九年级中考数学一轮复习方程方程组测试题

合集下载

2021-2022学年九年级中考数学 一轮训练:一元二次方程及其应用含答案

2021-2022学年九年级中考数学 一轮训练:一元二次方程及其应用含答案

中考数学一轮训练:一元二次方程及其应用一、选择题1. 已知x1,x2是关于x的方程x2+ax-2b=0的两实数根,且x1+x2=-2,x1·x2=1,则b a的值是()A. 14 B. -14 C. 4 D. -12. 2018·福建已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和-1都是关于x的方程x2+bx+a=0的根D.1和-1不都是关于x的方程x2+bx+a=0的根3. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-24. 关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,则锐角α等于()A. 15°B. 30°C. 45°D. 60°5. 随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x,通过解方程得到一个根为1.8,则正确的解释是( )A.年平均下降率为80%,符合题意B.年平均下降率为18%,符合题意C.年平均下降率为1.8%,不符合题意D.年平均下降率为180%,不符合题意6. 当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7. 一元二次方程(x+1)(x-3)=2x-5的根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于38. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元二、填空题9. 一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为.10. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少个小分支.如果设每个支干又长出x个小分支,那么依题意可列方程为__________________.11. 已知方程x2-6x+q=0可转化为x-3=±7,则q=________.12. 配方法解一元二次方程x2-2 2x+1=0,所得结果是x1=________,x2=________.13. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.14. 2018·内江已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为________.15. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.16. 一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.三、解答题17. (1)解方程:x2-2x-5=0.(2)用配方法求一元二次方程(2x+3)(x-6)=16的实数根.(3) x为何值时,两个代数式x2+1,4x+1的值相等?18. 某果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.19. 已知xy>0,且x2-8y2=2xy,求5x-2yx+2y的值.20. 如图,某工程队在工地上利用互相垂直的两面墙AE,AF,另两边用铁栅栏围成一个矩形场地ABCD,中间再用铁栅栏分割成两个矩形,铁栅栏的总长为180米,已知墙AE的长为90米,墙AF的长为60米.(1)设BC=x米,则CD=________米,四边形ABCD的面积为____________平方米;(2)若矩形ABCD的面积为4000平方米,则BC的长为多少米?21. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.22. 2018·常州阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x =0,可以通过因式分解把它转化为x (x 2+x -2)=0,解方程x =0和x 2+x -2=0,可得方程x 3+x 2-2x =0的解.(1)问题:方程x 3+x 2-2x =0的解是x 1=0,x 2=________,x 3=________;(2)拓展:用“转化”思想求方程2x +3=x 的解;(3)应用:如图1-T -2,已知矩形草坪ABCD 的长AD =8 m ,宽AB =3 m ,小华把一根长为10 m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD ,DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.答案一、选择题1. 【答案】A 【解析】由一元二次方程根与系数的关系,得x 1+x 2=-a =-2,x 1·x 2=-2b =1,则a =2,b =-12,∴b a =(-12)2=14,故选A. 2. 【答案】D [解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎪⎨⎪⎧a +1≠0,Δ=(2b )2-4(a +1)2=0, ∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根;当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.3. 【答案】C4. 【答案】B 【解析】∵方程有两个相等的实数根,∴b 2-4ac =2-4sin α=0,∴sin α=12,又∵α为锐角,∴α=30°.5. 【答案】D [解析] 设年平均下降率为x ,则可得100(1-x )2=64,解之得x 1=0.2=20%,x 2=1.8=180%.由于0<x <1,因此年平均下降率为180%不符合题意.6. 【答案】A [解析] 因为b +c =5,所以c =5-b.因为Δ=b 2-4×3×(-c)=b 2-4×3×(b -5)=(b -6)2+24>0,所以该一元二次方程有两个不相等的实数根.7. 【答案】D [解析] 将一元二次方程(x +1)(x -3)=2x -5化简为x 2-4x +2=0.其判别式Δ=b 2-4ac =(-4)2-4×1×2=8>0,∴方程的两根为x =-(-4)±82,即x 1=2+2,x 2=2- 2.∵2+2>3,2-2>0,∴该方程有两个正根,且有一根大于3.故选D.8. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20.∵要扩大销售,减少库存,∴x =20.二、填空题9. 【答案】16 [解析]解方程x 2-10x +21=0,得x 1=3,x 2=7,因为已知两边长为3和6,所以第三边长x 的范围为:6-3<x<6+3,即3<x<9,所以三角形的第三边长为7,则三角形的周长为3+6+7=16.10. 【答案】x 2+x +1=73 [解析] 设每个支干又长出x 个小分支,根据题意,得x 2+x +1=73.11. 【答案】212. 【答案】2-1 2+113. 【答案】-3或4 [解析] 根据题意,得[(m +2)+(m -3)]2-[(m +2)-(m -3)]2=24. 整理,得(2m -1)2=49,即2m -1=±7,所以m 1=-3,m 2=4.14. 【答案】1 [解析] 设x +1=t ,方程a (x +1)2+b (x +1)+1=0的两根分别是x 3,x 4, ∴at 2+bt +1=0.由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x 3+x 4+2=3,∴x 3+x 4=1.15. 【答案】(1)20(32-x)(2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x)m2.(2)根据题意,得(32-2x)(20-x)=570,解得x1=1,x2=35(不合题意,舍去).即小道的宽度为1 m.16. 【答案】32[解析] 设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.三、解答题17. 【答案】解:±x2-2x-5=0,∵Δ=4+20=24>0,∴x=,∴x1=1+,x2=1-.(2)原方程化为一般形式为2x2-9x-34=0,x2-x=17,x2-x+=17+,x-2=,x-=±,∴x1=,x2=.(3)由题意得x2+1=4x+1,∴x2-4x=0,∴x(x-4)=0,解得x1=0,x2=4,∴当x的值为0或4时,代数式x2+1,4x+1的值相等.18. 【答案】解:由题意可得1000×6+2000×4=1000×(1-m%)×6+2000×(1+2m%)×4(1-m%),解得m1=0(舍去),m2=12.5,即m的值是12.5.19. 【答案】解:由已知,得x2-2xy-8y2=0.左边分解因式,得(x-4y)(x+2y)=0.∵xy >0,∴x ,y 同号,可见x +2y≠0.∴x -4y =0,即x =4y.∴原式=5×4y -2y 4y +2y=18y 6y =3.20. 【答案】解:(1)(180-2x ) x (180-2x )(2)设红星公司要制作的BC =x 米.由题意,得x (180-2x )=4000, 整理,得x 2-90x +2000=0,解得x 1=40,x 2=50.当x =40时,180-2x =100>90,不符合题意,舍去;当x =50时,180-2x =80<90,符合题意.答:BC 的长为50米.21. 【答案】解:设这三个连续的正奇数分别为2n -1,2n +1,2n +3(n 为正整数). 根据题意,得(2n +3)(2n -1)-6(2n +1)=3,解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9.即这三个奇数分别为5,7,9.22. 【答案】解:(1)x 3+x 2-2x =0,x (x 2+x -2)=0,x (x +2)(x -1)=0,∴x =0或x +2=0或x -1=0,∴x 1=0,x 2=-2,x 3=1.故答案为:-2,1. (2)2x +3=x ,方程两边平方,得2x +3=x 2,即x 2-2x -3=0,(x -3)(x +1)=0,∴x -3=0或x +1=0,∴x 1=3,x 2=-1.当x =-1时,2x +3=1=1≠-1,∴-1不是原方程的解.∴方程2x+3=x的解是x=3.(3)∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD=3 m.设AP=x m,则PD=(8-x)m.∵BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-20 9+x2+9+x2,整理,得5 9+x2=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的解.答:AP的长为4 m.。

中考数学总复习《方程与不等式》专项检测卷(带答案)

中考数学总复习《方程与不等式》专项检测卷(带答案)

中考数学总复习《方程与不等式》专项检测卷(带答案)学校:___________姓名:___________班级:___________考号:___________一、解一元一次方程 1.解方程:(1)3(x +1)+2(x −4)=10 (2)x +x+35=2−1−x 22.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程互为“阳光方程”.例如:2x =2的解为x =1,x +1=1的解为x =0,所以这两个方程互为“阳光方程”. (1)若关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”,则m =______. (2)已知两个一元一次方程互为“阳光方程”,且这两个“阳光方程”的解的差为5.若其中一个方程的解为x =k ,求k 的值.(3)①已知关于x 的一元一次方程x2023+a =2023x 的解是x =2024,请写出解是y =2023的关于y 的一元一次方程:()2023x +2023=______−a .(只需要补充含有y 的代数式). ②若关于x 的一元一次方程12023x −1=0和12023x −5=2x +a 互为“阳光方程”,则关于y的一元一次方程y2023−9−a =2y −22023的解为______.二、解二元一次方程组3.已知y =kx +b ,当x =0时y =1;当x =1时y =4,求k 和b 的值.4.关于x ,y 的二元一次方程组{3x +y =1+3a x +3y =1−a 的解满足不等式x +y >−2,求a 的取值范围.5.已知关于x ,y 的方程组{2x −3y =3ax +2by =4 和{2ax +3by =33x +2y =11的解相同,求(3a +b)2024的值.6.阅读探索:知识累计:解方程组{(a −1)+2(b+2)=62(a −1)+(b+2)=6.解:设a −1=x,b +2=y ,原方程组可变为{x+2y =62x+y =6.解方程组得:{x =2y =2 ,即{a −1=2b+2=2 ,解得{a =3b =0.所以此种解方程组的方法叫换元法.(1)拓展提高:运用上述方法解下列方程组:{(a3−1)+2(b5+2)=42(a3−1)+(b5+2)=5;(2)能力运用:已知关于x,y的方程组{a1x+b1y=c1a2x+b2y=c2的解为{x=5y=3,求出关于m,n的方程组{a1(m+3)+b1(n−2)=c1a2(m+3)+b2(n−2)=c2的解.三、解分式方程7.计算:(1)1x +2x−1=2x2−x;(2)2x+93x−9=4x−7x−3−1.8.关于x的分式方程:mxx2−4−2x−2=3x+2,若这个关于x的分式方程会产生增根,试求m的值.9.若数a使关于x的分式方程x+2x−1+a1−x=3的解为非负数,求a的取值范围.10.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+bk,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k之称心点”.例如:P(1,4)的“2之称心点”为P′(1+42,2×1+4),即P′(3,6).(1)①点P(−1,−2)的“2之称心点”P′的坐标为________;②若点P的“k之称心点” P′的坐标为(3,3),请写出一个符合条件的点P的坐标______;(2)若点P在y轴的正半轴上,点P的“k之称心点”为P′点,且△OPP′为等腰直角三角形,则k的值为______;(3)在(2)的条件下,若关于x的分式方程2x+5x−3+2−mx3−x=k无解,求m的值.11.关于x的方程:x+−1x =c+−1c的解为x=c,x=−1c;x+1x =c+1c的解为x=c或x=1c;x+2x =c+2c的解为x=c,x=2c;x+3x =c+3c的解为x=c,x=3c;…根据材料解决下列问题:(1)方程x+1x =52的解是___________;(2)猜想方程x+mx =c+mc(m≠0)的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于x的方程:x+2x−1=a+2a−1.四、解一元二次方程12.解下列一元二次方程:(1)−2x2+6x−3=0(2)(2x+3)2=(3x+2)2.13.关于x的一元二次方程x2−(2k−1)x+k2−2=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根,求此时m的值.14.关于x的一元二次方程a(1−x2)−2√2bx+c(1+x2)=0中a b c是Rt△ABC 的三条边其中∠C=90°.(1)求证此方程有两个不相等的实数根;(2)若方程的两个根是x1x2且x12+x22=12求a:b:c.15.已知关于x的一元二次方程x2+(m−4)x=4m.(1)证明:无论m取何值此方程必有实数根;(2)若Rt△ABC的两直角边AC BC的长恰好是该方程的两个实数根且斜边AB的长为5 求m的值;(3)若等腰三角形ABC的一边AB长为6 另两边长BC,AC恰好是这个方程的两个根求△ABC的周长.16.已知关于x的方程x2−2(k−3)x+k2−4k−1=0.(1)若这个方程有实数根求k的取值范围;(2)若这个方程有一个根为1 求k的值;(3)若以方程x2−2(k−3)x+k2−4k−1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=mx的图象上求满足条件的m的最小值.五、解不等式与不等式组17.解不等式x+13−x−16≥x−12并在数轴上表示其解集.18.解不等式组{4x−3<2(x+2)①52x+3≤72x+6②并把解集在数轴上表示出来.19.已知关于x,y 的方程组{x −2y =m 2x +3y =2m +4的解满足不等式组{3x +y ≤0x +5y >0 求满足条件的m 的整数值.20.先阅读下面是的解题过程 然后回答下列问题. 例:解绝对值方程:|3x |=1.解:分情况讨论:①当x ≥0时原方程可化为3x =1 解得x =13; ②当x <0时原方程可化为−3x =1 解得x =−13.所以原方程的解为x =13或x =−13.根据材料 解下列绝对值方程: (1)理解应用:|2x +1|=3;(2)拓展应用:不等式|x −1|>4的解集为______.参考答案1.(1)解:3(x +1)+2(x −4)=10 去括号得:3x +3+2x −8=10 移项得:3x +2x =10+8−3 合并同类项得:5x =15 系数化为1得:x =3; (2)解;x +x+35=2−1−x 2去分母得:10x +2(x +3)=20−5(1−x ) 去括号得:10x +2x +6=20−5+5x 移项得:10x +2x −5x =20−5−6 合并同类项得;7x =9 系数化为1得:x =97.2.(1)解x +2m =0 得x =−2m ; 解3x −2=−x 得x =12;∵关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”∵−2m +12=1解得m =−14;(2)∵“阳光方程”的一个解为x =k 则另一个解为1−k ∵这两个“阳光方程”的解的差为5 则k −(1−k )=5或(1−k )−k =5 解得k =3或k =−2. 故k 的值为3或−2;(3)①∵关于x 的一元一次方程x 2023+a =2023x 的解是x =2024∵x2023+2023×(−x )=−a 的解是x =2024∵y =2023 则y +1=2024=x则y+12023+2023×[−(y +1)]=−a 的解是y =2023 即:y+12023+2023×(−y −1)=−a 的解是y =2023故答案为:y +1 −y −1; ②方程12023x −1=0的解为:x =2023∵关于x 方程12023x −1=0与12023x −5=2x +a 互为“阳光方程”∵方程12023x −5=2x +a 的解为:x =1−2023=−2022.∵关于y 的方程y2023−9−a =2y −22023就是:y+22023−5=2(y +2)+a∵y +2=−2022 ∵y =−2024. ∵关于y 的方程y 2023−9−a =2y −22023的解为:y =−2024.故答案为:y =−2024.3.解:∵在y =kx +b 当x =0时y =1;当x =1时y =4 ∵{k +b =4b =1∵{k =3b =1. 4.解:将两方程相加可得4x +4y =2+2a∴x +y =a+12由x +y >−2可得a+12>−2解得a >−5所以a 的取值范围为:a >−5.5.解:由题意可得:方程组{2x −3y =33x +2y =11 和方程组{ax +2by =42ax +3by =3的解相同解方程组{2x −3y =33x +2y =11可得:{x =3y =1将{x =3y =1 代入{ax +2by =42ax +3by =3 可得:{3a +2b =46a +3b =3解得:{a =−2b =5将{a =−2b =5 代入(3a +b )2024可得 原式=(−6+5)2024=1即(3a +b )2024的值1.6.(1)解:设a3−1=x b5+2=y 原方程组可变为:{x +2y =42x +y =5解得:{x =2y =1;即{a 3−1=2b5+2=1解得:{a =9b =−5;(2)设{m +3=x n −2=y由题意 得{m +3=5n −2=3解得:{m =2n =5.7.(1)解:1x +2x−1=2x 2−xx −1+2x =2解得:x =1检验:当x =1 x −1=0 则x =1是原方程的增根 所以原方程无解.(2)解:2x+93x−9=4x−7x−3−12x+9=3(4x−7)−(3x−9)解得:x=3检验:当x=3x−3=0则x=3是原方程的增根所以原方程无解.8.解:mxx2−4−2x−2=3x+2方程两边同时乘以(x+2)(x−2)去分母得去括号得移项得合并同类项得(m−5)x=−2∵关于x的分式方程会产生增根即(x+2)(x−2)=0∵x=±2当x=−2时−2(m−5)=−2解得m=6;当x=2时2(m−5)=−2解得m=4;综上所述m的值为6或4.9.解:x+2x−1−ax−1=3去分母得:x+2−a=3(x−1)即x−3x=a−2−3解得:x=5−a2∵关于x的分式方程x+2x−1+a1−x=3的解为非负数∴5−a2≥0且5−a2≠1解得:a≤5且a≠3.10.(1)解:①当a=−1b=−2k=2时−1+−22=−22×(−1)+(−2)=−4∴点P(−1,−2)的“2之称心点”P′的坐标为(−2,−4)故答案为:(−2,−4);②∵点P的“k之称心点”P′的坐标为(3,3)∴a+bk=3ka+b=3解得k=1a+b=3当a=1时b=2∴符合条件的点P的坐标可以是(1,2)故答案为:(1,2);(2)解:∵点P在y轴的正半轴上∴a=0b>0.∴点P的坐标为(0,b)∵点P的“k之称心点”为P′点∴点P′的坐标为(bk,b)∴PP′⊥OP ∵△OPP′为等腰直角三角形∴OP=PP′∴bk=±b∵b>0∴k=±1.故答案为:±1;(3)解:当k=1时去分母整理得:(m+1)x=−6∵原方程无解∴①m+1=0即m=−1②x−3=0即x=3则m=−3;当k=−1时去分母整理得:(m+3)x=0∵原方程无解∴①m=−3②x=3则m=−3;综上所述m=−1或m=−3.11.(1)解:由x+1x =52可得x+1x=2+12∵该方程的解为:x=2或x=12;(2)方程x+mx =c+mc(m≠0)的解为:x=c或x=mc检验:当x=c时左边=c+mc=右边故x=c是方程的解当x=mc 时左边=mc+m mc=mc+c=右边故x=mc也是方程的解;(3)原方程x+2x−1=a+2a−1可化为:x−1+2x−1=a−1+2a−1所以x−1=a−1或x−1=2a−1解得:x=a或x=a+1a−1经检验x=a或x=a+1a−1是原方程的解故答案为:x=a或x=a+1a−1.12.(1)解:∵−2x2+6x−3=0∵a=−2,b=6,c=−3∵Δ=62−4×(−2)×(−3)=12>0∵x=−b±√b2−4ac2a =−6±2√3−4解得x1=3+√32,x2=3−√32;(2)解:∵(2x+3)2=(3x+2)2∵(2x+3)2−(3x+2)2=0∵(2x+3+3x+2)(2x+3−3x−2)=0即(5x+5)(1−x)=0∵5x+5=0或1−x=0解得x1=−1,x2=1.13.(1)解:由题意可得Δ=[−(2k−1)]2−4×1×(k2−2)=−4k+9≥0∵k≤94;(2)解:∵k≤94k是符合条件的最大整数∵k=2∵方程x2−(2k−1)x+k2−2=0为x2−3x+2=0解得x1=1x2=2∵一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根当x=1时m−1+1+m−3=0解得m=32;当x=2时4(m−1)+2+m−3=0解得m=1∵m−1≠0∵m≠1∵m=1舍去;∵m=32.14.(1)证明:化简一元二次方程得(c−a)x2−2√2bx+a+c=0Δ=(−2√2b)2−4(c−a)(a+c)=4(2b2+a2−c2)∵a b c是Rt△ABC的三条边∴c2=a2+b2b>0∴Δ=4[(2b2+a2−(a2+b2)]=4b2>0∴此方程有两个不相等的实数根;(2)∵方程的两个根是x1x2∴x1+x2=2√2bc−a x1x2=a+cc−a∵x12+x22=12∴(x1+x2)2−2x1x2=12即(2√2bc−a )2−2(a+c)c−a=12∴8b2(c−a)2−2(a+c)c−a=12∵b2=c2−a2∴8(c2−a2)(c−a)2−2(a+c)c−a=12化简得c=3a∴b2=(3a)2−a2=8a2∴b=2√2a∴a:b:c=1:2√2:3.15.(1)证明:x2+(m−4)x−4m=0a=1b=m−4c=−4mΔ=b2−4ac=(m−4)2−4×1×(−4m)=(m−4)2+16m=m2−8m+16+16m=m2+8m+16=(m+4)2≥0∵方程必有实数根.(2)解:设AC=x1BC=x2由根与系数的关系得:x1+x2=−ba =4−m x1x2=ca=−4m.由Rt△ABC斜边AB的长为5 结合勾股定理得:x12+x22=52∵x12+x22=(x1+x2)−2x1x2=(4−m)2−2×(−4m)=16−8m+m2+8m=m2+16=25∵m2=9∵m1=3m2=−3.当m=3时x1=4x2=−3;当m=−3时x1=3x2=4.∵x1>0x2>0∵m=−3.(3)解:①若AB为底边则BC=AC即方程由两个相等的实数根即Δ=(m+4)2=0解得:m=−4把m=−4代入方程得:x2−8x+16=0解得:x1=x2=4即BC=AC=4.∵C△ABC=AB+BC+AC=6+4+4=14.②若AB为腰则BC=6或AC=6把x=6代入方程得:36+6(m−4)=4m解得:m=−6当m=−6时方程为:x2−10x+24=0解得:x1=4x2=6.∵C△ABC=AB+BC+AC=6+6+4=16.综上:△ABC的周长为14或16.16.(1)解:由题意得:Δ=[−2(k−3)]2−4×(k2−4k−1)≥0化简得:−2k+10≥0解得:k≤5;(2)解:将x=1代入方程x2−2(k−3)x+k2−4k−1=0得:1−2(k−3)+k2−4k−1=0整理得:k2−6k+6=0解得:k1=3−√3,k2=3+√3;(3)解:设方程x2−2(k−3)x+k2−4k−1=0的两个根为x1,x2∴x1x2=k2−4k−1∵以x1,x2为横坐标、纵坐标的点恰在反比例函数y=mx的图象上∴x1x2=m∴m=k2−4k−1=(k−2)2−5∴当k=2时m取得最小值−5.17.解:x+13−x−16≥x−12解:去分母得:2(x+1)−(x−1)≥3(x−1)去括号得:2x+2−x+1≥3x−3移项合并同类项得:−2x≥−6同时除以−2得:x≤3.故而求得此不等式的解集为:x≤3.在数轴上表示此解集如下图:18.解:{4x−3<2(x+2)①52x+3≤72x+6②解①得x<72解②得x≥−3∵−3≤x<72.如图19.解:解方程组{x −2y =m,①2x +3y =2m +4,② ①+② 得3x +y =3m +4. ②-① 得x +5y =m +4. 由{3x +y ≤0,x +5y >0, 得{3m +4≤0,m +4>0,解不等式组 得−4<m ≤−43 ∴满足条件的m 的整数值为−3,−2.20.(1)解:分情况讨论:①当2x +1≥0时原方程可化为2x +1=3 解得x =1; ②当2x +1<0时原方程可化为:−2x −1=3解得:x =−2所以原方程的解为x =1或x =−2;(2)解:分情况讨论:①当x −1>4时解得:x >5;②当x −1<−4时解得:x <−3所以不等式解集为x >5或x <−3.。

中考数学第一轮复习测试卷 方程和方程级

中考数学第一轮复习测试卷 方程和方程级

立新中学中考数学第一轮复习测试卷方程与方程组班级 姓名一、选择题(每小题4分,共40分)1、方程1-3x=0的解是( C ) A.x= -3 B.x=3 C.x=31-D.x=31 2、二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是( B )A.⎩⎨⎧==61y xB.⎩⎨⎧=-=41y xC.⎩⎨⎧=-=23y xD.⎩⎨⎧==23y x3、方程(x +1)(x -2)=0的根是( D )A .x =-1B .x =2C .x 1=1, x 2=-2D .x 1=-1,x 2=2 4、关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( B )A.1B.-1C.1或-1D.215、用配方法解方程x 2+6x+7=0,变形正确的是( C )A.(x+3)2=―2B.(x+3)2=16C.(x+3)2=2D.(x+3)2=―166、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( C )A.x – y =42.71326B. y – x =42.71326C. x1326–y 1326= 7.42D.y 1326–x1326= 7.42 7、在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( B )A .x 2+130x -1400=0B .x 2+65x -350=0C .x 2-130x -1400=0D .x 2-65x -350=08、某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折。

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

精品 中考数学一轮综合复习 第03课 方程与不等式(一元一次方程、二元一次方程组)

中考数学一轮复习第03课 方程与不等式(一元一次方程、二元一次方程组)知识点:⎝⎛⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧优化问题:调配问题:利润问题:路程问题:工程问题:方程应用题类型:二元一次方程组解法::二元一次方程组表达式二元一次方程定义:二元一次方程组解方程步骤:定义:一元一次方程.5.4.3.2.1课堂练习:1.若代数式x+4的值是2,则x 等于( )A.2B.﹣2C.6D.﹣62.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( )A.60元B.80元C.120元D.180元3.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

那么顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样4.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A.⊗=1,⊕=1B.⊗=2,⊕=1C.⊗=1,⊕=2D.⊗=2,⊕=25.已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为( ) A.±2 B. 2 C.2 D.4 6.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )A.6折B.7折C.8折D.9折7.西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A.702.5 2.5420x y x y +=⎧⎨+=⎩B.702.5 2.5420x y x y -=⎧⎨+=⎩C.702.5 2.5420x y x y +=⎧⎨-=⎩D. 2.5 2.54202.5 2.570x y x y +=⎧⎨-=⎩8.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析一、选择题1.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b=⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y +=2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩3.三元一次方程5x y z ++=的正整数解有( ) A .2组B .4组C .6组D .8组4.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250xy y x +=⎧⎪⎨-=⎪⎩ B .1800250x y x y +=⎧⎪⎨-=⎪⎩ C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩5.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:28.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888 C .957 D .69 9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满. 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.18.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .19.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 24.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组:}}1{,?{?3{39,311?4max x x ymin x x y-=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x ay b =⎧⎨=⎩分别代入四个选项即可.【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩,当31x y =⎧⎨=-⎩时,30x y +=,A 选项错误;36x y -=,B 选项错误; 4315x y -=,C 选项错误; 439x y +=,D 选项正确;【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.2.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.3.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点睛】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.4.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.C解析:C 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】 ∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.10.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=.∴标号为①的正方形的边长116l.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.二、填空题11..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.15.3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 19.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.20.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=, 解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)购买一等票为 195m;购买二等票为162m;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.23.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b-+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元, 则有14034x y x y +=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.当a=0时,21xy=⎧⎨=⎩;当a=-2时,42xy=⎧⎨=⎩;当a=-3时,84xy=⎧⎨=⎩【分析】先把a当作已知求出x、y的值,再根据方程组有正整数解,得到关于a的一元一次不等式组,求出m的取值范围,再找出符合条件的正整数a的值即可.【详解】解:方程组2420x ay x y +=⎧⎨-=⎩解得:8444x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a >-4,∵方程组的解是正整数,a >-4,∴a=-3,-2,0,它的所有正整数解为:84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m 当作已知表示出x 、y 的值,再根据方程组有正整数解得出关于m 的不等式组,求出m 的正整数解即可.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组. 详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙。

专题06二元一次方程组(测试)(学生版)-2023年中考一轮复习讲练测(浙江专用)

专题06二元一次方程组(测试)(学生版)-2023年中考一轮复习讲练测(浙江专用)

2023年中考数学总复习一轮讲练测(浙江专用)专题06二元一次方程组 (测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•上城区一模)二元一次方程4x ﹣y =2的解可以是( )A .{x =−2y =10B .{x =−1y =2C .{x =1y =2D .{x =2y =−62.(2021•西湖区校级三模)解方程组{3x −2y =13x +y =3加减消元法消元后,正确的方程为( ) A .6x ﹣y =4 B .3y =2 C .﹣3y =2 D .﹣y =23.(2020•温州三模)已知方程组{3a +b =53a +5b =13,则a +b 的值为( ) A .1 B .2 C .3 D .44.(2022春•温州期末)用加减消元法解二元一次方程组{3x −2y =7①x −y =2②时,下列方法中可以消元的是( ) A .①+② B .①﹣② C .①+②×2 D .②×3﹣①5.(2022春•龙湾区期中)用代入消元法解方程组{n =m −12m +n =3,代入消元正确的是( ) A .2m ﹣m +1=3 B .2m +m +1=3 C .2m +m ﹣1=3 D .2m ﹣m ﹣1=36.(2022春•西湖区校级期中)在解关于x ,y 的方程组{ax −2by =8①2x =by +2②时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为{x =2y =1,则原方程组的解为( ) A .{a =2b =2 B .{x =2y =2 C .{x =−2y =−3 D .{x =2y =17.(2022春•嘉兴期中)解关于x ,y 的方程组{(a +2)x +(3b +2)y =3①(5b −1)x −(4a −b)y =7②可以用①×3﹣②,消去未知数x ,也可以用①+②×4消去未知数y ,则a ,b 的值分别为( )A .1,﹣2B .﹣1,﹣2C .1,2D .﹣1,28.(2022春•青田县校级月考)用加减法解方程组{x +3y =52x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是( )①{2x +6y =52x −y =4②{2x +6y =102x −y =4③{x +3y =56x −3y =4④{x +3y =56x −3y =12A .①②B .②③C .①③D .②④9.(2022春•杭州期中)已知关于x ,y 的方程组{x +2y =k 2x +3y =3k −1,以下结论其中不成立是( ) A .不论k 取什么实数,x +3y 的值始终不变B .存在实数k ,使得x +y =0C .当y ﹣x =﹣1时,k =1D .当k =0,方程组的解也是方程x ﹣2y =﹣3的解10.(2022•宁波模拟)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两.问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x 两,一枚白银的重量为y 两,则可列方程组为( )A .{9x =11y 9x −y =11y −x +13B .{9x =11y 9x −y =11y −x −13C .{9x =11y 8x +y =10y +x +13D .{9x =11y 8x +y =10y +x −13 二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022•黄岩区一模)方程组{x +y =12x +y =5的解是 . 12.(2022•诸暨市二模)已知{x =1y =−3是方程4x ﹣ay =7的一个解,那么a 的值是 . 13.(2022•镇海区校级二模)有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需215元;购买甲商品1件、乙商品2件、丙商品3件共需185元.那么购买甲、乙、丙商品各1件时共需 元.14.(2022•松阳县一模)已知关于x ,y 的二元一次方程组{x +y =a +b −6x −y =a −b +6(a ,b 为实数). (1)若x =2a ﹣1,则a 的值是 ;(2)若x ,y 同时满足ax +by +4=0,2x +5y ﹣ay =0,则a +b 的值是 .15.(2022•舟山二模)如图,用图1中的a 张长方形和b 张正方形纸板作侧面和底面,做成如图2的竖式和横式两种无盖纸盒,若a +b 的值在285和315之间(不含285与315),且用完这些纸板做竖式纸盒比横式纸盒多30个,则a 的值可能是 .16.(2022•定海区校级模拟)已知关于x ,y 的二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =2y =3,则关于x ,y 的二元一次方程组{a 1(x +y)+b 1(x −y)=2c 1a 2(x +y)+b 2(x −y)=2c 2的解为 . 三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•宁波模拟)解方程组:(1){y =2x −35x −y =3; (2){x 2+y 3=16x 3−y 4=5. 18.(2022春•青田县校级月考)已知关于x 、y 的方程组{mx −12ny =2mx +ny =5的解为{x =3y =2,求m 、n 的值. 19.(2022春•义乌市月考)当k 为何值时,方程组{3m −2n =2k 2m +7n =k −18的解m ,n 的值互为相反数? 20.(2022春•义乌市校级月考)若方程组{3x +2y =2k 5x +4y =k +3的解x 、y 的和为﹣5,求k 的值,并解此方程组. 21.(2017•江东区模拟)某工厂接到一批服装加工业务,若由甲车间独做,可比规定时间提前8天完成,甲车间在制作完这批服装的60%后因另有任务,立即将剩余服装全部交给乙车间,结果刚好按规定时间完成,已知甲、乙两个车间每天分别制作200和120件服装,求该工厂所接的这批服装件数和规定时间.22.(2022春•长兴县期中)“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份销售出这两款毛绒玩具的数量与十二月一样,求该旗舰店当月销售的利润.23.(2022春•上城区校级期中)目前,新型冠状病毒在我国虽可控可防,但不可松懈,建兰中学欲购置规格分别为200mL和500mL的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L的免洗手消毒液全部装入最大容量分别为200mL和500mL的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.。

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。

2024年中考数学一轮复习专题:一元二次方程-试卷

2024年中考数学一轮复习专题:一元二次方程-试卷

2024年中考数学一轮复习专题:一元二次方程一、选择题(本大题共10道小题)1. (2022·河北邯郸)已知a 、c 互为相反数,则关于x 的方程ax 2+5x+c=0(a ≠0)根的情况( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为52. (2022·湖北荆州)关于x 的方程x 2-3kx-2=0实数根的情况,下列判断正确的是( )A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根3. (2023·怀化模拟)已知一元二次方程x 2-kx +4=0有两个相等的实数根,则k 的值为( )A.k =4B.k =-4C.k =±4D.k =±24. (2023·云南)若一元二次方程ax 2+2x +1=0有两个不相等的实数根,则实数a 的取值范围是( )A.a<1B.a ≤1C.a ≤1且a ≠0D.a<1且a ≠05. (2023·泰安中考)已知关于x 的一元二次方程kx 2-(2k -1)x +k -2=0有两个不相等的实数根,则实数k 的取值范围是( )A.k >-14B.k <14C.k >-14且k ≠0 D.k <14 且k ≠0 6. (2023•滨州)对于任意实数k,关于x 的方程x 2-(k+5)x+k 2+2k+25=0的根的情况为( )A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定7. (2023·娄底模拟)某电动自行车厂四月份的产量为1000辆,由于市场需求量不断增大,六月份的产量提高到1210辆,则该厂五、六月份的月平均增长率为( )A.10%B.11%C.12.1%D.21%8. (2023·张家界)对于实数a,b 定义运算“☆”如下:a ☆b =ab 2-ab,例如3☆2=3×22-3×2=6,则方程1☆x =2的根的情况为( )A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9. (2023•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A.35×20-35x-20x+2x 2=600B.35×20-35x-2×20x =600C.(35-2x)(20-x)=600D.(35-x)(20-2x)=60010. (2023•仙居县模拟)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均单株盈利5元;以同样的栽培条件,若每盆每増加1株,平均单株盈利就减少0.5元,要使每盆的盈利为20元,需要每盆増加几株花苗?设每盆增加x 株花苗,下面列出的方程中符合题意的是( )A.(x+3)(5-0.5x)=20;B.(x-3)(5+0.5x)=20;C.(x-3)(5-0.5x)=20;D.(x+3)(5+0.5x)=20二、填空题(本大题共8道小题)11. (2023•扬州)方程(x+1)2=9的根是 .12. (2023·河北承德)已知x=1是关于x 的一元二次方程x 2+mx+n=0的一个根,则m+n 的值为______.13. (2022·湖北黄冈)已知一元二次方程x 2-4x+3=0的两根为x 1、x 2,则x 1•x 2=_____.14. (2023•辽阳)若关于x的一元二次方程x2+2x-k=0无实数根,则k的取值范围是.15. (2023•衡水模拟)已知-1是方程x2+ax-b=0的一个根,则a2-b2+2b的值为__________.16. (2023•江西)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为.17. (2022·湖北十堰)对于实数m,n,定义运算m⨂n=mn2-n.若2⨂a=1⨂(-2)则a=______.18. (2023·广东中考)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足-3<x1<-1,1<x2<3,则符合条件的一个方程为________.三、计算题(本大题共2道小题)19. (2023秋•昌图县期末)用适当的方法解下列一元二次方程.(1)2x(x-1)=3(x-2)+3; (2)(3x-1)2=4(x+3)2.20. (2023•徐州)(1)解方程:2x2-5x+3=0四、解答题(本大题共6道小题)21. (2023朝阳区)关于x的一元二次方程x2-(m+1)x+m=0.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m的取值范围.22. (2023秋•重庆期末)已知,关于x的方程x2﹣2mx+m2﹣1=0.(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求代数式﹣2m2+8m﹣3的值.23. (2023东城区)已知关于x的一元二次方程mx2-(m+1)x+1=0(m≠0).(1)求证:此方程总有实数根;(2)写出一个m的值,使得此该方程的一个实数根大于1,并求此时方程的根.24. (2023西城区)已知关于x的方程(k-1)x2-2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.25. (2023秋•马村区月考)若(a+1)x|2a-1|=5是关于x的一元二次方程,则a是多少,且该一元二次方程的解为多少?26. (2023秋•白云区校级期中)已知关于x的一元二次方程kx2-(k+8)x+8=0.(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为4,另两边长恰好是这个方程的两个根,求此时的k值.。

广东省2024年九年级中考数学一轮复习:一元一次方程 模拟练习(含解析)

广东省2024年九年级中考数学一轮复习:一元一次方程 模拟练习(含解析)

2024年广东省九年级数学中考一轮复习:一元一次方程模拟练习一、单选题1.(2023·广东清远·二模)方程的解是,则a等于()A.B.0C.3D.22.下列等式变形中,不正确的是()A.若,则B.若,则C.若,则D.若,则3.(2023·广东清远·二模)下列方程中,解是的方程是()A.B.C.D.4.若方程和方程的解相同,则()A.1B.2C.D.5.(2023·广东广州·一模)如图,用若干根相同的小木棒拼成图形,拼第一个图形需要3根小木棒,拼第二个图形需要5根小木棒,拼第3个图形需要7根小木棒……若按照这样的方法拼成的第n个图形需要2023根小木棒,则( )A.1010B.1011C.1012D.10136.已知代数式比多,则的值为()A.B.C.D.7.(2023·广东汕头·一模)某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套.为使每天加工的大、小齿轮刚好配套,设每天加工大齿轮的有x人,则下面所列方程正确的是()A.B.C.D.8.(2023·广东肇庆·三模)用黑色和白色的正方形的卡片按照如图所示的规律拼图案,即从第2个图案开始,每个图案都比前一个图案多3个黑色正方形.若第n个图案中黑色正方形的个数为55,则n的值为()A.17B.18C.19D.209.《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为天,则可列出正确的方程为( )A.B.C.D.10.(2023·广东阳江·三模)放学后,小万到学习用品店购买笔记本和中性笔,共花费元,已知笔记本的单价是元,中性笔的单价是元,小万购买中性笔的数量再多两支就是笔记本的两倍,设小万购买笔记本的数量为,则可列方程为( )A.B.C.D.11.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清醑酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒,醑酒各几斗?如果设清酒斗,那么可列方程为( )A.B.C.D.12.(2023·浙江杭州·二模)某公司本月信誉评分为96分,比上个月的信誉评分提高了.设该公司上个月的信誉评分为x.则()A.B.C.D.二、填空题13.(若是方程的解,则m的值为.14.(2023·广东佛山·二模)当时,代数式的值与代数式的值相等.15.方程2x﹣1=3的解是.16.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.按下面的程序计算,若开始输入的x值为正数,最后输出的结果为53,请写出符合条件的所有x的值.18.(2023·广东江门·一模)在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求的和中,“…”代表按此规律无限个数相加不断求和.我们可设.则有,即,解得,故.类似地,请你计算:.(直接填计算结果即可)19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则该商品每件的进价为元.20.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住人,那么有人无房可住;如果每间客房住人,那么就空出一间房.则该店有客房间.21.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设城中有x户人家,则可以列得方程为.22.(2023·广东清远·三模)小华和小兰两家相距2400米,他们相约到两家之间的剧院看戏,两人同时从家出发匀速前行,出发15分钟后,小华发现忘带门票,立即以原来速度的倍返回家中,取完东西后仍以返回时的速度去见小兰;而小兰在出发30分钟时到达剧院,等待10分钟后未见小华,于是仍以原来的速度,从剧院出发前往小华家,途中两人相遇.假设小华掉头、取票时间均忽略不计.两人之间的距离y (米)与小华出发时间x(分钟)之间的关系如图所示,则当两人相遇时,小兰距离剧院有米.三、解答题23.(2023·广东广州·一模)解一元一次方程:24.南昌的雾霾引起了小张对环保问题的重视.一次旅游小张思考了一个问题.从某地到南昌,若乘火车需要小时,若乘汽车需要小时.这两种交通工具平均每小时二氧化碳的排放量之和为千克,火车全程二氧化碳的排放总量比汽车的多千克,分别求火车和汽车平均每小时二氧化碳的排放量.25.根据小王在两个超市看到的商品促销信息解决下列问题:(1)当一次性购物标价总额是400元时,甲、乙两超市实付款分别是多少?(2)当一次性购物标价总额是多少时,甲、乙两超市实付款一样?26.某校在开展“健康中国”读书征文评比活动中,对优秀征文予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知个丙种奖品的价格是个甲种奖品价格的倍,个乙种奖品的价格比个甲种奖品的价格多元.用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍.(1)求个甲、乙、丙三种奖品的价格分别是多少元?(2)该校计划:购买甲、乙、丙三种奖品共个,其中购买甲种奖品的数量是丙种奖品的倍,且甲种奖品的数量不少于乙、丙两种奖品的数量之和.求该校完成购买计划最多要花费多少元?27.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?参考答案:1.C【分析】本题考查了一元一次方程的解的定义,把代入方程,得到一个关于a的一元一次方程是关键.【详解】解:把代入方程得:,解得:,故选:C.2.B【分析】根据等式的性质逐个判断即可.【详解】解:A.∵,∴,故本选项不符合题意;B.∵,,∴,故本选项符合题意;C.∵,∴,故本选项不符合题意;D.∵,∴,故本选项不符合题意;故选:B.【点睛】本题考查了等式的性质:等式性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.掌握不等式的性质是解题的关键.3.D【分析】求出每个一元一次方程的解即可做出判断.【详解】解:A.,解得,故选项不符合题意;B.,解得,故选项不符合题意;C.,解得,故选项不符合题意;D.,解得,故选项符合题意.故选:D.【点睛】此题考查了一元一次方程的解,熟练掌握一元一次方程的解法并正确求解是解题的关键.4.D【分析】先求出的解,再代入到得到关于a的一元一次方程,即可求解.【详解】解:解得,将代入,得,解得.故选D.【点睛】本题考查解一元一次方程与一元一次方程的解,正确理解一元一次方程的解是解题的关键.5.B【分析】探索遵循的规律是,建立方程计算即可.【详解】根据题意,遵循的基本规律是第n个图形需要根小木棒,∴,解得,故选B.【点睛】本题考查了整式的加减中规律探索,一元一次方程的解法,熟练掌握探索规律,灵活解方程是解题的关键.6.B【分析】利用解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为,进行计算即可解答.【详解】解:由题意得:,,,,,,故选:B.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.7.A【分析】本题考查了一元一次方程的应用,设加工大齿轮的有x人,则加工小齿轮的有人,根据1个大齿轮和2个小齿轮配成一套,列出方程即可.【详解】解:设加工大齿轮的有x人,则加工小齿轮的有人,根据题意得:.故选:A.8.C【分析】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.观察图形可知,第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;由此得出第n个图形共有个黑色正方形,即可求出n的值.【详解】解:∵第1个图形共有1个黑色正方形;第2个图形共有个黑色正方形;第3个图形共有个黑色正方形;第4个图形共有个黑色正方形;…;第n个图形共有个黑色正方形,若第n个图案中黑色正方形的个数为55,则,解得:.故选:C.9.B【分析】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为天,快马送到所需时间为天,再利用速度路程时间,结合快马的速度是慢马的2倍,即可得出关于的分式方程,此题得解.【详解】解:规定时间为天,慢马送到所需时间为天,快马送到所需时间为天,又快马的速度是慢马的2倍,两地间的路程为900里,.故选:B.10.B【分析】本题考查了一元一次方程的应用;设小万购买笔记本的数量为,则小万购买中性笔的数量为支,根据题意列出方程,即可求解.【详解】解:设小万购买笔记本的数量为,则可列方程为,故选:B.11.A【分析】设清酒有斗,则醑酒有斗,然后根据一共有30斗谷子列出方程即可.【详解】解:设清酒有斗,由题意得,,故选:A.【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.12.C【分析】设该公司上个月的信誉评分为x.则本月的信誉评分可表示为,再建立方程即可.【详解】解:设该公司上个月的信誉评分为x.则;故选C【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键.13.2【分析】将代入方程中即可.【详解】解:将代入方程中,则,解得:,故答案为:2.【点睛】本题考查方程的解,能够熟练掌握方程解的概念是解决本题的关键.14.【分析】由题意可得:,求解即可.【详解】解:由题意可得:,解得,故答案为:.【点睛】此题考查了一元一次方程的求解,解题的关键是理解题意,正确列出方程.15.x=2.【分析】根据一元一次方程的解法即可得.【详解】2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.【点睛】本题考查了一元一次方程的解法,基本步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)把系数化为1.16.4【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【详解】∵4※x=4+x=20,∴x=4.故答案为:4.【点睛】本题考查了解一元一次方程,依照新运算的定义找出关于x的一元一次方程是解题的关键.17.1或5或17【分析】根据输出结果,由运算顺序,列一元一次方程求出结果.【详解】解:根据题意得:,解得,.根据题意得:,解得,.根据题意得:,解得,.故答案为:1或5或17.【点睛】本题考查有理数的混合运算,掌握用方程的思想解决此题,转化为一元一次方程解决此题是关键.18.【分析】设,仿照例题进行求解.【详解】设,则,,解得,,故答案为:.【点睛】本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.19.240【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】解:设这种商品每件的进价为x元,根据题意得:x(1+10%)=330×0.8解得:x=240.故答案为240.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.20.【分析】设该店有x间客房,根据两种入住方式的总人数相同建立方程,然后求解即可.【详解】设该店有x间客房由题意得:解得故答案为:8.【点睛】本题考查了一元一次方程的实际应用,理解题意,正确建立方程是解题关键.21.x+x=100【分析】设城中有x户人家,根据“今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完”,即可得出关于x的一元一次方程,此题得解.【详解】设城中有x户人家,依题意,得:x+x=100.故答案为:x+x=100.【点睛】本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.120【分析】本题考查了一次函数的应用,解题关键是读懂函数图象;先求出小兰和小华的速度,再根据函数图象求出小华后来的速度和再次出发后两人相遇的时间,由此即可得出答案.【详解】解:由题意得,小华从发现没带门票到返回家中拿到票所用时间为10分钟,当小华拿到门票时,小兰用25分钟走了(米),小兰的速度:(米分),小兰家与剧院的距离为(米),小华家与剧院的距离为(米);又他们从家出发15分钟后,两人相距1200米,,即,解得,(米分),小华后来的速度为(米分);设小华再次从家出发到两人相遇所用时间为分,则,解得,,两人相遇时,小兰与剧院的距离为(米).故答案为:120.23.【分析】去括号、移项并合并同类项、系数化为1即可求解.【详解】解:去括号得:,移项、合并同类项得:,系数化为1得:,即方程的解为:.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤并正确解答是关键.24.火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【分析】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据火车全程二氧化碳的排放总量比汽车的多54千克即可得出关于x的一元一次方程,解之即可得出结论.【详解】设火车平均每小时的二氧化碳排放量为x千克,则汽车平均每小时排放量为(70﹣x)千克,根据题意得:3x﹣9(70﹣x)=54解得:x=57,∴70﹣x=70﹣57=13.答:火车平均每小时的二氧化碳排放量为千克,则汽车平均每小时排放量为13千克.【点睛】本题考查了一元一次方程的应用,根据数量关系总排放量=平均每小时的排放量×排放时间结合两种交通工具总排放量之间的关系列出关于x的一元一次方程是解题的关键.25.(1)甲超市付款340元,乙超市付款360元(2)1000元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是400元时,甲超市实付款=购物标价×0.85,乙超市实付款=400×0.9,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可.【详解】(1)解:当一次性购物标价总额是400元时,甲超市实付款为元,乙超市实付款为元.(2)解:由题意可知:当一次性购物标价总额不超过500元时,乙超市实付款一定比甲超市多.当一次性购物标价总额超过500元时,设一次性购物标价总额为x元时,甲、乙两超市实付款一样,由题意可得:,解得:,答:当一次性购物标价总额为1000元时,甲、乙两超市实付款一样.【点睛】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.26.(1)个甲、乙、丙三种奖品的价格分别是元、元、元;(2)该校完成购买计划最多要花费元【分析】(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,根据“用元分别去购买甲、乙、丙三种奖品,购买到甲和丙两种奖品的总数量是乙种奖品数量的倍”列方程并解答;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,根据“购买甲种奖品的数量不少于乙、丙两种奖品的数量之和”列不等式并解不等式,设该校购买奖品的费用为元,根据题意列出关系式:,并根据这一次函数的性质即可求解.【详解】解:(1)设个甲种奖品的价格为元,则个丙种奖品的价格为元,个乙种奖品的价格为元,依题意,得:解得:,经检验,是原方程的解,且符合题意,,,故:个甲、乙、丙三种奖品的价格分别是元、元、元;(2)设购买丙种奖品个,则购买甲种奖品个,购买乙种奖品个,由题意有:,,设该校购买奖品的费用为元,则,随的增大而减小,时,取最大值,且.故:该校完成购买计划最多要花费元.【点睛】本题考查一元一次不等式和一元二次方程的应用,解决本题的关键是正确解读题意题意,找到符合题意的关系式及所求量的等量关系.27.(1)购进甲商品40件,乙商品60件;(2)进货方案有三种①甲48件,乙52件,②甲49件乙51件③甲50件乙50件;(3)购买甲商品10件,乙商品8件或者9件【分析】1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x 的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可【详解】(1)设:购进甲商品x件,购进乙商品(100-x)件.由已知得15x+35(100-x)=2700解得x=40答:购进甲商品40件,乙商品60件.(2)设:购进甲商品x件,购进乙商品(100-x)件.利润W=5x+10(100-x)根据题意可得5x+10(100-x)≤760和x≤50;解得48≤x≤50,∴进货方案有三种①甲48件,乙52件,②甲49件,乙51件③甲50件,乙50件(3)第一天:没有打折,故购买甲种商品:200÷20=10(件)第二天:打折,打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)答:购买甲商品10件,乙商品8件或者9件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.。

2022年春北师大版九年级数学中考一轮复习《一元二次方程的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《一元二次方程的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《一元二次方程的应用》专题达标测试(附答案)一.选择题(共8小题,满分40分)1.某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有()支队伍参赛.A.4B.5C.6D.72.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P,Q两点从出发开始几秒时,点P和点Q的距离是10cm.()(若一点到达终点,另一点也随之停止运动)A.2s或s B.1s或s C.s D.2s或s3.某品牌足球2020年单价为200元,到2022年后,公司将该品牌足球的单价确定为162元,则2020年到2022年该品牌足球单价平均每年降低的百分率是()A.10%B.19%C.20%D.30%4.现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为950m2,那么小道的宽度应是()A.1m B.1.5m C.2m D.2.5m5.某化肥厂生产的化肥产量经过两年增长21%,则每年比上一年平均增长的百分数为()A.10%B.10.5%C.11%D.12%6.一个正方形的边长增加3cm,它的面积就增加了39cm2,这个正方形的边长为()A.5cm B.6cm C.8cm D.10cm7.如图,学校建一长方形自行车棚,一边靠墙(墙长18米),另三边用总长50米的栏杆围成,留2米宽的门,若想建成面积为240平方米的自行车棚,则车棚垂直于墙的一边的长为()A.6米B.20米C.20米或6米D.不存在8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到C点后停止,点P也随之停止运动,当四边形APQC的面积为9cm2时,则点P运动的时间是()A.3s B.3s或5s C.4s D.5s二.填空题(共8小题,满分40分)9.新冠肺炎全球蔓延,为防控疫情,做到有“礼”有“距”,“碰肘礼”逐渐流行起来.某次会议上,每两个参加会议的人都相互一次“碰肘礼”,经统计所有人共碰肘36次,则这次会议到会人数是人.10.如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过s后,P,Q两点之间相距25cm.11.《九章算术》中有一题:“今有二人同立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问甲走的步数是.12.某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分率相同,则每次降价的百分率为.13.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2,图象如图所示,则小球从抛出到落地共用时为s.14.某商店如果将进价为每件8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价、减少进货量的方法增加利润,如果这种商品每件的售价每涨1元,那么每天的销售量就会减少20件,若要想每天获得640元的利润,则每件的售价定为最合适.15.小强用一根10m长的铁丝围成了一个面积为6m2的矩形,则这个矩形较大边的长是m.16.一个直角三角形的两条直角边的边长相差7cm,且三角形的面积为30cm2,则该三角形的斜边长为.三.解答题(共6小题,满分40分)17.某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.(1)直接写出y与x的函数关系式;(2)若每件T恤衫的成本价是45元,当100<x≤500件(x为正整数)时,服装厂如果想获得8000元利润,求一次批发多少件时所获利润为8000元?18.新冠疫情全球爆发,口罩成了生活必需品,某药店销售一种口罩,每包进价为9元,日均销售量y(包)与每包售价x(元)成一次函数关系,且10≤x<16.当每包售价为11元时,日均销售量是48包,当每包售价为15元时,日均销售量是16包.(1)求y关于x的函数表达式;(2)要使日均利润达到128元,每包售价应定为多少元?19.“疫情”期间,某商场积压了一批商品,现欲尽快清仓.老板决定在抖音直播间降价促销,据调查发现,若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,设每件商品降价x元.(1)每件商品降价x元后,可售出商品件(用含x的代数式表示);(2)若要使销售该商品的总利润达到28000元,并能尽快清仓,则每件商品应降价多少元?20.近日,广西南宁苏爷爷自家果园的上千斤皇帝柑发生蓝变(即果皮白皮层变蓝),无法正常售卖,他决定将这些皇帝柑免费寄给科研人员.网友看到苏爷爷的故事,纷纷订购表示支持.已知苏爷爷自家果园的皇帝柑有两种类型在售,一种是实惠装中型果实(简称“中果”),一种是豪华装大型果实(简称“大果”).(1)网友小张买了2箱中果,1箱大果,花了116元;网友小李买了1箱中果,2箱大果,花了124元.求每箱中果和大果的售价分别是多少元?(2)在(1)的条件下,正常情况平均每周可销售30箱大果.但为了减少库存,苏爷爷决定对大果降价销售,经调查发现,一箱大果的售价每降低2元,大果的销量每周可增加5箱,如果大果每周的销售额为1600元,且降低后的售价不低于(1)中大果售价的70%.求每箱大果的售价应该降低多少元?21.如图,点O为矩形ABCD内部一点,过点O作EF∥AD交AB于点E,交CD于点F,过点O作GH∥AB交AD于点G,交BC于点H,设CH=x,BH=8﹣2x,CF=x+2,DF=3x﹣3.(1)x的取值范围是:;(2)矩形BCFE的周长等于;(3)若矩形ABCD的面积为42,x的值为;(4)求矩形OFCH的面积S的取值范围.22.某公司自主研发一款健康的产品﹣﹣燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.参考答案一.选择题(共8小题,满分40分)1.解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.解得:x1=6,x2=﹣5(不合题意舍去),答:共有6支队伍参赛.故选:C.2.解:设当P、Q两点从出发开始x秒时(x<),点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故选:D.3.解:设2020年到2022年该品牌足球单价平均每年降低的百分率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.4.解:设小道的宽度为xm,依题意得:(40﹣2x)(26﹣x)=950,整理得:x2﹣46x+45=0,解得:x1=1,x2=45.又∵40﹣2x>0,∴x<20,∴x=1.故选:A.5.解:设每年比上一年平均增长的百分数为x,原生产化肥a吨,根据题意可得:a(1+x)2=a•(1+21%),解得:x1=10%,x2=﹣2.1(不合题意舍去),故选:A.6.解:设这个正方形原来的边长为x,则x2+39=(x+3)2解得x=5,故选:A.7.解:设垂直于墙的一边的长为x米,则平行于墙的一边的长为(50+2﹣2x)米,依题意得:x(50+2﹣2x)=240,整理得:x2﹣26x+120=0,解得:x1=6,x2=20.当x=6时,50+2﹣2x=50+2﹣2×6=40>18,不合题意,舍去;当x=20时,50+2﹣2x=50+2﹣2×20=12<18,符合题意.故选:B.8.解:设动点P,Q运动t秒后,能使四边形APQC的面积为9cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=(24﹣9),解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使四边形APQC的面积为9cm2.故选:A.二.填空题(共8小题,满分40分)9.解:设这次会议到会人数是x人,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).故答案为:9.10.解:设x秒后P、Q两点相距25cm,则CP=2xcm,CQ=(25﹣x)cm,由题意得,(2x)2+(25﹣x)2=252,解得,x1=10,x2=0(舍去),则10秒后P、Q两点相距25cm.故答案是:10.11.解:设甲、乙两人相遇的时间为t,则乙走了3t步,甲斜向北偏东方向走了(7t﹣10)步,依题意得:102+(3t)2=(7t﹣10)2,整理得:40t2﹣140t=0,解得:t1=,t2=0(不合题意,舍去),∴7t=7×=.故甲走的步数是.故答案为:.12.解:设每次降价的百分率为x,依题意得:56(1﹣x)2=31.5,解得:x1=0.25=25%,x2=1.75(不合题意,舍去).故答案为:25%.13.解:令h=0,则30t﹣5t2=0,解得:t=0或t=6,∴小球从抛出到落地共用时为6s,故答案为:6.14.解:设每件商品的售价定为x元,则每件商品的销售利润为(x﹣8)元,每天的进货量为200﹣20(x﹣10)=(400﹣20x)件,依题意得:(x﹣8)(400﹣20x)=640,整理得:x2﹣28x+192=0,解得:x1=12,x2=16.又∵现采用提高售价,减少进货量的方法增加利润,∴x=16.∴每件商品的售价定为16元最为合适.故答案为:16.15.解:设这个矩形较大边的长是xm,则较小的边是(5﹣x)m,根据题意,得x(5﹣x)=6.解得x1=2(舍去),x2=3.所以,这个矩形较大边的长是3m.故答案是:3.16.解:设较短直角边的长为xcm,则较长直角边的长为(x+7)cm,依题意得:x(x+7)=30,整理得:x2+7x﹣60=0,解得:x1=5,x2=﹣12(不合题意,舍去).∴该三角形的斜边长===13(cm).故答案为:13cm.三.解答题(共6小题,满分40分)17.解:(1)当0<x≤100且x为正整数时,y=80;当100<x≤500且x为正整数时,设y与x的函数关系式为y=kx+b(k≠0),将(100,80),(500,60)代入y=kx+b得:,解得:,∴此时y与x的函数关系式为y=﹣x+85;当x>500且x为正整数时,y=60.故y与x的函数关系式为y=.(2)当100<x≤500且x为正整数时,y=﹣x+85.依题意得:(y﹣45)x=8000,即(﹣x+85﹣45)x=8000,整理得:x2﹣800x+160000=0,解得:y1=y2=400.答:一次批发400件时所获利润为8000元.18.解:(1)设y关于x的函数表达式为y=kx+b(k≠0),将(11,48),(15,16)代入y=kx+b得:,解得:,∴y关于x的函数表达式为y=﹣8x+136(10≤x<16).(2)依题意得:(x﹣9)(﹣8x+136)=128,整理得:(x﹣13)2=0,解得:x1=x2=13,∴要使日均利润达到128元,每包售价应定为13元.19.解:(1)∵若每件商品盈利50元,可售出500件,商品单价每下降1元,则可多售出20件,∴当每件商品降价x元时,每件商品的销售利润为(50﹣x)元,可售出商品(500+20x)件.故答案为:(500+20x).(2)依题意得:(50﹣x)(500+20x)=28000,整理得:x2﹣25x+150=0,解得:x1=10,x2=15.又∵要尽快清仓,∴x=15.答:每件商品应降价15元.20.解:(1)设每箱中果的售价为x元,每箱大果的售价为y元,依题意得:,解得:.答:每箱中果的售价为36元,每箱大果的售价为44元.(2)设每箱大果的售价应该降低m元,则每箱大果的售价为(44﹣m)元,每周的销售量为(30+5×)箱,依题意得:(44﹣m)(30+5×)=1600,整理得:m2﹣32m+112=0,解得:m1=4,m2=28.44×70%=30.8(元).当m=4时,44﹣m=44﹣4=40>30.8,符合题意;当m=28时,44﹣m=44﹣28=16<30.8,不合题意,舍去.答:每箱大果的售价应该降低4元.21.解:(1)由题意知,解得1<x<4,故答案为:1<x<4;(2)由题知(8﹣2x+x+x+2)×2=20,故答案为:20;(3)由题知(8﹣2x+x)(3x﹣3+x+2)=42,解得x=2或x=(舍去),故答案为:2;(4)由题知S=x(x+2)=(x+1)2﹣1,∵1<x<4,∴22﹣1<S<52﹣1,即3<S<24.22.解:(1)设该饮品的售价为x元,则每杯的销售利润为(x﹣20)元,每天的销售量为60+3(40﹣x)=(180﹣3x)杯,依题意得:(x﹣20)(180﹣3x)﹣300=600,整理得:x2﹣80x+1500=0,解得:x1=30,x2=50.又∵每件销售品的利润率不得高于成本的80%,∴x=30.答:该饮品的售价为30元.(2)(180﹣3×30)×1×30=(180﹣90)×1×30=90×1×30=2700(元).答:该店每月(按30天计算)的捐款金额为2700元.。

2022年春北师大版九年级数学中考一轮复习《分式方程的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《分式方程的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《分式方程的应用》专题达标测试(附答案)一.选择题(共8小题,满分40分)1.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做()A.12个B.18个C.20个D.24个2.瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h,那么汽车原来的平均速度为()A.80km/h B.75km/h C.70km/h D.65km/h3.一艘轮船在两个码头之间航行,顺水航行81km所需的时间与逆水航行69km所需的时间相同.已知水流速度是速度2km/h,则轮船在静水中航行的速度是()A.25km/h B.24km/h C.23km/h D.22km/h4.学校餐厅准备采购一批餐桌,现有甲、乙两家供应商参与竞标,甲供应商每张餐桌的价格比乙供应商优惠10元,若该校从甲供应商处花1.8万元购得的餐桌数量在乙供应商处需花费2万元,则甲供应商每张餐桌的价格是()A.120元B.110元C.100元D.90元5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为()A.1200,600B.600,1200C.1600,800D.800,1600 6.一项工程由甲、乙两队合做共需4天完成,如果甲队单独做共需6天完成,那么由乙单独一天能完成这件工程的()A.B.C.D.7.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是()A.20元B.18元C.15元D.10元8.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是()米/分.A.600B.400C.300D.150二.填空题(共8小题,满分40分)9.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用4天,则乙厂每天加工套校服.10.为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,甲工程队每天改造的道路长度是米.11.某车间一天生产零件12000套,若将当天生产的零件配套后出售,有几个销售商想合伙购买全部的成套零件后平分,在决定购买时有6个销售商退出,剩下的每个销售商都需要多分担200元,在交款时,又有8个销售商临时退出,剩下的每个销售商还需要再多分担500元,如果销售商每套零件想获得10元的利润,那么每套零件的售价是元.12.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个,已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产万个口罩.13.甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.若甲第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,则甲两次购买这种商品的平均单价是元/件,乙第一次购买这种商品的单价是元/件.14.为了估计鱼塘有多少条鱼,我们从塘里先捕上50条鱼做上标记,再放回塘里,过了一段时间,待带有标记的鱼完全混合于鱼群后,第二次捕上300条鱼,发现有2条鱼带有标记,则估计塘里有条鱼.15.某项工程由甲、乙两人合作需6天完成,若甲单独做需15天完成,则乙单独做需天完成.16.沁园的一种饮品是由果汁原液和纯净水按一定比例配制而成,其中购买一吨果汁原液的钱可以购买18吨纯净水.由于今年果汁价格上涨30%.纯净水价格也上涨了5%,导致配制的这种饮品价格上涨25%,问这种饮品果汁与纯净水的配制比例是.三.解答题(共4小题,满分40分)17.在抗击“新冠肺炎”战役中,某公司接到生产医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,并且在独立生产80万个医用防护口罩时,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少万个?(2)若任务为生产1440万个医用防护口罩,正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?18.某校为美化校园,计划对面积为1800m2区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用1天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.35万元,要求在两周(14天)内完成绿化工作,问应该怎么安排两队工作量最省钱?19.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用的时间与B型机器人搬运600kg所用的时间相等.(1)求A,B两种机器人每小时分别搬运多少化工原料?(2)某化工厂有5560kg化工原料需要搬运,要求搬运所有化工原料的时间不超过6小时,现计划先由8个A型机器人搬运2小时,再增加若干个B型机器人一起搬运,问至少增加多少个B型机器人才能按要求完成?20.武汉市某一工程,若甲工程队单独施工,刚好如期完成;若乙工程队单独施工,要比甲工程队多用16天才能完工.若甲、乙两队合作8天,余下的工程由乙队单独做也正好能如期完成.(1)甲、乙两队单独完成该工程各需多少天?(2)若甲队施工一天,工程款为1.2万元;乙队施工一天,工程款为0.5万元.①若甲队单独完成这项工程,总工程款为万元;若甲、乙两队合作8天,余下的工程由乙队单独完成,总工程款为万元.②实际施工中,甲、乙两队合作m天后,余下的工程乙队单独又做了n天完成.已知整个工期小于15天,总工程款不超过18.2万元,求m和n的值.(m、n均为正整数)参考答案一.选择题(共8小题,满分40分)1.解:设徒弟每天做x个,则师傅每天做(x+6)个,由题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,则x+6=18,即师傅每天做18个,故选:B.2.解:设汽车原来的平均速度是x km/h,则升级后汽车行驶的平均速度为(1+50%)xkm/h,根据题意得:﹣=2,解得:x=70,经检验:x=70是原方程的解,即汽车原来的平均速度70km/h,故选:C.3.解:设轮船在静水中航行的速度是xkm/h,则轮船顺水航行速度为(x+2)km/h,轮船逆水航行速度为(x﹣2)km/h,依题意得:=,解得:x=25,经检验,x=25是原方程的解,且符合题意.故选:A.4.解:设甲供应商每张餐桌的价格是x元,则乙供应商每张餐桌的价格为(x+10)元,由题意得:=,解得:x=90,经检验:x=90是原方程的解,即甲供应商每张餐桌的价格是90元,故选:D.5.解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意,得:﹣=5,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.即甲厂房每天生产1200箱口罩,乙厂房每天生产600箱口罩,故选:A.6.解:设乙队单独做共需x天完成,依题意,得:4(+)=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴乙单独一天能完成这件工程的.故选:D.7.解:设文学类图书平均价格为x元/本,则科普类图书平均价格为1.2x元/本,依题意得:﹣=100,解得:x=20,经检验,x=20是原方程的解,且符合题意.故选:A.8.解:设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x 米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟.故选:C.二.填空题(共8小题,满分40分)9.解:设乙厂每天加工x套校服,则甲厂每天加工1.5x套校服.根据题意得:﹣=4,解得:x=50,经检验:x=50是原方程的解,且符合题意,即乙厂每天加工50套校服,故答案为:50.10.解:设甲工程队每天改造的道路长度是x米,则乙工程队每天改造的道路长度是(x﹣20)米,由题意得:=,解得:x=80,经检验,x=80是所列方程的解,且符合题意,则x﹣20=60.即甲工程队每天改造的道路长度是80米,故答案为:80.11.解:设每套产品的成本价为元,开始共有y个销售商想合伙购买,由题意得:,整理得:,①÷②得:,解得:y=30,把y=30代入①得:x=2.经检验,是原方程组的解.∴原方程组的解为:.∴每套零件的售价是:10+2=12(元).故答案为:12.12.解:设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,则x+4=10,即口罩厂现在每天生产10万个口罩,故答案为:10.13.解:设甲、乙第一次购买这种商品的单价是x元/件,由题意得:﹣=10,解得:x=60,经检验:x=60是原方程的解,且符合题意,即乙第一次购买这种商品的单价是60元/件,第一次购买该商品时甲购买的件数为:2400÷60=40(件),甲第二次购买该商品时的单价为:60﹣20=40(元/件),第二次购买该商品时甲购买的件数为:2400÷40=60(件),∴甲两次购买这种商品的平均单价是:2400×2÷(40+60)=48(元/件),故答案为:48,60.14.解:设塘里有鱼x条,根据题意,得:=,解得x=7500,经检验:x=7500是分式方程的解,且符合题意;故答案为:7500.15.解:设乙单独做需x天完成,依题意得:+=1,解得:x=10,经检验,x=10是原方程的解,且符合题意.故答案为:10.16.解:设这种饮品果汁与纯净水的配制比例为a:b,购买一吨纯净水的价格是x,由题意,得=(1+25%),解得a:b=2:9.故答案为:2:9.三.解答题(共4小题,满分40分)17.解:(1)设乙生产线每天的产能是x万个,则甲生产线每天的产能是2x万个,依题意得:﹣=2,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴2x=2×20=40.答:甲生产线每天的产能是40万个,乙生产线每天的产能是20万个.(2)(40+20)×3+[40×(1+50%)+20×2]×13=60×3+[40×1.5+20×2]×13=60×3+[60+40]×13=60×3+100×13=180+1300=1480(万个),∵1440万个<1480万个,∴再满负荷生产13天能完成任务.18.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=1,解得:x=80,经检验,x=80是原方程的解,则x=100,答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是80m2;(2)∵=<=,∴安排甲做14天,乙做:(1800﹣14×100)÷80=5(天)最省钱,此时费用为:14×0.4+5×0.35=7.35(万元),答:安排甲做14天,乙做5天最省钱.19.解:(1)设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+30)kg原料,根据题意,得:=,解得:x=60.经检验,x=60是所列方程的解.则x+30=90.答:A型机器人每小时搬运90kg原料,B型机器人每小时搬运60kg原料.(2)设增加y个B型机器人,依题意,得:90×6×8+(6﹣2)×60y≥5560,解得:y≥,∵y为正整数,∴y的最小值为6.答:至少要增加6个B型机器人.20.解:(1)设甲队单独完成该工程需x天,则乙队单独完成该工程需(x+16)天,由题意得:+=1,解得:x=16,经检验,x=16是原方程的解,且符合题意,则x+16=32,答:甲队单独完成该工程需16天,则乙队单独完成该工程需32天;(2)①若甲队单独完成这项工程,总工程款为1.2×16=19.2(万元);若甲、乙两队合作8天,余下的工程由乙队单独完成,总工程款为1.2×8+0.5×32=25.6(万元),故答案为:19.2;25.6;②由题意得:+=1,∴3m+n=32,∵m+n<15,m、n均为正整数,∴或,∵1.2m+0.5(m+n)≤18.2,∴17m+5n≤182,∴与均符合,∴或.。

中考数学方程(组)和不等式(组)试题(含答案)题型归纳

中考数学方程(组)和不等式(组)试题(含答案)题型归纳

中考数学方程(组)和不等式(组)试题(含答案)题型归纳以下是为您推荐的中考数学方程(组)和不等式(组)试题(含答案),希望本篇文章对您学习有所帮助。

中考数学方程(组)和不等式(组)试题(含答案)一、选择题1(山西省2分)分式方程的解为A. B. C. D.【答案】B。

【考点】解分式方程。

【分析】观察可得最简公分母是2 ( +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘2 ( +3),得 +3=4 ,解得 =1.检验:把 =1代入2 ( +3)=80。

原方程的解为: =1。

故选B。

2.(山西省2分)五一节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为元,根据题意,下面所列方程正确的是A. B.C. D.【答案】A。

【考点】由实际问题抽象出一元一次方程。

【分析】设该电器的成本价为元,根据按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元可列出方程: (1+30%)80%=2080。

故选A。

3.(内蒙古巴彦淖尔、赤峰3分)不等式组_+20 _-20的解集在数轴上表示正确的是【答案】B。

【考点】解一元一次不等式组,在数轴上表示不等式的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

解不等式组得到﹣2不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(向右画;向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

在表示解集时,要用实心圆点表示;,要用空心圆点表示。

据此观察在数轴上的表示。

故选B。

4.(内蒙古巴彦淖尔、赤峰3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是A、2.5秒B、3秒C、3.5秒D、4秒【答案】D。

中考数学复习《方程(组)与不等式(组》测试题(含答案)

中考数学复习《方程(组)与不等式(组》测试题(含答案)

中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析

中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程与方程组测试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、精心选一选(本题满分40分,共有10道小题,每小题4分。

下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将各小题所选答案的标号填写在题后面的括号内.) 1.是方程ax-y=3的解,则a 的取值是 ( )A.5 B.-5 C.2 D.12.分式方程2221---x x =0的根是 ( ) A.-3 B.0 C.2 D.无解3.若方程x 2-4x +c =0有两个不相等的实数根,则c 的值可以是 ( )A.6 B.5 C.4 D.34.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则 ( )A.m=±2 B.m=2C.m=-2 D.m≠±25.两个连续偶数的积是168,则这两个偶数分别是 ( )A.12,14 B.12,14或-12,-14C.16,18 D.16,18或-16,-186.中央电视台2套“开心辞典”栏目中,有一期的题目如右图所示,两个天平都平衡,则三个球 体的质量等于几个正方体的质量 ( )7.已知方程组的解为则2a-3b 的值为 ( )A.6 B.4 C.-4 D.-68.用配方法解关于x 的一元二次方程x 2+px+q=0,此方程可变形为 ( )A. B.C. D.9.已知⊙O 1与⊙O 2半径的长x 、y 满足|2x-6|+(y-4)2=0,且O 1O 2=21,则⊙O 1与⊙O 2的位置关系是 ) A.相交 B.内切 C.内含 D.外切 10.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的,《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们呆以表述为( )A.B. C. D.第Ⅱ卷(非选择题部分,共110分)二.细心的填一填(本题有10个小题, 每小题4分, 共40分)11.一元二次方程x 2+4x=5的负根是 .12.使分式262+--x x x 的值为零的x 的值是 . 13.若关于x 的方程x 2+mx -6=0,有一个根是2,则m 的值为___________.14.已知x 1、x 2是方程2x 2-x -7=0的两根,则的值是_________.15.若方程x +y =3,x -y =1和x -2my =0有公共解,则m 的取值为__________.16.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年需付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是 .17.用换元法解分式方程x 2+x+1=xx +22时,如果设y=x 2+x ,那么原方程可化为关于y 的一元二次方程的一般形式是 .18.写出一个有实数根的一元二次方程.19. 如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是.20.曙光中学计划组织学生观看爱国主义教育影片,包场费1500元,后来实验中学的200名师生一同观看了影片,商定包场费1500元由两校按人数均摊,这样曙光中学人均比原来少支付2元钱,曙光中学有____人观看了影片.三、解答题(共70分)21、(10分)解方程组:2536x yx y+=-=⎧⎨⎩,.22、(10分)解方程23、(14分)已知关于x的一元二次方程x2+4x+m-1=0.(1)请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根.(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值.24、(10分)据统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?25、(10分)扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.26、(16分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.参考答案1.A ;提示:把x=1,y=2代入ax-y=3,得a=52.D ;提示:去分母得,方程无解3.D ;提示:由求根公式知b 2-4ac >0时有两实根,解之可得c =3符合题意.4.B ;提示:本题的m 满足两个条件:|m|=2且m+2≠0,所以m=2.5.B ;提示:连续偶数也包括负整数情况.6.D ;提示:解答本题的关键是将实际问题转化为数学问题,可设每个球、圆柱、正方体的质量分别为x 、y 、z ,则可列方程组得由①得y =x 52③,把③代入②得x x 5232⨯=,所以3x=5z. 7.A ;提示:把代入方程组,得①+②,得4a=6, ∴ a=23,②-①,得2b=-2. ∴ b=-1. ∴ 2a-3b=2×23-3×(-1)=6. 8.A ;提示:对二次项系数为1的一元二次方程配方时,方程两边都加上一次项系数一半的平方. 9.C ;提示:由|2x-6|+(y-4)2=0,得2x-6=0,y-4=0,解得x=3,y=4,又因为4-3>21即两圆半径之差大于两圆 圆心距,所以两圆内含.10.A ;提示:只要正确识别算筹数及对应关系即可选对.二、 11.-5.提示:移项,得x 2+4x-5=0,用公式法得x=2)5(4442-⨯-±-=-2±3,所以x 1=1,x 2=-5,因为本题求负根,所以x=-5.12.3.提示:由题意,得解得x=3,请勿忽视分母不为0的条件. 13. 1.14.429.提示:可先把变形为,然后求解.15.1.提示:先通过x +y =3,x -y =1列方程组可求得x 、y 的值,然后代入x -2my =0可求得m 的值.16. 6.1万元、6.9万元.提示:设甲种贷款为x 万元,则乙种贷款为(13-x )万元,根据题意,得 6%x+3.5%(13-x )=0.6075. 解得x=6.1.所以13-x=13-6.1=6.9.说明:本题也可列二元一次方程组求解,列方程或方程组时注意要统一单位.17. y 2+y-2=018.一元二次方程的概念是等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程.此题还要注意列出的方程要有解,如x 2+1=0就无解.解:x 2-1=0.19.两个一次函数图象的交点表示与之对应的二元一次方程组的解. 解:20.【分析】 由题意我们可得到这样的关系:“两校均摊前的人均花费=两校均摊后的人均花费+2”,这样可列方程求解.解:设曙光中学有x 人观看了影片,根据题意,得200150021500++=x x . 化简得 x 2+200x-15000=0.解得x 1=300,x 2=-500.经检验,x 1,x 2都是分式方程的解,但x 2=-500不合题意,应舍去.所以 x=300答:曙光中学有300人观看了影片.三、21、解:25,3 6.x yx y+=-=⎧⎨⎩①×3,得 6x+3y=15.③②+③,得7x=21,x=3.把x=3代入①,得2×3+y=5,y=-1.∴原方程组的解是31 xy==-⎧⎨⎩,.22、解得x=20.经检验,x=20是原方程的解.23、解:(1)b2-4ac=42-4(m-1)=20-4m.∵原方程有两个不相等的实数根.∴ 20-4m>0,解得m<5.又∵ m为整数∴ m取4.(2)由(1)得,当m=4时,方程变为x2+4x+3=0.解这个方程,得 x1=-3,x2=-1.又∵α、β是此方程的两个实数根,∴不妨设α=-3,β=-1,α2+β2+αβ=(-3)2+(-1)2+(-3)×(-1)=9+1+3=13.24、解:设严重缺水城市有x座,依题意,得4x-50+2x+x=664.解这个方程,得 x=102.答:严重缺水城市有102座.25、解:设这种药品包装盒的宽为xcm,高为ycm,则长为(x+4)cm,根据题意得解这个方程组,得因此长为9cm,宽为5cm,高为2cm,体积V=9×5×2=90(cm3).答:这种药品包装盒的体积为90cm3.26、解:(1)设甲种型号手机要购买x部,乙种型号手机要购买y部,丙种型号手机要购买z部,根据题意,得不合题意,舍去.答:有两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部或甲种型号手机购买20部,丙种型号手机购买20部.(2)由题意,得解得答:若甲种型号手机购买26部,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.。

相关文档
最新文档