,经检验得:x=20是原方程的根, 则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x ,则购买乙图书的本数为:2x +8, 故50x +20(2x +8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)(2018•泸州)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=ADAE,sin30°=ADDE∴AE=√33=√3AD,DE=2AD;在Rt△BCE中,tan60°=BCBE ,sin60°=BCCE,∴BE=√3=2√3AD,CE=2√3BC3=4√3AD;∵AE+BE=AB=90m∴√3AD+2√3AD=90∴AD=10√3(m)∴DE=20√3m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD=√DE2+CE2=√15600=20√39(m)答:这两座建筑物顶端C、D间的距离为20√39m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)(2018•泸州)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=mx(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE ,得到相似比为1:2,表示点C 、D 坐标,代入y=kx +b 求解.【解答】解:(1)把点A (﹣2,12),B (8,﹣3)代入y=kx +b 得:{12=−2k +b −3=8k +b解得:{k =−32b =9∴一次函数解析式为:y=﹣32x +9(2)分别过点C 、D 做CA ⊥y 轴于点A ,DB ⊥y 轴于点B 设点C 坐标为(a ,b ),由已知ab=m 由(1)点E 坐标为(0,9),则AE=9﹣b ∵AC ∥BD ,CD=CE ∴BD=2a ,EB=2(9﹣b ) ∴OB=9﹣2(9﹣b )=2b ﹣9 ∴点D 坐标为(2a ,2b ﹣9) ∴2a•(2b ﹣9)=m 整理得m=6a ∵ab=m ∴b=6则点D 坐标化为(a ,3)∵点D 在y=﹣32x +9图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)(2018•泸州)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4√2,PB=4,求GH的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得ODOP=OFOC,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB 是直径,EF=FD , ∴AB ⊥ED ,∴∠OFD=∠OCP=90°, ∵∠FOD=∠COP , ∴△OFD ∽△OCP ,∴OD OP =OFOC,∵OD=OC , ∴OC 2=OF•OP .(2)解:如图作CM ⊥OP 于M ,连接EC 、EO .设OC=OB=r .在Rt △POC 中,∵PC 2+OC 2=PO 2, ∴(4√2)2+r 2=(r +4)2, ∴r=2, ∵CM=OC⋅PC OP =43√2, ∵DC 是直径,∴∠CEF=∠EFM=∠CMF=90°, ∴四边形EFMC 是矩形,∴EF=CM=43√2,在Rt △OEF 中,OF=√EO 2−EF 2=23,∴EC=2OF=43,∵EC ∥OB ,∴EC OB =CG GO =23, ∵GH ∥CM ,∴GHCM =OGOC=35,∴GH=4√2 5.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)(2018•泸州)如图11,已知二次函数y=ax2﹣(2a﹣34)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣34)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n 表示GH ,由平行四边形性质DE=GH ,可得m ,n 之间数量关系,利用相似用GM 表示EG ,表示▱DEGH 周长,利用函数性质求出周长最大时的m 值,可得n 值,进而求G 点坐标.【解答】解:(1)把点A (4,0)代入,得 0=a•42﹣(2a ﹣34)×4+3 解得 a=﹣34∴函数解析式为:y=−34x 2+94x +3设直线AB 解析式为y=kx +b 把A (4,0),B (0,3)代入{0=4k +b b =3解得{k =−34b =3∴直线AB 解析式为:y=﹣34x +3(2)由已知,点D 坐标为(m ,﹣34m 2+94m +3)点E 坐标为(m ,﹣34m +3)∴AC=4﹣mDE=(﹣34m 2+94m +3)﹣(﹣34m +3)=﹣34m 2+3m∵BC ∥y 轴∴AC EC =AO OB =43∴AE=54(4−m)∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF ∽△AEC ∵S 1=4S 2 ∴AE=2DE∴54(4−m)=2(−34m 2+3m) 解得m 1=56,m 2=4(舍去)故m 值为56(3)如图,过点G 做GM ⊥DC 于点M由(2)DE=﹣34m 2+3m同理HG=﹣34n 2+3n∵四边形DEGH 是平行四边形 ∴﹣34m 2+3m =﹣34n 2+3n整理得:(n ﹣m )[34(n +m)−3]=0∵m ≠n∴m +n=4,即n=4﹣m ∴MG=n ﹣m=4﹣2m 由已知△EMG ∽△BOA∴MG EM =43∴EG=54(4−2m)∴▱DEGH 周长L=2[﹣34m 2+3m +54(4−2m)]=﹣32m 2+m +10∵a=﹣32<0∴m=﹣b 2a=−12×(−32)=13时,L 最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年省市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.22.(3分)(2018•)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1053.(3分)(2018•)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a24.(3分)(2018•)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3分)(2018•)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.(3分)(2018•)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,157.(3分)(2018•)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.88.(3分)(2018•)“爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.39.(3分)(2018•)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值围是()A.k≤2 B.k≤0 C.k<2 D.k<010.(3分)(2018•)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.11.(3分)(2018•)在平面直角坐标系,以原点O为原心,1为半径作圆,点P 在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.12.(3分)(2018•)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1二、填空题(每小题3分,共12分)13.(3分)(2018•)若二次根式在实数围有意义,则x的取值围是.14.(3分)(2018•)分解因式:3a2﹣3=.15.(3分)(2018•)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.16.(3分)(2018•)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.三、(每小题6分,共18分)17.(6分)(2018•)计算:π0++()﹣1﹣|﹣4|.18.(6分)(2018•)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.19.(6分)(2018•)化简:(1+)÷.四、(每小题7分,共14分)20.(7分)(2018•)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.21.(7分)(2018•)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?五、(每小题8分,共16分)22.(8分)(2018•)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).23.(8分)(2018•)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.六、(每小题12分,共24分)24.(12分)(2018•)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.25.(12分)(2018•)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.2018年省市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.1.(3分)(2018•)在﹣2,0,,2四个数中,最小的是()A.﹣2 B.0 C.D.2【考点】18:有理数大小比较.【专题】511:实数.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<<2,﹣2最小,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.(3分)(2018•)2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×105【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500000=6.5×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2018•)下列计算,结果等于a4的是()A.a+3a B.a5﹣a C.(a2)2D.a8÷a2【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【专题】11 :计算题.【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A、a+3a=4a,错误;B、a5和a不是同类项,不能合并,故此选项错误;C、(a2)2=a4,正确;D、a8÷a2=a6,错误;故选:C.【点评】此题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.4.(3分)(2018•)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.5.(3分)(2018•)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【考点】JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.6.(3分)(2018•)某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A.16,15 B.16,14 C.15,15 D.14,15【考点】W5:众数;W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知16岁出现次数最多,所以众数为16岁,因为共有1+2+2+3+1=9个数据,所以中位数为第5个数据,即中位数为15岁,故选:A.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)(2018•)如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.8【考点】L5:平行四边形的性质;KX:三角形中位线定理.【专题】555:多边形与平行四边形.【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.(3分)(2018•)“爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3【考点】KR:勾股定理的证明.【专题】1 :常规题型.【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.9.(3分)(2018•)已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值围是()A.k≤2 B.k≤0 C.k<2 D.k<0【考点】AA:根的判别式.【专题】11 :计算题.【分析】利用判别式的意义得到△=(﹣2)2﹣4(k﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,解得k<2.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(3分)(2018•)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【考点】S9:相似三角形的判定与性质;LE:正方形的性质.【专题】556:矩形菱形正方形.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.【点评】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.11.(3分)(2018•)在平面直角坐标系,以原点O为原心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.【考点】MC:切线的性质;F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.12.(3分)(2018•)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【考点】H3:二次函数的性质;H7:二次函数的最值.【专题】1 :常规题型.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.【点评】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a ≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(每小题3分,共12分)13.(3分)(2018•)若二次根式在实数围有意义,则x的取值围是x≥1.【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值围即可.【解答】解:∵式子在实数围有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.(3分)(2018•)分解因式:3a2﹣3=3(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).故答案为:3(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(3分)(2018•)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【考点】AB:根与系数的关系.【专题】17 :推理填空题;523:一元二次方程及应用.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.16.(3分)(2018•)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18.【考点】PA:轴对称﹣最短路线问题;KG:线段垂直平分线的性质;KH:等腰三角形的性质.【专题】552:三角形.【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、(每小题6分,共18分)17.(6分)(2018•)计算:π0++()﹣1﹣|﹣4|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】1 :常规题型.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+2﹣4=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2018•)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【考点】KD:全等三角形的判定与性质.【专题】552:三角形.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.【点评】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,属于中考基础题目.19.(6分)(2018•)化简:(1+)÷.【考点】6C:分式的混合运算.【专题】11 :计算题.【分析】先把括号通分,再把除法运算化为乘法运算,然后约分即可.【解答】解:原式=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、(每小题7分,共14分)20.(7分)(2018•)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图7所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【专题】11 :计算题.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【解答】解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)(2018•)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【专题】1 :常规题型.【分析】(1)利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.五、(每小题8分,共16分)22.(8分)(2018•)如图,甲建筑物AD,乙建筑物BC的水平距离AB为90m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°,求这两座建筑物顶端C、D间的距离(计算结果用根号表示,不取近似值).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】1 :常规题型.【分析】在直角三角形中,利用余弦函数用AD表示出AE、DE,用BC表示出CE、BE.根据BC=6AD,AE+BE=AB=90m,求出AD、DE、CE的长.在直角三角形DEC 中,利用勾股定理求出CD的长.【解答】解:由题意知:BC=6AD,AE+BE=AB=90m在Rt△ADE中,tan30°=,sin30°=∴AE==AD,DE=2AD;在Rt△BCE中,tan60°=,sin60°=,∴BE==2AD,CE==4AD;∵AE+BE=AB=90m∴AD+2AD=90∴AD=10(m)∴DE=20m,CE=120m∵∠DEA+∠DEC+∠CEB=180°,∠DEA=30°,∠CEB=60°,∴∠DEC=90°∴CD===20(m)答:这两座建筑物顶端C、D间的距离为20m.【点评】本题考查了解直角三角形的应用及勾股定理.题目难度不大,解决本题的关键是利用BC=6AD,AE+BE=AB=90m求出AD的长.23.(8分)(2018•)一次函数y=kx+b的图象经过点A(﹣2,12),B(8,﹣3).(1)求该一次函数的解析式;(2)如图,该一次函数的图象与反比例函数y=(m>0)的图象相交于点C(x1,y1),D(x2,y2),与y轴交于点E,且CD=CE,求m的值.【考点】G8:反比例函数与一次函数的交点问题.【专题】153:代数几何综合题;31 :数形结合;533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)应用待定系数法可求解;(2)构造相似三角形,利用CD=CE,得到相似比为1:2,表示点C、D坐标,代入y=kx+b求解.【解答】解:(1)把点A(﹣2,12),B(8,﹣3)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣(2)分别过点C、D做CA⊥y轴于点A,DB⊥y轴于点B设点C坐标为(a,b),由已知ab=m由(1)点E坐标为(0,9),则AE=9﹣b∵AC∥BD,CD=CE∴BD=2a,EB=2(9﹣b)∴OB=9﹣2(9﹣b)=2b﹣9∴点D坐标为(2a,2b﹣9)∴2a•(2b﹣9)=m整理得m=6a∵ab=m∴b=6则点D坐标化为(a,3)∵点D在y=﹣图象上∴a=4∴m=ab=12【点评】本题以一次函数和反比例函数图象为背景,考查利用相似三角形性质表示点坐标,以点在函数图象上为基础代入解析构造方程.六、(每小题12分,共24分)24.(12分)(2018•)如图,已知AB,CD是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,⊙O的弦DE交AB于点F,且DF=EF.(1)求证:CO2=OF•OP;(2)连接EB交CD于点G,过点G作GH⊥AB于点H,若PC=4,PB=4,求GH的长.【考点】S9:相似三角形的判定与性质;M5:圆周角定理;MC:切线的性质.【专题】559:圆的有关概念及性质.【分析】(1)想办法证明△OFD∽△OCP,可得=,由OD=OC,可得结论;(2)如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,利用勾股定理求出r,再利用面积法求出CM,由四边形EFMC是矩形,求出EF,在Rt△EOF中,求出OF,再求出EC,利用平行线分线段成比例定理即可解决问题;【解答】(1)证明:∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∵AB是直径,EF=FD,∴AB⊥ED,∴∠OFD=∠OCP=90°,∵∠FOD=∠COP,∴△OFD∽△OCP,∴=,∵OD=OC,∴OC2=OF•OP.(2)解:如图作CM⊥OP于M,连接EC、EO.设OC=OB=r.在Rt△POC中,∵PC2+OC2=PO2,∴(4)2+r2=(r+4)2,∴r=2,∵CM==,∵DC是直径,∴∠CEF=∠EFM=∠CMF=90°,∴四边形EFMC是矩形,∴EF=CM=,在Rt△OEF中,OF==,∴EC=2OF=,∵EC∥OB,∴==,∵GH∥CM,∴==,∴GH=.【点评】本题考查切线的性质、相似三角形的判定和性质、矩形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(12分)(2018•)如图11,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;31 :数形结合;37:数学建模思想;537:函数的综合应用.【分析】(1)把点A坐标代入y=ax2﹣(2a﹣)x+3可求a,应用待定系数法可求直线AB的解析式;(2)用m表示DE、AC,易证△DEF∽△AEC,S1=4S2,得到DE与AE的数量关系可以构造方程;(3)用n表示GH,由平行四边形性质DE=GH,可得m,n之间数量关系,利用相似用GM表示EG,表示▱DEGH周长,利用函数性质求出周长最大时的m值,可得n值,进而求G点坐标.【解答】解:(1)把点A(4,0)代入,得0=a•42﹣(2a﹣)×4+3解得a=﹣∴函数解析式为:y=设直线AB解析式为y=kx+b把A(4,0),B(0,3)代入解得∴直线AB解析式为:y=﹣(2)由已知,点D坐标为(m,﹣)点E坐标为(m,﹣)∴AC=4﹣mDE=(﹣)﹣(﹣)=﹣∵BC∥y轴∴∴AE=∵∠DFA=∠DCA=90°,∠FBD=∠CEA∴△DEF∽△AEC∵S1=4S2∴AE=2DE∴解得m1=,m2=4(舍去)故m值为(3)如图,过点G做GM⊥DC于点M由(2)DE=﹣同理HG=﹣∵四边形DEGH是平行四边形∴﹣=﹣整理得:(n﹣m)[]=0∵m≠n∴m+n=4,即n=4﹣m∴MG=n﹣m=4﹣2m由已知△EMG∽△BOA∴∴EG=∴▱DEGH周长L=2[﹣+]=﹣∵a=﹣<0∴m=﹣时,L最大.∴n=4﹣=∴G点坐标为(,),此时点E坐标为(,)当点G、E位置对调时,依然满足条件∴点G坐标为(,)或(,)【点评】本题以二次函数图象为背景,综合考查三角形相似、平行四边形性质、二次函数最值讨论以转化的数学思想.。

相关文档
最新文档