XX中考数学一轮复习相交线与平行线
中考一轮复习 数学专题11 几何图形初步与相交线、平行线(老师版)
专题11 几何图形初步与相交线、平行线一、单选题1.(2022·广东广州)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】A【解析】【分析】由图可知展开侧面为扇形,则该几何体为圆锥.【详解】该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,故选:A.【点睛】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.2.(2022·广西柳州)如图,从学校A到书店B有①、①、①、①四条路线,其中最短的路线是()A.①B.①C.①D.①【答案】B【解析】【分析】根据两点之间线段最短进行解答即可.【详解】解:①两点之间线段最短,①从学校A到书店B有①、①、①、①四条路线中,最短的路线是①,故B正确.故选:B.【点睛】本题主要考查了两点之间线段最短,解题的关键是熟练掌握两点之间所有连线中,线段最短.3.(2022·广西柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【答案】B【解析】【分析】根据面动成体:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱,据此判断即可.【详解】解:由题意可知:一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.故选:B【点睛】本题考查了圆柱的概念和面动成体,属于应知应会题型,熟练掌握基础知识是解题关键.4.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是()A.B.C.D.【答案】A【解析】【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A.【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.(2021·山东枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配①C.搭配①D.搭配①【答案】D【解析】【分析】将每个搭配的两组积木进行组合,检验是否可得出图中剩下的九个空格的形状,由此即可得出答案.【详解】解:搭配①、①、①两组积木组合在一起,均可组合成图中剩下的九个空格的形状,只有搭配①不能,故选:D.【点睛】本题考查了图形的剪拼,解题关键是培养学生的空间想象能力以及组合意识.6.(2020·山东东营)如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .138【答案】A【解析】【分析】 先求出①AOD =180°-①AOC ,再求出①BOD =180°-①AOD ,最后根据角平分线平分角即可求解.【详解】解:由题意可知:①AOD =180°-①AOC =180°-42°=138°,①①BOD =180°-①AOD =42°,又①OM 是①BOD 的角平分线,①①DOM =12①BOD =21°, 本号资料皆来源#于微信:数学①①AOM =①DOM +①AOD =21°+138°=159°.故选:A .【点睛】本题考查了角平分线的性质及平角的定义,熟练掌握角平分线的性质和平角的定义是解决此类题的关键. 7.(2022·浙江金华)如图,圆柱的底面直径为AB ,高为AC ,一只蚂蚁在C 处,沿圆柱的侧面爬到B 处,现将圆柱侧面沿AC “剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:①AB为底面直径,①将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,①两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.∥,①1=70°,则①2的度数是()8.(2022·广西柳州)如图,直线a,b被直线c所截,若a bA.50°B.60°C.70°D.110°【答案】C【解析】【分析】∥,①1=70°,可得2170,从而可得答案.由a b【详解】∥,①1=70°,解:①a b①2170,故选C【点睛】本题考查的是平行线的性质,掌握“两直线平行,同位角相等”是解本题的关键.9.(2022·广西河池)如图,平行线a,b被直线c所截,若①1=142°,则①2的度数是()A.142°B.132°C.58°D.38°【答案】A【解析】【分析】根据两直线平行,同位角相等即可求解.【详解】∥,解:①a b①21142∠=∠=︒,故选A.【点睛】本题考查了平行线的性质,掌握两直线平行同位角相等是解题的关键.10.(2022·北京)如图,利用工具测量角,则1∠的大小为()A .30°B .60°C .120°D .150°【答案】A【解析】【分析】 利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.11.(2022·甘肃兰州)如图,直线a b ∥,直线c 与直线a ,b 分别相交于点A ,B ,AC b ⊥,垂足为C .若152∠=︒,则2∠=( )A .52°B .45°C .38°D .26°【答案】C【解析】【分析】 根据平行线的性质可得①ABC =52°,根据垂直定义可得①ACB =90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【详解】解:①a ∥b ,①①1=①ABC =52°,①AC ①b ,①①ACB =90°,①①2=90°-①ABC =38°,故选:C .【点睛】本题考查了平行线的性质,垂线,熟练掌握平行线的性质是解题的关键.12.(2022·辽宁营口)如图,直线,DE FG Rt ABC 的顶点B ,C 分别在,DE FG 上,若25BCF ∠=︒,则ABE ∠的大小为( )A .55︒B .25︒C .65︒D .75︒【答案】C【解析】【分析】 先根据平行线的性质得到①EBC =①BCF =25°,再利用互余得到①ABE =65°.【详解】解:①DE FG ∥,25BCF ∠=︒,①①EBC =①BCF =25°①①ABC =90°,①①ABE =①ABC -①EBC =90°-25°=65°.故选:C .【点睛】本题考查了平行线的性质、余角和补角,掌握“两直线平行,内错角相等”是解题关键.13.(2022·内蒙古通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当35ABM∠=︒时,DCN∠的度数为()A.55︒B.70︒C.60︒D.35︒【答案】A【解析】【分析】根据题意得:①ABM=①OBC,①BCO=①DCN,然后平行线的性质可得①BCD =70°,即可求解.【详解】解:根据题意得:①ABM=①OBC,①BCO=①DCN,①①ABM=35°,①①OBC=35°,①①ABC=180°-①ABM-①OBC=180°-35°-35°=110°,①CD①AB,①①ABC+①BCD=180°,①①BCD=180°-①ABC=70°,①①BCO+①BCD+①DCN=180°,①BCO=①DCN,①1(180)552DCN BCD︒︒-∠=∠=.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.14.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒【答案】C【解析】【分析】 由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得①1=①2,可求出①5,由l //m 可得①6=①5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得①1=①2,①14010'∠=︒①24010'∠=︒①518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒①l //m①659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键. 15.(2022·山西)如图,Rt ABC △是一块直角三角板,其中90,30C BAC ∠=︒∠=︒.直尺的一边DE 经过顶点A ,若DE CB ∥,则DAB ∠的度数为( )A .100°B .120°C .135°D .150°【答案】B【解析】【分析】先根据平行线的性质可得90DAC C ∠=∠=︒,再根据角的和差即可得.【详解】解:,90C DE CB ∠=︒,90DAC C ∴∠=∠=︒,30BAC ∠=︒,120DAB D C AC BA ∠=∠+=∴∠︒,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.16.(2021·贵州黔西)将一副三角板按如图所示的位置摆放在直尺上,则①1的度数为()A .95°B .100°C .105°D .110°【答案】C【解析】【分析】根据平角的定义和平行线的性质即可得到答案.【详解】如图:①①2=180°﹣30°﹣45°=105°,①AB①CD,①①1=①2=105°,故选:C.【点睛】本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.17.(2021·四川德阳)如图,直线AB①CD,①M=90°,①CEF=120°,则①MPB=()A.30°B.60°C.120°D.150°【答案】D【解析】【分析】根据平行线的性质和三角形外角性质解答即可.【详解】解:①AB①CD,①①EFP=①CEF=120°,①①MPF=①EFP-①M=120°-90°=30°,①①MPB=180°-①MPF=180°-30°=150°,故选:D.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.本号资料皆来源于微信:数学第*六感18.(2021·山东潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】作CD①平面镜,垂足为G,根据EF①平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD①平面镜,垂足为G,①EF①平面镜,①CD//EF,①①CDH=①EFH=α,根据题意可知:AG①DF,①①AGC=①CDH=α,①①AGC=α,①①AGC12=∠AGB12=⨯60°=30°,①α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG平分①AG B.19.(2020·四川广元)如图,//a b,M,N分别在a,b上,P为两平行线间一点,那么123∠+∠+∠=()A.180︒B.270︒C.360︒D.540︒【答案】C【解析】【分析】首先过点P作P A①a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【详解】解:过点P作P A①a,则a①b①P A,①①1+①MP A=180°,①3+①NP A=180°,①①1+①MPN+①3=360°.故选:C.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.(2020·黑龙江齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC①DE,如图①所示,则旋转角①BAD的度数为()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】由平行线的性质可得①CF A=①D=90°,由外角的性质可求①BAD的度数.【详解】解:如图,设AD与BC交于点F,①BC①DE,①①CF A=①D=90°,①①CF A=①B+①BAD=60°+①BAD,①①BAD=30°故选:B .【点睛】本题考查了平行线的性质以及外角的性质,熟知以上知识点是解题的关键.21.(2020·湖北孝感)如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A .40︒B .50︒C .60︒D .140︒【答案】B【解析】【分析】 已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数.【详解】①OE CD ⊥①90COE ∠=︒①40BOE ∠=︒①180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.22.(2020·四川攀枝花)如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则B ∠=( ).A.20︒B.30︒C.40︒D.50︒【答案】C【解析】【分析】延长BG,交CD于H,根据对顶角相等得到①1=①2,再依据平行线的性质得到①B=①BHD,最后结合垂线的定义和三角形内角和得到结果.【详解】解:延长BG,交CD于H,①①1=50°,①①2=50°,①AB①CD,①①B=①BHD,①BG①EF,①①FGH=90°,①①B=①BHD=180°-①2-①FGH=180°-50°-90°=40°.故选C.【点睛】本题考查了对顶角相等,垂线的定义,平行线的性质,三角形内角和,解题的关键是延长BG构造内错角.23.(2022·江苏盐城)小明将一块直角三角板摆放在直尺上,如图所示,则ABC ∠与DEF ∠的关系是( )A .互余B .互补C .同位角D .同旁内角【答案】A【解析】【分析】利用平行线的性质可得出答案.【详解】解:如图,过点G 作GH 平行于BC ,则GH DE ∥,ABC AGH ∴∠=∠,DEF FGH ∠=∠,90AGH FGH ∠+∠=︒,90ABC DEF ∴∠+∠=︒,故选A .【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.24.(2022·湖北荆州)如图,直线12l l ∥,AB =AC ,①BAC =40°,则①1+①2的度数是()A .60°B .70°C .80°D .90°【答案】B【解析】【分析】由AB =AC ,①BAC =40°得①ABC =70°,在由12l l ∥得12180ABC BAC ∠+∠+∠+∠=︒即可求解;【详解】解:①AB =AC ,①BAC =40°,①①ABC =12(180°-①BAC )=12(180°-40°)=70°, ①12l l ∥①12180ABC BAC ∠+∠+∠+∠=︒①12180180704070ABC BAC ∠+∠=︒-∠-∠=︒-︒-︒=︒故选:B .【点睛】本题主要考查平行线的性质、等腰三角形的性质,掌握相关性质并灵活应用是解题的关键.25.(2021·湖南娄底)如图,//AB CD ,点,E F 在AC 边上,已知70,130CED BFC ∠=︒∠=︒,则B D ∠+∠的度数为( )A .40︒B .50︒C .60︒D .70︒【答案】C【解析】【分析】取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,利用两直线平行的性质,找到角之间的关系,通过等量代换即可求解.【详解】解:取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,如下图:根据题意:70,130CED BFC ∠=︒∠=︒,50EFG ∴∠=︒,180507060EGF ∴∠=︒-︒-︒=︒,////MN CD AB ,,B BGN D DGN ∴∠=∠∠=∠,B D BGN DGN BGD ∴∠+∠=∠+∠=∠,,ED BF 相交于点G ,60EGF BGD ∴∠=∠=︒,60B D ∴∠+∠=︒,故选:C .【点睛】本题考查了两直线平行的性质和两直线相交对顶角相等,解题的关键是:添加辅助线,利用两直线平行的性质和对顶角相等,同过等量代换即可得解.26.(2021·安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【解析】【分析】 根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,①//BC EF ,①45FDB F ∠=∠=︒,①180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 27.(2020·内蒙古呼伦贝尔)如图,直线//,AB CD AE CE ⊥于点E ,若120EAB ︒∠=,则ECD ∠的度数是( )A .120°B .100°C .150°D .160°【答案】C【解析】延长AE,与DC的延长线交于点F,根据平行线的性质,求出①AFC的度数,再利用外角的性质求出①ECF,从而求出①EC D.【详解】解:延长AE,与DC的延长线交于点F,①AB①CD,①①A+①F=180°,①120∠=︒,EAB①①F=60°,①AE①CE,①①AEC=90°,而①AEC=①F+①ECF,①①ECF=①AEC-①F =30°,①①ECD=180°-30°=150°,故选:C.【点睛】本题考查平行线的性质和三角形外角的性质,正确作出辅助线和掌握平行线的性质是解题的关键.28.(2020·四川绵阳)在螳螂的示意图中,AB①DE,△ABC是等腰三角形,①ABC=124°,①CDE=72°,则①ACD=()A.16°B.28°C.44°D.45°【解析】【分析】延长ED ,交AC 于F ,根据等腰三角形的性质得出28A ACB ,根据平行线的性质得出28CFD A ,本号资料皆来源于*#微信公*众号:数学 【详解】解:延长ED ,交AC 于F ,ABC ∆是等腰三角形,124ABC ∠=︒,28A ACB ,//AB DE ,28CFD A ,72CDECFD ACD , 722844ACD ,故选:C .【点睛】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键. 29.(2020·湖北省直辖县级单位)将一副三角尺如图摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是( )A .15°B .20°C .25°D .30°【答案】A【解析】根据三角板的特点可知①ACB=45°、①DEF=30°,根据//EF BC可知①CEF=①ACB=45°,最后运用角的和差即可解答.【详解】解:由三角板的特点可知①ACB=45°、①DEF=30°①//EF BC①①CEF=①ACB=45°,①①CED=①CEF-①DEF=45°-30°=15°.故答案为A.【点睛】本题考查了三角板的特点、平行线的性质以及角的和差,其中掌握平行线的性质是解答本题的关键.30.(2020·辽宁鞍山)如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、B C.若①ABC=54°,则①1的大小为()A.36°.B.54°.C.72°.D.73°.【答案】C【解析】【详解】①l1①l2,①ABC=54°,①①2=①ABC=54°,①以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,①AC=AB,①①ACB=①ABC=54°,①①1+①ACB+①2=180°,故选C.二、填空题31.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.本号资料皆来源于微信:数@学【答案】4【解析】【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.32.(2022·广西玉林)已知①α=60°,则①α的余角等于____度.【答案】30【解析】【详解】①互余两角的和等于90°,①α的余角为:90°-60°=30°.故答案为:3033.(2020·黑龙江大庆)将两个三角尺的直角顶点重合为如图所示的位置,若108AOD∠=︒,则COB∠= _________.【答案】72.︒【解析】由①AOB =①COD =90°,①AOC =①BOD ,进而①AOC =①BOD =108°-90°=18°,由此能求出①BO C .【详解】 解: ①AOB =①COD =90°,∴ ①AOC =①BOD , 又①AOD =108°,∴ ①AOC =①BOD =108°-90°=18°,∴ ①BOC =90°-18°=72°.故答案为:72︒.【点睛】本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.34.(2020·四川雅安)如图,//a b c ,与a b ,都相交,150∠=︒,则2∠=_________.【答案】130°【解析】【分析】根据平行线的性质可得①1=①3,再用补角的定义得出①2.【详解】解:①a ①b ,①①1=①3=50°,①①2=180°-50°=130°,故答案为130°.【点睛】本题考查了平行线的性质和补角的定义,解题的关键掌握两直线平行,同位角相等.35.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么①BAC 的大小为______【答案】135°##135度【解析】【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.36.(2021·黑龙江大庆)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【解析】【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -. 【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯ 20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -. 37.(2021·湖南益阳)如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则AOD ∠=_______度. 本号资料皆来源于微#信:数@学@【答案】60【解析】【分析】先根据角平分线的定义、平角的定义可得60COB ∠=︒,再根据对顶角相等即可得.【详解】解:设2AOC x ∠=,OE 是AOC ∠的平分线,12AOE EOC AOC x ∴∠=∠=∠=, OC 平分EOB ∠,COB EOC x ∴∠=∠=,又180AOE EOC COB ∠+∠+∠=︒,180x x x ∴++=︒,解得60x =︒,即60COB ∠=︒,由对顶角相等得:60AOD COB ∠=∠=︒,故答案为:60.【点睛】本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键. 38.(2022·山东济宁)如图,直线l 1,l 2,l 3被直线l 4所截,若l 1∥l 2,l 2∥l 3,①1=126o 32',则①2的度数是___________.【答案】5328'︒【解析】【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠=∠,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠=∠,24∴∠=∠,①1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键. 39.(2022·湖北宜昌)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【答案】85︒##85度【解析】【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.【详解】 解:C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C岛在B岛的北偏西35︒方向,∴∠=︒,35CBE∥交AB于F,如图所示:过C作CF DA∴∥∥,DA CF EB∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBE50,35∴∠=∠+∠=︒,85ACB FCA FCB故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.40.(2022·四川乐山)如图6,已知直线a①b,①BAC=90°,①1=50°,则①2=______.【答案】40°##40度【解析】【分析】根据平行线的性质可以得到①3的度数,进一步计算即可求得①2的度数.【详解】解:①a①b,①①1=①3=50°,①①BAC =90°,①①2+①3=90°,①①2=90°-①3=40°,故答案为:40°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.41.(2022·江苏扬州)将一副直角三角板如图放置,已知60E ∠=︒,45C ∠=︒,EF BC ∥,则BND ∠=________°.【答案】105【解析】【分析】根据平行线的性质可得45FAN B ∠=∠=︒,根据三角形内角和定理以及对顶角相等即可求解.【详解】45B C ∠︒∠==,EF BC ∥,∴45FAN B ∠=∠=︒,①①E =60°,①①F =30°,180105BND ANF F BAF ∴∠=∠=︒-∠-∠=︒故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.42.(2021·四川绵阳)如图,直线//a b ,若128∠=︒,则2∠=____.【答案】152︒【解析】【分析】利用平行线的性质可得3128∠=∠=︒,再利用邻补角即可求2∠的度数.【详解】解:如图,//a b ,128∠=︒,3128∴∠=∠=︒,21803152∴∠=︒-∠=︒.故答案为:152︒.【点睛】本题主要考查平行线的性质,解答的关键是结合图形分析清楚角与角之间的关系.43.(2021·辽宁阜新)如图,直线//AB CD ,一块含有30°角的直角三角尺顶点E 位于直线CD 上,EG 平分CEF ∠,则1∠的度数为_________°.【答案】60【解析】【分析】根据角平分线的定义可求出CEG ∠的度数,即可得到CEF ∠的度数,再利用平行线的性质即可解决问题.【详解】一块含有30°角的直角三角尺顶点E 位于直线CD 上,30FEG ∴∠=︒, EG 平分CEF ∠,30CEG FEG ∴∠=∠=︒,60CEF CEG FEG ∴∠=∠+∠=︒,//AB CD ,160CEF ∴∠=∠=︒.故答案为:60.【点睛】本题考查了角平分线定义和平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 44.(2021·江苏泰州)如图,木棒AB 、CD 与EF 分别在G 、H 处用可旋转的螺丝铆住,①EGB =100°,①EHD =80°,将木棒AB 绕点G 逆时针旋转到与木棒CD 平行的位置,则至少要旋转 ___°.【答案】20【解析】【分析】根据同位角相等两直线平行,得出当①EHD =①EGN =80°,MN //CD ,再得出旋转角①BGN 的度数即可得出答案.【详解】解:过点G 作MN ,使①EHD =①EGN =80°,①MN //CD ,①①EGB =100°,①①BGN=①EGB -①EGN =100°-80°=20°,①至少要旋转20°.【点睛】本题考查了平行线的判定,以及图形的旋转,熟练掌握相关的知识是解题的关键.45.(2021·湖北恩施)如图,已知//AE BC ,100BAC ∠=︒,50DAE ∠=︒,则C ∠=__________.【答案】30°【解析】【分析】由题意易得50B DAE ∠=∠=︒,然后根据三角形内角和可进行求解.【详解】解:①//AE BC ,50DAE ∠=︒,①50B DAE ∠=∠=︒,①100BAC ∠=︒,①18030C B BAC ∠=︒-∠-∠=︒;故答案为30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键. 46.(2020·广西贵港)如图,点O ,C 在直线n 上,OB 平分AOC ∠,若//m n ,156∠=︒,则2∠=_______________.【答案】62°【解析】【分析】根据//m n 和OB 平分AOC ∠,计算出BOC ∠的度数,便可求解.【详解】解:如图:∵//m n∴156AON ∠=∠=, 2BOC ∠=∠180124AOC AON ∴∠=-∠=∵OB 平分AOC ∠1622BOC AOC ∴∠=∠= 62BOC ∴∠=故答案为62°【点睛】本题考查平行线性质,以及角平分线性质,属于基础题.47.(2020·辽宁盘锦)如图,直线//a b ,ABC 的顶点A 和C 分别落在直线a 和b 上,若160∠=︒,40ACB ∠=︒,则2∠的度数是__________.【答案】20°【解析】【分析】根据两直线平行内错角相等可得到12ACB ∠=∠+∠,从而计算出2∠的度数.【详解】解:①直线//a b ,①12ACB ∠=∠+∠,又①160∠=︒,40ACB ∠=︒,①220∠=︒,故答案为:20°.【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.48.(2021·青海)如图,AB ①CD ,FE ①DB ,垂足为E ,①1=50°,则①2的度数是_____.【答案】40°【解析】【分析】由EF ①BD ,①1=50°,结合三角形内角和为180°,即可求出①D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在①DEF 中,①1=50°,①DEF =90°,①①D =180°-①DEF -①1=40°.①AB ①CD ,①①2=①D =40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出①D =40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.49.(2020·湖北恩施)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=______.【答案】40︒【解析】【分析】利用等腰三角形的性质得到①C =①4=30︒,利用平行线的性质得到①1=①3=80︒,再根据三角形内角和定理即可求解.【详解】如图,延长CB 交2l 于点D ,①AB =BC ,①C =30︒,①①C =①4=30︒,①12//l l ,①1=80︒,①①1=①3=80︒,①①C +①3+①2+①4 =180︒,即3080230180︒+︒+∠+︒=︒,①240∠=︒,故答案为:40︒.【点睛】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.50.(2020·湖南张家界)如图,AOB ∠的一边OA 为平面镜,38AOB ︒∠=,一束光线(与水平线OB 平行)从点C 射入经平面镜反射后,反射光线落在OB 上的点E 处,则DEB ∠的度数是_______度.【答案】76°【解析】【分析】根据平行线的性质可得①ADC 的度数,由光线的反射定理可得①ODE 的度数,在根据三角形外角性质即可求解.【详解】解:①DC ①OB ,①①ADC =①AOB =38°,由光线的反射定理易得,①ODE =①ACD =38°,①DEB =①ODE +①AOB =38°+38°=76°,故答案为:76°.【点睛】本题考查平行线的性质、三角形外角性质和光线的反射定理,掌握入射角=反射角是解题的关键. 本号资料皆来源#于@微信:数学三、解答题51.(2021·湖北武汉)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【解析】【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:①//AB CD ,①DCF B ∠=∠.①B D ∠=∠,①DCF D ∠=∠.①//AD BC .①DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.52.(2020·湖北宜昌)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射,如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20,45HFB FED ∠=︒∠=︒,求GFH ∠的度数.【答案】25°【解析】【分析】使用平行线的性质得到45GFB FED ∠=∠=︒,再根据GFH GFB HFB ∠=∠-∠得到结果.【详解】解:①//AB CD①45GFB FED ∠=∠=︒①20HFB ∠=︒①GFH GFB HFB ∠=∠-∠452025=︒-︒=︒【点睛】本题考查了平行线的性质,及角度间的加减计算,熟知平行线的性质是解题的关键.53.(2020·四川内江)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,//AB CD ,AE DF =,A D ∠=∠.(1)求证:AB CD =;(2)若AB CF =,40B ∠=︒,求D ∠的度数.【答案】(1)见解析;(2)70°【解析】【分析】(1)根据角角边求证ABE DCF △≌△即可;(2)根据已知可得CD CF =,根据等边对等角可得结果.【详解】解:(1)证明:①//AB CD ,①B C ∠=∠,在ABE △和DCF 中,B C A D AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,①()ABE DCF AAS △≌△,①AB CD =;(2)①AB CD =,AB CF =,①CD CF =,①D CFD ∠=∠,①ABE DCF △≌△,①40C B ∠=∠=︒, ①18040702D ︒-︒∠==︒. 【点睛】本题考查了平行线的性质,全等三角形的判定与性质以及等腰三角形的判定与性质,熟知全等三角形的判定与性质定理是解题的关键.54.(2020·江苏镇江)如图,AC 是四边形ABCD 的对角线,①1=①B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:①D =①2;(2)若EF ①AC ,①D =78°,求①BAC 的度数.【答案】(1)证明见解析;(2)78°.【解析】【分析】(1)由“SAS ”可证①BEF ①①CDA ,可得①D =①2;(2)由(1)可得①D =①2=78°,由平行线的性质可得①2=①BAC =78°. 本号资料皆来源于@@微信公#众号:数学【详解】证明:(1)在①BEF 和①CD A 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,①①BEF ①①CDA (SAS ),①①D =①2;(2)①①D =①2,①D =78°,①①D =①2=78°,①EF ①AC ,①①2=①BAC =78°.【点睛】本题考查了全等三角形的判定与性质,平行线的性质.证明①BEF ①①CDA 是解题的关键55.(2020·湖北武汉)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM ①FN .求证:AB ①CD .【答案】证明见解析.【解析】【分析】 先根据角平分线的定义可得11,22MEF BEF N CF FE E ∠=∠∠∠=,再根据平行线的性质可得MEF NFE ∠=∠,从而可得BEF CFE ∠=∠,然后根据平行线的判定即可得证.【详解】 EM 平分BEF ∠,FN 平分CFE ∠11,22MEF BEF NF CFE E ∠=∠∠∠=∴EM //FNMEF NFE ∠=∠∴1122BEF CFE ∴∠=∠,即BEF CFE ∠=∠ //AB CD ∴.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键. 56.(2021·西藏)如图,AB ①DE ,B ,C ,D 三点在同一条直线上,①A =90°,EC ①BD ,且AB =C D .求证:AC =CE .【答案】证明见解析.【解析】【分析】由平行线的性质得出①B =①D ,再由垂直的定义得到①DCE =90°=①A ,即可根据ASA 证明①ABC ①①CDE ,最后根据全等三角形的性质即可得解.【详解】证明:①AB ①DE ,①①B =①D ,①EC ①BD ,①A =90°,①①DCE =90°=①A ,在①ABC 和①CDE 中,B D AB CD A DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,①①ABC ①①CDE (ASA ),①AC =CE .【点睛】此题考查了平行线的性质,全等三角形的判定与性质,根据证明①ABC ①①CDE 是解题的关键. 57.(2021·浙江温州)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【解析】【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出①ADE ,再利用平行线的性质求出① ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.58.(2022·四川宜宾)已知:如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,B E ∠=∠,BC EF =. 求证:AD CF =.【答案】见解析【解析】【分析】根据AB DE ∥,可得A EDF ∠=∠,根据AAS 证明ABC DEF △≌△,进而可得AC DF =,根据线段的和差关系即可求解.【详解】证明:①AB DE ∥,①A EDF ∠=∠,在ABC 与DEF 中,A EDFB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,①()AAS ABC DEF ≌△△, ①AC DF =,①AC DC DF DC -=-,①AD CF =.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键. 本号资料皆来源@于微信:数学59.(2022·湖北武汉)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒. 本号@@资料皆来源于微信:数学。
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题(含解析)
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题一、单选题1.(2022·山东临沂·统考二模)如图,直线AB CD 、相交于点O ,射线OM 平分BOD ∠,若160AOM ∠=︒,则AOC ∠等于 ( )A .20°B .40°C .45°D .50°2.(2022·山东东营·校考一模)下列说法中正确的是( )A .不相交的两条直线叫平行线B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .平面内两条直线的位置关系有相交、平行和垂直D .同一平面内,过直线外一点有且只有一条直线与已知直线垂直3.(2022·山东济南·统考一模)下列各图中,已知∠1=∠2,不能证明AB ∠CD 的是( )A .B .C .D .4.(2022·山东·统考一模)下列关于过直线l 外一点P 作直线l 的平行线的尺规作图错误的是() A . B .C .D .5.(2022·山东淄博·统考二模)下列图形中,由12∠=∠能得到AB CD ∥的是( )A .B .C .D .6.(2022·山东潍坊·中考真题)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒7.(2022·山东滨州·统考中考真题)如图,在弯形管道ABCD 中,若AB CD ∥,拐角122ABC ∠=︒,则BCD ∠的大小为( )A .58︒B .68︒C .78︒D .122︒8.(2022·山东日照·统考一模)如图,在∠ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∠AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°9.(2022·山东淄博·统考一模)如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒10.(2022·山东济南·统考中考真题)如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为( )A .45°B .50°C .57.5°D .65°11.(2022·山东东营·统考中考真题)如图,直线a b ∥,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=( )A .40︒B .50︒C .60︒D .65︒12.(2022·山东东营·统考三模)如图,直线//a b ,将一个含30︒角的三角尺按如图所示的位置放置,若∠的度数为()124=,则2∠︒A.120︒B.136︒C.144︒D.156︒13.(2022·山东枣庄·统考模拟预测)如图,将直尺与含30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°14.(2022·山东济南·统考一模)如图所示,已知//C∠=︒,43AC ED,20∠的度数是()CBE∠=︒,BEDA.63︒B.83︒C.73︒D.53︒15.(2022·山东烟台·统考一模)在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行16.(2022·山东东营·统考一模)数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:∠将含30︒角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30︒角的三角尺的最短边紧贴;∠将含30︒角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则a∠b,小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等17.(2022·山东济宁·统考中考真题)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是___________.18.(2022·山东枣庄·统考中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线变成FH,点G在射线EF上,45,20∠=︒∠=,FED HFB ∠=__°.则GFH19.(2022·山东烟台·统考一模)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.20.(2022·山东德州·德州市同济中学校考模拟预测)如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.21.(2022·山东枣庄·统考模拟预测)如图,将周长为10的∠ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为________.22.(2022·山东东营·校考一模)如图,直线AB∠CD,∠C=44°,∠E为直角,求∠1的度数.参考答案:1.B【分析】根据邻补角的定义求出∠BOM ,再根据角平分线的定义求出∠BOD ,然后根据对顶角相等求解即可. 【详解】160AOM ∠=︒,18020BOM AOM ∴∠=︒-∠=︒,OM 平分BOD ∠,240BOD BOM ∴∠=∠=︒40AOC BOD ∴∠=∠=︒故选B【点睛】本题考查了本题考查了邻补角的定义,对顶角相等,角平分线的定义,掌握以上知识是解题的关键.2.D【分析】根据平行线的判定、点到直线的距离、平面内两直线的位置关系等求解判断即可.【详解】解:A :在同一平面内,不相交的两条直线叫平行线,故A 说法不符合题意;B :从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故B 说法不符合题意;C :平面内两条直线的位置关系有相交和平行,故C 说法不符合题意;D :同一平面内,过直线外一点有且只有一条直线与已知直线垂直,故D 说法符合题意;故选:D .【点睛】此题考查了平行线的判定,熟记平行线的判定定理、点到直线的距离的概念、平面内两直线的位置关系等是解题的关键.3.B【分析】根据平行线的判定定理即可判断求解.【详解】:A 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;B 、由∠1=∠2,不能判断AB ∠CD ,该选项符合题意;C 、∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠AB ∠CD ,该选项不符合题意;D 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;故选:B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.C【分析】根据选项图像逐个分析,判断能否平行即可.【详解】A .本选项作了角平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意;B .本选项作了一个角等于已知角,根据同位角相等两直线平行,从而可证两直线平行,故本选项不符合题意;C .本选项只截取了两条线段相等,无法保证两直线平行的位置关系,故本选项符合题意;D .本选项作了一个角与已知角相等,根据内错角相等两直线平行,从而可证两直线平行,故本选项不符合题意;故选:C .【点睛】本题考查了尺规作图和平行线的判定定理,熟练掌握尺规作图的操作是解题的关键.5.B【分析】根据平行线的判定定理逐项分析即可.【详解】A.∠1=∠2,不能判断//AB CD ,故A 不符合题意;B.∠∠1=∠2,∠AB CD ∥(内错角相等,两直线平行),故B 符合题意;C.12∠=∠,//AC BD ∴,故C 不符合题意;D.∠1=∠2,不能判断//AB CD ,故D 不符合题意.故选:B .【点睛】本题主要考查了平行线的判定,熟练掌握内错角相等,两直线平行,是解题的关键.6.C【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒∠l //m∠659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.A【分析】根据两直线平行,同旁内角互补得到180∠+∠=︒,进而计算即可.ABC BCD∥,【详解】AB CD∴∠+∠=︒,180ABC BCDABC∠=︒,122∴∠=︒-∠=︒-︒=︒,BCD ABC180********故选:A.【点睛】本题考查了平行线的性质,即两直线平行,同旁内角互补,熟练掌握知识点是解题的关键.8.B【分析】由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.【详解】解:∠∠A+∠C=100°∠∠ABC=80°,∠BD平分∠BAC,∠∠ABD=40°,∠DE∠AB,∠∠BDE=∠ABD=40°,故答案为B.【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.9.A【分析】过点P作PE∠a.则可得出PE∠a∠b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∠a,如图所示.∠PE∠a,a∠b,∠PE∠a∠b,∠∠AMP=∠MPE,∠BNP=∠NPE,∠∠2=∠MPE+∠NPE=∠AMP+∠BNP.∠∠1+∠AMP=180°,∠3+∠BNP=180°,∠∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.10.B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∠//∠∠AEC=∠1(两直线平行,内错角相等),∠EC平分∠AED,∠∠A EC=∠CED=∠1,∠∠1=65°,∠∠CED =∠1=65°,∠∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.11.B【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∠∠1=40°,∠∠3=180°-∠1-∠ABC=50°,∥,∠a b∠∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.12.C【分析】根据平行线的性质求解,找出图中1424∠=∠=︒,进而求出∠3,再根据平行线性质求出∠2即可.c a,【详解】解:如图,作//三角尺是含30︒角的三角尺,3460∴∠+∠=︒,a c,//∴∠=∠=︒,14243602436∴∠=︒-︒=︒,a b,//a c,//b c∴,//∴∠=︒-︒=︒,218036144故选:C.【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.13.D【分析】根据平行线的性质即可解答.【详解】如图,由已知得∠3=60°,∥,因为AB CD所以∠2+∠1+∠3=180°,∠2=180°-(40°+60°)=80°;故选D.【点睛】本题考查了平行线的性质,解题关键是熟练运用平行线的性质进行推理解题.14.A【分析】过点B 作BM ∠AC ,求出∠EBM 即可.【详解】过点B 作BM ∠AC ,∠//AC ED ,∠////AC ED BM ,∠20CBM C ∠=∠=︒,EBM E ∠=∠,∠43CBE ∠=︒,∠63EBM CBE CBM ∠=∠+∠=︒,∠63E EBM ∠=∠=︒.故选:A .【点睛】本题考查了平行线的判定与性质,解题关键是熟练添加辅助线,利用平行线的性质求角.15.B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.16.A【分析】先利用平移的性质得到∠1=∠2=60°,然后根据同位角线段两直线平行可判断a ∠b .【详解】利用平移的性质得到∠1=∠2=60°,所以a ∠b .故选:A .【点睛】此题考查作图-平移变换,平行线的判定,解题关键在于确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.17.5328'︒【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠∠=,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠∠=,24∴∠=∠,∠1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键.18.25【分析】根据平行线的性质知45GFB FED ∠=∠=︒,结合图形求得GFH ∠的度数.【详解】解:∠//AB CD ,∠45GFB FED ∠=∠=︒.∠20HFB ∠=︒,∠452025GFH GFB HFB ∠=∠-∠=︒-︒=︒.故答案为:25.【点睛】本题考查了平行线的性质,属于基础题,熟练掌握平行线的性质是解决本类题的关键. 19.7或17.【分析】分两种情况讨论,EF 在AB ,CD 之间或EF 在AB ,CD 同侧,进而得出结论.【详解】解:分两种情况:∠当EF 在AB ,CD 之间时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12﹣5=7(cm ).∠当EF 在AB ,CD 同侧时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12+5=17(cm ).综上所述,EF 与AB 的距离为7cm 或17cm .故答案为:7或17.【点睛】此题主要考查线段之间的距离,解题的关键是根据题意分情况作图进行求解.20.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.21.14【分析】利用平移的性质求解即可.【详解】∠△ABC沿BC方向平移2个单位得到△DEF,∠AD=CF=2,∠四边形ABFD的周长=AB+BC+DF+CF+AD=△ABC的周长+AD+CF=10+2+2=14.故答案为:14.【点睛】本题考查了平移的性质,抓住平移后对应线段相等是解题的关键.22.134°.【分析】过E作EF∠AB,可得AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【详解】过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,(平行于同一直线的两直线平行)∠∠C=∠FEC,∠BAE=∠FEA,(两直线平行,内错角相等)∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°.【点睛】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.。
2023年中考数学一轮复习课件:线段、角、相交线与平行线(含命题)
个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题
随堂练习
1. 如图,A,B两点之间的距离为8,①,②,③,④分别代表从点A到
点B的不同路线,点C是线段AB的中点,点D在AB上,且AD=3.(1)从点
A到点B的4条不同路线中,最短的是________;②(2)BD=______,CD=
______. 5
1
第1题图
2.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12 cm,
则线段BD的长为( C )A. 10 cm
B. 8 cmC. 10 cm或8 cm
D. 2 cm或4 cm
3. 如图,O是直线AB上一点,OD平分∠AOC,点E是OD上一点,过点
E作EF⊥AB于点F.(1)若∠AOD=28°30′,则∠AOD的余角为________,
平行
【知识拓展】平行线求角度的辅助线作法:情形一: ∠ABE+∠DCE=∠BEC
情形二: ∠ABE+∠DCE+∠BEC=360°
情形三: ∠ABE-∠DCE=∠BEC
考点5 命题
命题 判断一件事情的语句,叫做命题,命题有题设和结论两部分 真命题 如果题设成立,那么结论一定成立,这样的命题叫做真命题 假命题 如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题
同位角 ∠1与___∠__5___,∠2与∠6,∠4与_∠__8___,∠3与___∠__7___ 内错角 ∠2与__∠__8____,∠3与∠5 同旁内角 ∠2与∠5,∠3与__∠__8____
2. 垂线及性质 垂线段
过直线外一点,作已知直线的垂线, 该点与垂足之间的线段
中考数学一轮复习 基础考点及题型 专题16 相交线与平行线(含解析)-人教版初中九年级全册数学试题
专题16 相交线与平行线考点总结【思维导图】【知识要点】知识点一相交线直线的位置关系:在同一平面内,不重合的两条直线之间的位置关系只有两种:相交或平行。
垂线的概念:当两条相交直线所成的四个角中,有一个角是直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,交点叫做垂足。
表示方法:如图,a ⊥ b,垂足为O.记作:a ⊥ b于点O.【注意事项】1.线段与线段,线段与射线,线段与直线,射线与射线,射线与直线垂直,是特指它们所在的直线互相垂直。
2.两条直线互相垂直,则它们之间所形成的四个角为直角;若两条直线的夹角为直角,则这两条直线互相垂直。
垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂线的画法:一落、二移、三画。
注意:经过一点画射线或线段的垂线,是指它们所在直线的垂线,垂足的位置不固定,可能会出现在射线的反向延长线或线段的延长线上。
垂线段最短定理:连接直线外一点与直线上各点的所有线段中,垂线段最短。
注意:1、垂线是一条直线,而垂线段是一条线段。
2、经过直线外一点到这条直线的垂线段有且只有一条。
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离【典型例题】1.(2016·某某中考模拟)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角C.一定有一个直角D.一定有一个不是钝角【答案】D【解析】因为两条直线相交,分为垂直相交和斜交,故分两种情况讨论:①当两直线垂直相交时,四个角都是直角,故A、B错误;②当两直线斜交时,有两个角是锐角,两个角是钝角,所以C错误;综上所述,D正确.故选D.2.(2018·某某中考模拟)有下列几种说法:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻补角相等;④两条直线相交对顶角互补.其中,能两条直线互相垂直的是()A.①③ B.①②③ C.②③④ D.①②③④【答案】D【解析】①两条直线相交所成的四个角中有一个是直角能得到两条直线互相垂直;②两条直线相交所成的四个角相等能得到两条直线互相垂直;③两条直线相交所成的四个角中有一组相邻补角相等能得到两条直线互相垂直;④两条直线相交对顶角互补能得到两条直线互相垂直.故选D.3.(2018·某某中考模拟)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个 B.2个 C.3个 D.4个【答案】C【详解】在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.4.(2019·某某中考真题)如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是( )A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度【答案】C【详解】点C到边AB所在直线的距离是点C到直线AB的垂线段的长度,而CD是点C到直线AB的垂线段,故选C.5.(2018·某某中考模拟)下列说法正确的是( )A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直【答案】D【解析】试题解析:A. 两点之间的距离是两点间的线段的长度,故此选项错误;B. 同一平面内,过直线外一点有且只有一条直线与已知直线平行,故此选项错误;C. 与同一条直线垂直的两条直线平行,故此选项错误;D. 同一平面内,过一点有且只有一条直线与已知直线垂直,故此选项正确.故选D.考查题型一垂线性质的应用方法1.(2017·某某中考模拟)如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=().A.60°B.50°C.40°D.30°【答案】C【解析】先根据对顶角相等求出∠1的对顶角,然后根据两直线平行,同位角相等,求出直角三角形的一个内角,然后可求得∠E=90°-50°=40°.故选:C2.(2018·某某中考模拟)如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°【答案】B【解析】∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.3.(2015·某某中考模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45° C.55°D.65°【答案】C【解析】试题分析:∵∠1=145°,∴∠2=180°-145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°-∠2=90°-35°=55°;故选C.4.(2019·某某中考模拟)如图所示,直线AB,CD相交于点O,OE⊥CD,已知∠BOE=65°,则∠AOC的大小为()A.25°B.35°C.65°D.115°【答案】A【详解】∵OE ⊥CD ,∠BOE =65°,∴∠BOD =90°﹣65°=25°,∴∠AOC =∠BOD =25°.故选A .5.(2017·某某中考模拟)如图,//EF GH ,点A 在EF 上,{}|2 4 x x ≤≤分别交GH 于点B C 、,且AP AQ ⊥,035PBG ∠=,则FAC ∠的度数为( )A .045B .050C .055D .060【答案】C【解析】 试题解析:∵EF ∥GH ,∠PBG =35°,∴∠EAP =∠PBG =35°,∵AP ⊥AQ ,∴∠BAC =90°,∵∠EAP+∠BAC+∠FAC=180°,∴∠FAC =180°-∠EAP-∠BAC =180°-35°-90°=55°.故选C..考查题型二 判断两条直线是否垂直1.(2018·某某正德中学中考模拟)如图,已知DG ⊥BC ,AC ⊥BC ,EF ⊥AB ,∠1=∠2,试说明:CD ⊥AB .【答案】证明见解析.【解析】∵ DG ⊥BC ,AC ⊥BC (已知),∴∠DGB=∠ACB=90°(垂直的定义),∴ DG∥AC(同位角相等,两直线平行).∴∠2=∠ACD(两直线平行,内错角相等).∵∠1=∠2(已知),∴∠1=∠ACD(等量代换),∴ EF∥CD(同位角相等,两直线平行).∴∠AEF=∠ADC(两直线平行,同位角相等).∵ EF⊥AB(已知),∴∠AEF=90°(垂直的定义),∴∠ADC=90°(等量代换).∴ CD⊥AB(垂直的定义).考察题型三利用垂线段最短,解决实际问题1.(2018·某某中考模拟)如图,计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是()A.两点之间线段最短B.垂线段最短C.过一点只能作一条直线D.平面内,过一点有且只有一条直线与已知直线垂直【答案】B【详解】计划把河水l引到水池A中,先作AB⊥l,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是垂线段最短,故选B.考查题型四相交线交点的判断1.(2013·某某中考真题)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…那么六条直线最多有( )A.21个交点 B.18个交点 C.15个交点 D.10个交点【答案】C【解析】由题意两条直线最多有个交点,三条直线最多有个交点,四条直线最多有个交点,根据这个规律即可求得结果.由题意得六条直线最多有个交点,故选C.2.观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是( )A.10 B.20 C.36 D.45【答案】D【详解】2条直线相交,只有1个交点,3条直线相交,最多有3个交点,4条直线相交,最多有6个交点,…,n条直线相交,最多有12n n-()个交点,n=10时,1092⨯=45.故选D.3.(2017·温江区期末)三条互不重合的直线的交点个数可能是()A.0,1,3 B.0,2,3 C.0,1,2,3 D.0,1,2【答案】C【解析】分四种情况:①三条直线平行,有0个交点;②三条直线相交于同一点,有1个交点;③一条直线截两条平行线有2个交点;④三条直线两两相交有3个交点.故选C.知识点二相交线中的角邻补角与对顶角的知识点两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角;(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角;(4)两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.同位角、内错角与同旁内角的知识点同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)
2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。
精品 中考数学一轮综合复习 第07课 图形认识、相交线与平行线
中考数学一轮复习第07课 图形认识、相交线与平行线知识点:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧,两直线平行,两直线平行,两直线平行平行线判定平行公理推论:平行公理:定义:平行线:三线八角:对顶角:邻补角:两条直线的位置关系:相交线定理:补角:余角:余角与补角度换算成都、分、秒:度、分、秒换算度:单位换算:角的换算角的表示方法定义:角的认识:线段:射线:直线:方法:立方体展开图对面识别:展开图不能拼成立方体三视图:图形认识课堂同步:1.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为()A.5B.4C.3D.2第1题图第2题图第3题图2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是()A.文B.明C.奥D.运3.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A.6B.8C.12D.244.如果一个角的补角是1200,那么这个角的余角是( )A.30°B.60°C.90°D.150°5.如图所示,点A、 B、C是直线l上的三个点,图中共有线段的条数是( )A.1B.2C.3D.46.若∠α的补角是420,∠β的余角是520,则∠α和∠β的大小关系是( )A.∠α>∠βB.∠α<∠βC.∠α=∠βD.不能确定7.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A.∠1B.∠2C.∠4D.∠5第7题图第8题图第9题图8.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=55º,则∠BOD的度数是()A.35ºB.55ºC.70ºD.110º9.如图所示,已知∠AOC=∠BOD=∠780,∠BOC=350,则∠AOD等于( )A.113°B.121°C.156°D.86°10.如图所示,已知O是直线AB上一点,∠1=400,OD平分∠BOC,则∠2的度数是( )A.20°B.25°C.30°D.70011.如图,已知AB ∥CD,BE 平分∠ABC,且交CD 于D 点,∠CDE=1500,则∠C 为( )A.120°B.150°C.135°D.110°第10题图 第11题图 第12题图12.如图已知直线a ∥b,∠1=400,∠2=600,则∠3等于( )A.100°B.60°C.40°D.2013.如图,已知AB ∥CD ,则图中与∠1互补的角有( )A.2个B.3个C.4个D.5个第13题图 第14题图 第15题图14.如图,l ∥m ,∠1=1150,∠2=950,则∠3=( )A.120°B.130°C.140°D.150°15.如图l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A.48°B.42°C.38°D.21016.如图,直线l 1∥l 2,∠1=400,∠2=750,则∠3等于( )A.55°B.60°C.65°D.70°第16题图 第17题图 第18题图17.图中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角,关于这七个角的度数关系,下列正确的是( )A.742∠∠∠+=B.613∠∠∠+=C.︒∠∠∠180641=++D.︒∠∠∠360532=++18.如图,如果AB ∥CD ,则α∠、β∠、γ∠之间的关系是( )A.0180=∠+∠+∠γβαB.0180=∠+∠-∠γβαC.0180=∠-∠+∠γβαD.0270=∠+∠+∠γβα19.如图,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°第19题图 第20题图 第21题图20.如图,OP ∥QR ∥ST ,则下列各式中正确的是( )A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=900C.∠1-∠2+∠3=900D.∠2+∠3-∠1=180°21.一根直尺EF 放在三角板300的角∠BAC 上,与两边AC ,AB 交于M 、N.那么∠CME+∠BNF 是( )A.150°B.180°C.135°D.不能确定22.如图,O 为直线AB 上一点,∠COB=26°30′,则∠1= 度.23.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______24.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是25.一个画家有14个棱长为1米的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为26.已知两个角的和等于850,它们的差等于260,则这两个角分别是________27.8点30分时,钟表的时针与分针的夹角为 °.28.将一张矩形纸片折叠成如图所示的形状,则 ABC=__________度.第28题图 第29题图29.如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=350,∠P=900,则∠3=30.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为 .第30题图第31题图第32题图31.将一副直角三角板如图放置,使含300角的三角板的段直角边和含450角的三角板的一条直角边重合,则∠1的度数为___________32.如图,等边△ABC的边长为6,AD是BC边上的中线,P是AD上的动点,E是AC边上中点.,PC+PE的最小值为33.如图,在锐角AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.34.填空:(1)用度、分、秒表示54.120= .(2)32°44′24″等于度.(3)133°22′43″÷3= .35.如图,已知AC=CD=DB,AC=2AM,BN=12BM,如果MN=5cm,求AB、CN的长.36.如图所示,OB、OC是∠AOD内任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,用α、β表示∠AOD.37.如图,AD平分∠BAC.点F在BD上.FE∥AD交AB于G.交CA的延长线于E,求证:∠AGE=∠E.38.如图,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC.试说明∠1=∠2.39.如图,已知:E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,求证:∠B=∠C.40.如图,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.第07课图形认识、相交线与平行线测试题日期:月日满分:100分时间:20分钟姓名:得分:1.将一个正方体沿某些棱展开后,能够得到的平面图形是()2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山第2题图第3题图第4题图第5题图3.将棱长是1cm的小正方体组成如图所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm24.如图,是由几个相同小正方体搭成的几何体的三视图,则搭成这个几何体小正方体的个数是()A.5B.6C.7D.85.长方体的主视图、俯视图如图所示,则其左视图面积为()A.3B.4C.12D.166.下列说法正确的是( )A.直线AB与直线BA不是同一条直线B.线段AB与线段BA不是同一条线段C.射线OA与射线AO不是同一条射线D.射线OA与射线AO是同一条射线7.300角的余角是( )A.30°角B.60°角C.90°角D.150°角8.经过任意三点中的两点共可以画出的直线条数是()A.一条或三条B.三条C.两条D.一条9.一个角比它的余角小150,这个角是( )A.37.5°B.75°C.60°D.65°10.如图,直线AB 与直线CD 相交于点O,E 是AOD ∠内一点,已知OE ⊥AB,︒=∠45BOD ,则COE ∠的度数是( ) A.︒125 B.︒135 C.︒145 D.︒155第10题图 第11题图 第12题图11.将一副三角板按图中的方式叠放,则角α等于( )A.750B.600C.450D.30012.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=30o 时,∠BOD 的度数是( ).A.60oB.120oC.60o 或 90oD.60o 或120o13.如图,l ∥m ,∠1=1150,∠2=950,则∠3=( )A.120°B.130°C.140°D.150°14.如图,能与∠α构成同旁内角的角有( )A.1个B.2个C.5个D.4个15.如图,△ABC 中,∠C=900,AC=3,点P 是边BC 上的动点,则AP 长不可能...是( ) A.2.5 B.3 C.4 D.516.如图,直线DE 交∠ABC 的边BA 于点D,若DE ∥BC,∠B=700,则∠ADE 的度数是第16题图第17题图第18题图第19题图17.如图,已知∠1=∠2=∠3=620,则∠4=18.将一副三角板摆放成如图所示,图中∠1=度.19.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOD=1000,则∠AOE=_____.20.如图,AB和CD都是直线,∠AOE=900,∠3=∠FOD,∠1=27020/,求∠2、∠3的度数.21.如图,已知AB∥CD,EF分别交AB,CD于G,H,GM,HN分别平分∠AGF,∠EHD.试说明GM∥HN.。
数学中考一轮复习专题18 相交线与平行线(课件)
17 相交线与平行线
中考命题说明
考点
课标要求
考查角度
①通过丰富的实例,进一步认识点、线、
常以选择题、填空题的形式考
面、角;②会比较角的大小,会计算角度
点、线、
查点、线、面、角、余角、补
1
的和与差,会进行简单的角度换算;③了
面、角
角的概念和等角的余角相等、
解补角、余角的概念,知道等角的余角相
6. 直线的性质: (1)直线公理:经过两个点有一条直线,并且只有一条直线.它可以简单地说成:过 两点有且只有一条直线(两点确定一条直线). (2)过一点的直线有无数条. (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小. (4)直线上有无穷多个点. (5)两条不同的直线至多有一个公共点.
知识点2:直线、射线和线段
4. 线段的和差:如下图,在线段AC上取一点B,则有:AB+ BC =AC;
AB= AC -BC;BC=AC- AB .
5. 线段的中点:如下图,点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB 的中点.几何语言:AM=MB= AB.1
2
知识点梳理
知识点2:直线、射线和线段
典型例题
知识点2:直线、射线和线段
知识点1:点、线、面、角
典型例题
【例3】(3分)(2021•呼伦贝尔•兴安盟14/26)74°19′30″=
°.
【解答】解: 30 ( 1 ) 0.5 , 60
19′+0.5′=19.5′,
19.5
( 1 ) 60
0.325
,
74°+0.325°=74.325°,
故答案为:74.325.
中考数学一轮复习第五章 相交线与平行线知识归纳总结附解析
中考数学一轮复习第五章 相交线与平行线知识归纳总结附解析一、选择题1.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和2.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其中正确的有( ) A .0个 B .1个 C .2个 D .3个3.下列四个说法中,正确的是( )A .相等的角是对顶角B .平移不改变图形的形状和大小,但改变直线的方向C .两条直线被第三条直线所截,内错角相等D .两直线相交形成的四个角相等,则这两条直线互相垂直4.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°5.如图,OC 是∠AOB 的平分线,直线l ∥OB .若∠1=50°,则∠2的大小为( )A .50°B .60°C .65°D .80°6.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .7.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°8.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个9.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个10.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题11.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.12.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).13.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,BC AE ⊥,垂足为C ,过C 作CD AB .若48ECD ∠=︒,则B ∠=__________.16.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.17.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.18.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.19.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).23.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=26.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A 、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B 、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C 、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D 、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B .【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.2.A解析:A【分析】据平行线的性质可判断①③错误;根据对顶角相等,可判断②错误;据线段的性质可判断④错误;即可得出结论.【详解】解:①在同一个平面内,垂直于同一条直线的两条直线互相平行,故①错误; ②对顶角相等,相等的角不一定是对顶角,故②错误;③两条平行直线被第三条直线所截,同位角相等,故③错误;④两点之间线段最短;故④错误;故选:A.【点睛】本题考查了平行公理、平行线的性质、相等的性质、对顶角相等的性质;熟记有关性质是解决问题的关键.3.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.4.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.5.C解析:C【分析】根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.【详解】∵l∥OB,∴∠AOB+∠1=180°∴∠AOB=180°﹣∠1=130°,∵OC是∠AOB的平分线,∴∠BOC=65°,∴∠2=∠BOC=65°.故选:C.【点睛】考查了角平分线,平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,同旁内角互补的知识点.6.C解析:C【分析】根据同位角的定义可以判断对错.【详解】解:两条直线a、b被第三条直线c所截,在截线c的同旁,且在被截直线a、b同一侧的角称为同位角,根据这个定义,A选项的两角不在被截线的同侧,错误;B选项的两角不是两条直线被第三条直线所截形成的角,错误;C选项的角符合同位角的定义,正确;D选项的两角不是两条直线被第三条直线所截形成的角,错误.故选C.【点睛】本题考查同位角的意义,通过同位角的意义进行灵活判断是解题关键.7.B解析:B【解析】试题分析:根据平行线的性质,由a∥b可得∠1=∠B=50°,然后根据垂直的定义知△ABC是直角三角,然后根据直角三角形的两锐角互余,可求的∠2=40°.故选:B.8.B解析:B【解析】①若a与b相交,b与c相交,则a与c相交或平行,故本小题错误;②若a∥b,b∥c,则a∥c;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.9.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.10.A解析:A【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a∥b.∵∠2≠∠3,∴c与d不平行.故选A.二、填空题11.4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.14.9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△A BC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.15.42°【解析】先根据两直线平行,同位角相等求出∠A=∠ECD=48°,再根据直角三角形两锐角互余即可求出∠B=90°-∠A=42°.故答案为:42°.点睛:本题考查平行线的性质和直角三角形两解析:42°【解析】先根据两直线平行,同位角相等求出∠A=∠ECD=48°,再根据直角三角形两锐角互余即可求出∠B=90°-∠A=42°.故答案为:42°.点睛:本题考查平行线的性质和直角三角形两锐角互余的性质,灵活确定试题中的角之间的关系是关键.16.40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=18解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.17.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.18.45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵解析:45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵a//b∴∠2=∠3=45︒.故答案为:45︒【点睛】此题主要考查了平行线的性质以及邻补角的定义,熟练掌握“两直线平行,同位角相等”是解此题的关键.19.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.【详解】解:如图,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,∵AB∥CD,∴AB∥P1E∥P2F∥P3G.由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°∴(1)∠1+∠2=180°,(2)∠1+∠P1+∠2=2×180,(3)∠1+∠P1+∠P2+∠2=3×180°,(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,∴∠1+∠2+∠P1+…+∠P n=(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=4 2;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1, ∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1, ∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.22.(1)65°;(2)1118022αβ︒-+【分析】(1)如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考彤彤思考问题的方法即可求∠BED 的度数;(2)如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考彤彤思考问题的方法即可求出∠BED 的度数.【详解】(1)如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°, ∴∠BED =∠EBA +∠EDC =65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=12α,∠EDC=12∠ADC=12β,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣12α +12β.答:∠BED的度数为180°﹣12α +12β.【点睛】本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.23.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.24.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF ⨯︒-∠, ∴∠EPF +2∠EQF =360°.(3)如图3,,由(1),可得∠P =∠AEP +CFP ,∠Q =∠BEQ +∠DFQ , ∵∠BEQ =13∠BEP ,∠DFQ =13∠DFP , ∴∠Q =∠BEQ +∠DFQ =13(∠BEP +∠DFP ) =13[360°﹣(∠AEP +∠CFP )] =13×(360°﹣∠P ), ∴∠P +3∠Q =360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.25.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ,1EBP EBQ , 2132BPD EBP .②如图4中,连接EH .180AAEH AHE ,180C CEB CBE , 360A AEH AHE CEH CHE C ,360A AEC C AHC .(3)如图5中,设AC 交BG 于H .AHB A B F ,AHB CHG ∠=∠, 在五边形HCDEG 中,540CHG CD E G , 540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.26.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.。
2023年中考数学一轮专题练习 相交线与平行线(含解析)
2023年中考数学一轮专题练习一、单选题(本大题共13小题)1. (2022年西藏)如图,l 1∥l 2,∠1=38°,∠2=46°,则∠3的度数为( )A .46°B .90°C .96°D .134° 2. (辽宁省大连市2022年)如图,平行线AB ,CD 被直线EF 所截,FG 平分EFD ∠,若70EFD ∠=︒,则EGF ∠的度数是( )A .35︒B .55︒C .70︒D .110︒ 3. (山东省泰安市2021年)将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于( )A .80°B .100°C .110°D .120° 4. (江苏省常州市2022年)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行5. (吉林省2022年)如图,如果12∠=∠,那么AB CD ∥,其依据可以简单说成( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .同位角相等,两直线平行 6. (湖南省岳阳市2022年)如图,已知l AB ∥,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30B .40︒C .50︒D .60︒ 7. (湖南省长沙市2022年)如图,75AB CD AE CF BAE ∠=︒∥,∥,,则DCF ∠的度数为( )A .65︒B .70︒C .75︒D .105︒8. (湖南省湘潭市2022年)在ABCD 中(如图),连接AC ,已知40BAC ∠=︒,80ACB ∠=︒,则BCD ∠=( )A .80︒B .100︒C .120︒D .140︒9. (湖南省娄底市2022年)一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒10. (湖南省郴州市2022年)如图,直线a b ∥,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .34∠=∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠ 11. (四川省雅安市2022年)如图,已知直线a ∥b ,直线c 与a ,b 分别交于点A ,B ,若∠1=120°,则∠2=( )A .60°B .120°C .30°D .15° 12. (四川省自贡市2022年)如图,直线,AB CD 相交于点O ,若130∠=,则2∠的度数是( )A .30°B .40°C .60°D .150°13. (四川省泸州市2022年)如图,直线a b ∥,直线c 分别交,a b 于点,A C ,点B 在直线b 上,AB AC ⊥,若1130∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .70︒二、填空题(本大题共6小题)14. (湖南省湘西州2022年)1.如图,直线a ∥b ,点C 、A 分别在直线a 、b 上,AC ⊥BC ,若∠1=50°,则∠2的度数为 _____.15. (四川省眉山市2022年)如图,已知a b ∥,1110∠=︒,则2∠的度数为 .16. (2022年四川省乐山市)如图6,已知直线a ∥b ,∠BAC =90°,∠1=50°,则∠2= .17. (湖北省咸宁市2022年)如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3= 度.18. (广西桂林市2022年)如图,直线l 1,l 2相交于点O ,∠1=70°,则∠2= °.19. (湖北省宜昌市2022年)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是 .三、解答题(本大题共1小题)20. (湖北省武汉市2022年)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.参考答案1. 【答案】C【分析】由题意易得∠1+∠3+∠2=180°,然后问题可求解.【详解】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.2. 【答案】A【分析】先根据角平分线的性质可得∠GFD=35︒,再由平行线的性质可得∠EGF=∠GFD=35︒.【详解】解:∵∠EFD=70︒,且FG平分∠EFD∴∠GFD=1∠EFD=35︒2∵AB∥CD∴∠EGF=∠GFD=35︒故选A3. 【答案】C【分析】如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.【详解】解:如图,由题意得DE∥GF,∴∠1=∠3=50°,∴∠4=180°-∠3=130°,∴在四边形ACMN中,∠2=360°-∠A-∠C-∠4=110°.故选:C4. 【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .5. 【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为1∠与2∠是一对相等的同位角,得出结论是AB CD ,所以其依据可以简单说成同位角相等,两直线平行,故选:D .6. 【答案】C【分析】根据直角三角形的性质求出CED ∠,再根据平行线的性质解答即可.【详解】解:在Rt CDE △中,90CDE ∠=︒,40DCE ∠=︒,则904050CED ∠=︒-︒=︒,∵l AB ∥,∴150CED ∠=∠=︒,故选:C .7. 【答案】C【分析】根据平行线的性质即可求解.【详解】如图,设,AE CD 交于点G ,AB CD ∥,75BAE ∠=︒,∴75DGE BAE ∠=∠=︒AE CF ∥75DCF DGE ∴∠=∠=︒故选:C .8. 【答案】C【分析】根据平行四边形的对边平行和两直线平行内错角相等的性质,再通过等量代换即可求解.【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD∴∠DCA =∠CAB ,∵BCD ∠=∠DCA +∠ACB ,40BAC ∠=︒,80ACB ∠=︒∴BCD ∠=40º+80º=120º,故选:C .9. 【答案】C【分析】如图,由平行线的性质可得80,BCD ∠=︒ 从而可得答案.【详解】解:如图,由题意可得:,AB CD ∥ 180∠=︒,180,BCD218080100,10. 【答案】C【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A 、当34∠=∠时,c d ∥;故A 不符合题意;B 、当15180∠+∠=︒时,c d ∥;故B 不符合题意;C 、当12∠=∠时,a b ∥;故C 符合题意;D 、∵a b ∥,则12∠=∠,∵14∠=∠,则24∠∠=,∴c d ∥;故D 不符合题意;故选:C11. 【答案】A【分析】先根据对顶角相等求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵直线a ∥b ,2=180360,故选:A . 12. 【答案】A【分析】根据对顶角相等可得2=1=30∠∠︒.【详解】解:∵130∠=,1∠与2∠是对顶角,∴2=1=30∠∠︒.故选:A .13. 【答案】B【分析】根据平行线的性质可得∠CAD =∠1=130°,再根据AB ⊥AC ,可得∠BAC =90°,即可求解.解:因为a ∥b ,所以∠1=∠CAD =130°,因为AB ⊥AC ,所以∠BAC =90°,所以∠2=∠CAD -∠BAC =130°-90°=40°.故选:B .14. 【答案】40°【分析】利用平行线的性质定理和垂直的意义解答即可.【详解】如图,∵AC ⊥BC ,∴∠2+∠3=90°,∵a ∥b ,∴∠1=∠3=50°.∴∠2=90°﹣∠3=40°.故答案为:40°.【点睛】本题主要考查了平行线的性质,垂直的意义,熟练掌握平行线的性质是解题的关键.15. 【答案】110︒##110度【分析】根据题意,由平行线的性质“两直线平行,同位角相等”可知3=1∠∠,再借助3∠与2∠为对顶角即可确定2∠的度数.【详解】解:如下图,∵a b ∥,1110∠=︒,∴3=1110∠∠=︒,∵3∠与2∠为对顶角,∴2=3110∠∠=︒.故答案为:110︒.16. 【答案】40°##40度【分析】根据平行线的性质可以得到∠3的度数,进一步计算即可求得∠2的度数.【详解】解:∵a ∥b ,∴∠1=∠3=50°,∵∠BAC =90°,∴∠2+∠3=90°,∴∠2=90°-∠3=40°,故答案为:40°.17. 【答案】54【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a ∥b ,所以23∠=∠,因为12∠∠,是对顶角,所以12∠=∠,所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.18. 【答案】70【分析】根据对顶角的性质解答即可.【详解】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°,故答案为:70.19. 【答案】85︒##85度【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.【详解】 解:C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C 岛在B 岛的北偏西35︒方向,35CBE ∴∠=︒,过C 作CF DA ∥交AB 于F ,如图所示:DA CF EB ∴∥∥,50,35FCA DAC FCB CBE ∴∠=∠=︒∠=∠=︒, 85ACB FCA FCB ∴∠=∠+∠=︒,故答案为:85︒.20. 【答案】(1)100BAD ∠=︒(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,即可求解; (2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:∵AD BC ∥, ∴180B BAD ∠+∠=°, ∵80B ∠=︒, ∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠, ∴50DAE ∠=︒. ∵AD BC ∥, ∴50AEB DAE ∠=∠=︒. ∵50BCD ∠=︒, ∴BCD AEB ∠=∠. ∴AE DC ∥.。
中考数学一轮复习第五章 相交线与平行线知识归纳总结含答案
中考数学一轮复习第五章 相交线与平行线知识归纳总结含答案一、选择题1.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .3.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积4.如图,DE 经过点A ,DE ∥BC ,下列说法错误的是( )A .∠DAB =∠EACB .∠EAC =∠C C .∠EAB+∠B =180°D .∠DAB =∠B5.如图,AD ∥CE ,∠ABC =95°,则∠2﹣∠1的度数是( )A .105°B .95°C .85°D .75° 6.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°7.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③ 8.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠= 9.下列命题中,属于真命题的是( ) A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b10.下列命题中,是真命题的是( ) A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题11.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.如图,已知A1B//A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).13.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.15.已知∠ABC=70︒,点D为BC边上一点,过点D作DP//AB,若∠PBD=12∠ABC,则∠DPB=_____︒.16.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于________度17.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 016,则n 的值为__________.18.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.19.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.20.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.三、解答题21.问题情境(1)如图1,已知AB ∥CD ,∠PBA =125°,∠PCD =155°,求∠BPC 的度数.佩佩同学的思路:过点P 作PG ∥AB ,进而PG ∥CD ,由平行线的性质来求∠BPC ,求得∠BPC =问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF ∥CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记∠PED =∠α,∠PAC =∠β.①如图2,当点P 在C ,D 两点之间运动时,请直接写出∠APE 与∠α,∠β之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,∠APE 与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若∠PED ,∠PAC 的角平分线EN ,AN 相交于点N ,请直接写出∠ANE 与∠α,∠β之间的数量关系.22.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.23.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)24.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 25.如图,已知AB ∥CD ,∠A=40°,点P 是射线B 上一动点(与点A 不重合),CM ,CN 分别平分∠ACP 和∠PCD ,分别交射线AB 于点M,N .(1)求∠MCN 的度数.(2)当点P 运动到某处时,∠AMC=∠ACN ,求此时∠ACM 的度数.(3)在点P 运动的过程中,∠APC 与∠ANC 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.26.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.2.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.3.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.4.A解析:A【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【详解】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选A.【点睛】本题考查平行线的性质,解题关键是掌握两直线平行,内错角相等、同旁内角互补.5.C解析:C【分析】直接作出BF∥AD,再利用平行线的性质分析得出答案.【详解】解:作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°①,∵∠3+∠4=95°,∴∠1+∠4=95°②,①-②,得∠2-∠1=85°.故选C.【点睛】此题主要考查了平行线的性质,正确得出∠1+∠4=95°,∠2+∠4=180°是解题关键.6.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用7.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG ∥BC ,∴∠CEG =∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG =∠ACB =2∠DCB ,故本选项正确;②无法证明CA 平分∠BCG ,故本选项错误;③∵∠A =90°,∴∠ADC +∠ACD =90°,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠ADC +∠BCD =90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB =90°,即∠GCD +∠BCD =90°,∴∠ADC =∠GCD ,故本选项正确;④∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,∴∠AEB +∠ADC =90°+12(∠ABC +∠ACB )=135°, ∴∠DFE =360°﹣135°﹣90°=135°,∴∠DFB =45°=12∠CGE ,故本选项正确. 故选:A .【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键. 8.D解析:D【解析】试题分析:延长TS ,∵OP ∥QR ∥ST ,∴∠2=∠4,∵∠3与∠ESR 互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR 的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D .考点:平行线的性质.9.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.二、填空题11.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.12.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.13..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y , ∴339042b ︒-a =, ∴91358b a =︒-, ∴81209b -︒a =,故答案为:81209b -︒a =.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质. 14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD∥BC 时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=∠ABC,∠A解析:35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=12∠ABC,∠ABC=70∴∠PBD=35°∴∠ABP=∠ABC-∠PBD=35°.当点P在∠ABC的外部时,∵∠PBD=12∠ABC,∠ABC=70∴∠PBD=35°∴∠ABP=∠ABC+∠DPB=105°∵PD∥AB∴∠DPB+∠ABP=180°∴∠DPB=75°.故答案为:35或75.点睛:此题主要考查了平行线的性质,关键是明确P点的位置,分两种情况进行求解. 16.2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠解析:2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=12∠ABE2+12∠DCE2=12∠CE2B=18∠BEC;…以此类推,∠E n=12n∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为2n .点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.17.【解析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n即解析:【解析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1−A1A2=6−5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11=2×5+1,∴AB2的长为:5+5+6=16=3×5+1;……∴AB n=(n+1)×5+1=2016,解得:n=402.故答案为:402.点睛:本题主要考查找规律.根据所求出的数字找出其变化规律是解题的关键.18.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠A NE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.19.70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.20.120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)80°;(2)①∠APE=∠α+∠β;②∠APE=∠β﹣∠α,理由见解析;(3)∠ANE=12(∠α+∠β)【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).【详解】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图4,∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).理由如下:作NQ∥DF,∵DF∥CG,∴NQ∥CG,∴∠DEN=∠QNE,∠CAN=∠QNA,∵EN平分∠DEP,AN平分∠CAP,∴∠DEN=12∠α,∠CAN=12∠β,∴∠QNE=12∠α,∠QNA=12∠β,∴∠ANE=∠QNE +∠QNA=12∠α+12∠β=12(∠α+∠β);【点睛】本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC =∠DOE +∠CDB +∠C =∠CDB +2∠DCE .【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.23.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】 (1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; 故答案为:65;②如图4,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n°,∠ADC =70°∴∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35° ∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°, ∴∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n °. 故答案为:215°−12n .【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.24.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】 (1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α ∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.25.(1)∠MCN=70°;(2)∠ACM=35°;(3)不变.(详见解析)【分析】(1)由AB ∥CD 可得∠ACD=180°-∠A ,再由CM 、CN 均为角平分线可求解;(2)由AB ∥CD 可得∠AMC=∠MCD ,再由∠AMC=∠ACN 可得∠ACM =∠NCD ; (3)由AB ∥CD 可得∠APC=∠PCD ,再由CN 为角平分线即可解答.【详解】解:(1)∵A B ∥CD ,∴∠ACD=180°﹣∠A=140°,又∵CM ,CN 分别平分∠ACP 和∠PCD ,∴∠MCN=∠MCP+∠NCP=12(∠ACP+∠PCD )=12∠ACD=70°, 故答案为:70°.(2)∵AB ∥CD ,∴∠AMC=∠MCD ,又∵∠AMC=∠ACN ,∴∠MCD=∠ACN ,∴∠ACM=∠ACN ﹣∠MCN=∠MCD ﹣∠MCN=∠NCD ,∴∠ACM=∠MCP=∠NCP=∠NCD ,∴∠ACM=14∠ACD=35°, 故答案为:35°.(3)不变.理由如下:∵AB ∥CD , ∴∠APC=∠PCD ,∠ANC=∠NCD ,又∵CN 平分∠PCD ,∴∠ANC=∠NCD=12∠PCD=12∠APC ,即∠APC :∠ANC=2:1. 【点睛】本题主要考查了平行线的性质,角平分线的性质的运用,解决问题的关键是掌握两直线平行,内错角相等.26.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。
中考数学复习线段角相交线与平行线PPT
第16课时 线段、角、相交线与平行线
考点演练
考点三
误区警示
平行线的判定与性质
在运用同位角、内错角、同旁内角判定直线是否平行时,一定要 搞清楚这一对角是由哪两条直线被哪一条直线所截而成的,从而 才能确定这两条直线是平行的.
第16课时 线段、角、相交线与平行线
考点演练
考点三 平行线的判定与性质
例4 ( ·莆田)已知直线a∥b,一块直角三角尺按如图所示的方 式放置.若∠1=37°,则∠2=__5_3_°____.
考点一 度、分、秒的运算
例1 ( ·厦门)1°等于( C) A. 10′ B. 12′ C. 60′ D. 100′
思路点拨
根据度、分、秒之间的单位转换可得答案. 1°=60′,故选C.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
例2 ( ·恩施州)已知∠AOB=70°,以O为端点作射线OC,使 ∠AOC=42°,则∠BOC的度数为( C )
A. 28° B. 112°
思路点拨
C. 28°或112°
D. 68°
根据题意画出图形,利用数形结合及角的和、差求解即可.
第16课时 线段、角、相交线与平行线
考点演练
考点二 与角有关的概念和计算
解:如图,当点C与点C1重合时, ∠BOC=∠AOB-∠AOC=70°-42°=28°; 当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°= 112°. 故选C.
第16课时 线段、角、相交线与平行线
知识梳理
3.尺规作图: (1) 限定只能使用没有___刻__度___的直尺和___圆__规___作图称为尺规 作(2图) 5.种基本作图包括:
中考数学一轮复习数学第五章 相交线与平行线试题含答案
中考数学一轮复习数学第五章 相交线与平行线试题含答案一、选择题1.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 2.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒3.甲,乙两位同学用尺规作“过直线l 外一点C 作直线l 的垂线”时,第一步两位同学都以C 为圆心,适当长度为半径画弧,交直线l 于D ,E 两点(如图);第二步甲同学作∠DCE 的平分线所在的直线,乙同学作DE 的中垂线.则下列说法正确的是( )A .只有甲的画法正确B .只有乙的画法正确C .甲,乙的画法都正确D .甲,乙的画法都不正确4.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°5.如图,下列能判断AB ∥CD 的条件有 ( )①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1 B.2 C.3 D.46.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③7.下列命题是假命题的有()①邻补角相等;②对顶角相等;③同位角相等;④内错角相等.A.1个B.2个C.3个D.4个8.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120° B.130° C.60° D.150°9.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°⊥于点B,在直线l上取一点C,连接10.如图,A是直线l外一点,过点A作AB lAC,使2=,P在线段BC上,连接AP.若3AC ABAB=,则线段AP的长不可能是()A .4B .5C .2D .5.5二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)12.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________15.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示.A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12°,B 灯每秒转动4°.B灯先转动12秒,A灯才开始转动.当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是.16.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.18.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD=_________.19.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.20.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.23.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.24.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
中考数学点对点-相交线与平行线(解析版)
专题16 相交线与平行线专题知识点概述一、相交线1.邻补角(1)定义:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
(2)性质:邻补角的性质:邻补角互补。
2.对顶角(1)定义:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
(2)性质:对顶角的性质:对顶角相等。
3.垂线(1)定义:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
4.同位角、内错角、同旁内角(1)同位角定义:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
(2)内错角定义:∠2与∠6像这样的一对角叫做内错角。
(3)同旁内角定义:∠2与∠5像这样的一对角叫做同旁内角。
二、平行线1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。
记做a∥b 如“AB∥CD”,读作“AB平行于CD”。
2.两条直线的位置关系:平行和相交。
3.平行线公理及其推论:(1)公理:经过已知直线外一点,有且只有一条直线与这条直线平行;(2)推论:如果两条直线都与第三条直线平行,那么这两条直线平行. 4.平行线的判定:判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行;判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行. 补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
例题解析与对点练习【例题1】(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【答案】A【分析】根据对顶角定义和外角的性质逐个判断即可.【解析】A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误.【对点练习】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【答案】C.【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EF C.故AB∥CD(内错角相等,两直线平行).【点拨】以角度之间的关系为前提,得出两条直线平行,是平行线判定定理的运用。
相交线与平行线考点及题型总结
相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
中考数学必考知识点--相交线平行线
中考数学必考知识点-- 相交线、平行线
[知识要点]
一、相交线
1.线段的垂直平分线:
(1)定义:垂直且平分一条线段的直线,叫做线段的垂直平分线。
(2)性质:线段垂直平分线上的点,到线段两端点的距离相等。
2.角
(1)定义
(2)角的分类:平角、周角、直角、锐角、钝角
(3)角的度量:1°=60' 1'=60"
(4)相关的角:对顶角、余角、补角、邻补角
(5)角的平分线
1)定义
2)性质:角平分线上的点到角两边的距离相等。
二、平行线
1.定义:在同一平面内不相交的两条直线,叫平行线。
2.性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
(4)平行线间的距离相等
(5)平行线截相交两条直线,对应线段成比例。
3.判定:(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
(4)平行于同一直线的两直线平行。
(5)垂直于同一直线的两直线平行。
第14节线段、角、相交线与平行线-中考数学一轮知识复习课件
☞命题点3 平行线的性质与判定(必考) 7.(2019·广东 12 题 4 分)如图,已知 a∥b,∠1=
75°,则∠2=___1_0_5_°__.
8.(2020·郴州)如图,直线 a,b 被直线 c, d 所截,下列条件能判定 a∥b 的是( D )
A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠1=∠2
O,OA 平分∠EOC,∠EOC=100°,则∠BOD 的度数
是( C )
A.20°
B.40°
C.50°
D.80°
2.(2020·吉林)如图,某单位要在河岸 l 上建一个 水泵房引水到 C 处,他们的做法是:过点 C 作 CD⊥l 于点 D,将水泵房建在了 D 处.这样做最节省水管长 度,其数学道理是_垂__线__段__最__短___.
针对训练 9.(2020·常德)如图,已知 AB∥DE,∠1 =30°,∠2=35°,则∠BCE 的度数为( B )
A.70° C.30°
B.65° D.5°
10.(2020·武汉)如图,直线 EF 分别与直线 AB,
CD 交于点 E,F.EM 平分∠BEF,FN 平分∠
CFE,且 EM∥FN.求证:AB∥CD.
第四章 三角形
第十四节 线ห้องสมุดไป่ตู้、角、相交线与平行线
课标解读
1.点、线、面、角 (1)会比较线段的长短,理解线段的和、差,以及线 段中点的意义. (2)能运用基本事实:两点确定一条直线和两点之间 线段最短解决相关问题. (3)能比较角的大小,并会计算角的和、差.
2.相交线与平行线 (1)能运用对顶角相等,同角(等角)的余角相等,同 角(等角)的补角相等进行计算或证明. (2)能过一点画已知直线的垂线;能度量点到直线的 距离;掌握基本事实:过一点有且只有一条直线与已 知直线垂直. (3)会辨认同位角、内错角、同旁内角,能运用平行 线的性质定理和判定定理进行计算或证明;能用三角 尺和直尺过已知直线外一点画这条直线的平行线. (4)会用平行于同一条直线的两条直线平行进行推理 证明.
中考数学一轮复习 七下 第5章 相交线与平行线
相交线与平行线1.两直线相交,对顶角,邻补角 .2.垂线的性质:(1)过一点一条直线与已知直线垂直;(2)直线外一点与直线上各点连接的所有线段中,最短.3.平行线公理及其推论:经过已知直线外一点,一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线 .4.平行线的判定:同位角相等,两直线;内错角,两直线平行;同旁内角,两直线平行.5.平行线的性质:两直线平行,同位角;两直线平行,内错角;两直线平行,同旁内角 .1.如图,OA⊥OB,若∠1=40°,则∠2的度数是( )A.20°B.40°C.50°D.60°2.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是( )A.20°B.25°C.30°D.70°3.如图,a∥b,c与a,b都相交,∠1=50°,则∠2=( )A.40°B.50°C.100°D.130°4.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°5.如图,直线a⊥直线c,直线b⊥直线c,若∠1=70°,则∠2等于( )A.70°B.90°C.110°D.80°6.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A.30°B.35°C.40°D.45°7.如图,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于( )A.100°B.60°C.40°D.20°8.如图,直线a和直线b相交于点O,∠1=50°,则∠2= .如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= .10.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中为真命题的是 .(填写所有真命题的序号)11.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2= .如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于 .参考答案知识回顾1.相等互补2.有且只有垂线段3.有且只有平行4.平行相等互补5.相等相等互补达标练习1.C2.D3.B4.D5.A6.B7.A8.50°9.30°10.①②④ 11.32°12.90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXxx数学一轮复习相交线与平行线
学
案
本资料为woRD文档,请点击下载地址下载全文下载地址第16课时
相交线与平行线
.了解直线、射线、线段、角的概念及性质;会比较线段的长短,理解线段的和、差,以及线段中点的意义;会计算角的和与差,会对度、分、秒进行简单的换算.
2.了解余角、补角、对顶角、垂线、垂线段、点到直线的距离的概念,理解等角(或同角)的余角(或补角)相等,理解垂线的性质.
3.能识别同位角、内错角、同旁内角,理解平行线的性质和判定,会运用相关知识进行作图、计算及推理.
4.了解平行于同一条直线的两条直线平行.
5.会用尺规作一条线段等于已知线段.一个角等于已知角,角的平分线,线段的垂直平分线.
6.会用三角尺或量角器过一点作一条直线的垂线;会用三角尺和直尺过已知直线外一点作这条直线的平行线.
7.会利用基本作图作三角形:已知三边或两边及其夹角或两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形.
8.通过具体实例,了解定义、命题、定理、推论的意义.
9.结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.
【知识梳理】
.几个重要概念:
线段、射线、直线:线段有_______个端点.将线段向一个方向无限延伸就形成了射线,射线有_______个端点.将线段向两个方向无限延伸,就得到直线,直线_______端点.线段的中点:把一条线段分成两条________线段的点.线段的垂直平分线:经过线段的中点,并且_______这条线段的直线,叫做这条线段的垂直平分线(中垂线).角:由两条有公共端点的_______组成的图形;也可以看成是由一条射线绕着它的端点旋转而成的图形.
角的平分线:从一个角的顶点出发,把这个角分成_______的两个角的射线,叫做这个角的平分线.
如果两个角的和等于_______,那么这两个角互为余角,也就是说其中一个角是另一个角的余角;如果两个角的和等于_______,那么这两个角互为补角,即其中一个角是另一个角的补角.
方位角:从某点的指北方向线起,按顺时针方向到_______之间的水平夹角.
对顶角、邻补角:两条直线相交所构成的四个角中,不相邻的两角是
_______,相邻的两角是_______.
垂线:当两条直线相交所构成的四个角中,有一个角是_______时,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.
点到直线的距离:直线外一点到这条直线的_______,叫做点到直线的距离.
平行线:在同一平面内,不_______的两条直线叫做平行线.
2.几个重要结论:
直线公理:两点确定_______条直线.
线段公理:两点之间,_______最短.
角的度量:1°=________',1'=_______".
余角、补角的性质:_______的余角相等,同角或等角的补角________.
对顶角的性质:对顶角_______.
垂线的性质:过一点______________与已知直线垂直;连接直线外一点与直线上各点的所有线段中,_______最短.平行公理及推论:经过直线外一点,有_______条直线与已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也_______.
平行线的判定:_______相等,两直线平行;_______相等,两直线平行;_______互补,两直线平行.
平行线的性质:两直线平行,________相等;两直线平行,_______相等;两直线平行,________互补.
3.尺规作图:
限定只能使用_______和没有_______的直尺作图称为尺规作图.
5种基本作图包括:①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的_______;⑤过一点作已知直线的_______.
4.命题:
_______________叫命题,经过证明的_______叫做定理.每个命题都由
_______和________两部分组成.命题________般都可以写成________的形式.
_______________叫真命题,_______叫假命题.把一个命题的_______和_______互换就得到它的逆命题,所以每个命题都有逆命题.
判断一个命题是假命题,只需_______.原命题成立,它的逆命题_______成立.
【考点例析】
考点一与直线(射线、线段)相关的概念和计算例1已知线段AB=8cm,在直线AB上画线段Bc,使Bc=3cm,则线段Ac=________.
提示
由于是在直线AB上画线段Bc,Bc可能画在线段AB的外部,也可能画在线段AB上,所以要分类讨论.
考点二与角有关的概念和计算
例2下列四个角中,最有可能与70°角互补的是提示如果两个角的和为180°,那么这两个角互为补角.根据定义可知,70°角的补角是110°,110°的角是一个钝角(大于直角而小于平角).
考点三平行线的判定与性质
例3如图,已知∠1=∠2=∠3=59°,则∠4=_______.
提示如图,由∠1=∠3知a∥b,从而得∠2=∠5=59°.又由图可知∠4+∠5=180°,从而可求得∠4的度数.例4如图,a∥b,∠1=65°,∠2=140°,则∠3的度数为
A.100°
B.105°
c.110°
D.115°
提示观察图形无法得出∠1、∠2、∠3之间的关系,平行线的性质也无法直接使用,因此过点B作Bc∥a,借助辅助线求得.
考点四方位角
例5如图,小明在操场上从A点出发.先沿南偏东30°方向走到B点,再沿南偏东60°方向走到c点.这时,∠ABc的度数是
A.120°
B.135°
c.150°
D.160°
提示首先把方、向角转化为数学上的角,由题意可知∠DAB=30°,∠EBc=60°,根据∠ABc=∠ABG+∠GBF+∠FBc即可求得∠ABc的度数.
考点五尺规作图
例6已知:线段a.c,∠a,
求作:△ABc,使Bc=a,AB=c,∠ABc=∠a 提示
先作∠B=∠a,再在角的两边截取Bc=a,AB=c,最后连接Ac即可.
考点六命题
例7下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是
A.a=-2
B.a=-1
c.a=1
D.a=2
提示本题考查了命题,举反例即找一例使之满足命题的题设,但不满足命题的结论.
【反馈练习】
.如图,点c在∠AoB的边oB上,用尺规作出了cN∥oA,作图痕迹中,弧FG是
A.以点c为圆心,oD长为半径的弧
B.以点c为圆心,Dm长为半径的弧
c.以点E为圆心,oD长为半径的弧
D.以点E为圆心,Dm长为半径的弧
2.下列命题为假命题的是
A.三角形三个内角的和等于180°
B.三角形两边之和大于第三边
c.三角形两边的平方和等于第三边的平方.
D.三角形的面积等于一条边的长与该边上的高的乘积的一半
3.如图,直线a与直线c相交于点o,∠1的度数是A.60°
B.50°
c.40°
D.30°
4.如图,BD平分∠ABc,点E在Bc上,EF∥AB.若∠cEF=100°,则
∠ABD的度数为
A.60°
B.50°
c.40°
D.30°
5.已知∠a的补角是130°,则∠a=________;一个锐角是38°,则它的余角是_______.6.如图,已知∠1=∠2,则图中互相平行的线段是_______.
7.如图,AB∥cD∥EF,那么∠BAc+∠AcE+∠cEF=_______.。