初中数学分式专题.

合集下载

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。

简单来说,分母中含有字母的式子叫做分式。

1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。

即BA中,0≠B 。

2. 分式值为0的条件:分式的分子为0,分母不为0。

即BA中,0=A ,0≠B 。

2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。

初中数学分式精选计算题专题训练含答案

初中数学分式精选计算题专题训练含答案

初中数学分式精选计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共39题)1、分式的值为0,则的值是.2、3、化简的结果是_______.4、不改变分式的值,使下列各分式的分子和分母都不含“”号:5、不改变分式的值,使下列各分式的分子和分母都不含“”号:6、不改变分式的值,使下列各式的分子、分母的最高次项的系数为正数:7、不改变分式的值,使下列各式的分子、分母的最高次项的系数为正数:8、9、通分:,.10、计算:11、先化简后求值:,其中.12、计算:13、先化简代数式÷,然后选取一个合适的a值,代入求值.14、计算:.15、化简并求值:已知实数a满足a2+2a-8=0,求- ・的值。

16、先化简,再求值:÷,其中,.17、先化简,再求值:,其中.18、先化简,再求值:÷x,其中x=.19、计算:20、化简:21、先化简,再求值:,其中.22、计算:.23、先化简,再求值:,其中.24、化简:.25、;26、计算:27、计算:.28、化简:先化简,再对取一个你喜欢的数,代入求值..30、先化简,再求值:,其中。

31、化简下列式子:,并求当时,原式的值.32、请你先将分式化简,再求出当a=9999时,该代数式的值.33、化简求值,先化简再求值:其中a=-234、已知、互为相反数,、互为负倒数,且,试求的值。

35、已知x=2007,y=2008,求的值.36、当a=时,求的值。

37、先化简,再求值,其中,。

38、,其中39、先化简,再求值;============参考答案============一、计算题1、 32、3、.4、 2a/3b5、6、7、8、9、【考点】通分.【分析】将两式系数取各系数的最小公倍数,相同因式的次数取最高次幂,得出最简公分母,再进行变形即可.【解答】解:=,=.【点评】此题考查了通分,解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.10、;11、解:原式===当时,原式= 12、解:原式==13、解: 方法一:原式===方法二:原式===取a=1,得原式=514、解:==015、解:由已知得:(a+1)2=9,原式化简等于,故原式的值为。

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

初中数学专题: 分式方程的解法

初中数学专题: 分式方程的解法

范围是(D )
A.a>1
B.a<1
C.a<1 且 a≠-2
D.a>1 且 a≠2
4.(黑龙江中考)已知关于 x 的分式方程3xx--3a=13的解是非负数,那
么 a 的取值范围是(C)
A.a>1
B.a≥1
C.a≥1 且 a≠9
D.a≤1
5.已知关于 x 的分式方程ax++21=1 的解是非正数,则 a 的取值范围
(3)x-1 2=12- -xx-3. 解:方程两边同乘(x-2),得 1=x-1-3x+6.解得 x=2. 检验:当 x=2 时,x-2=0. 因此 x=2 不是原分式方程的解, 所以原分式方程无解.
2.解分式方程: (1)x-x 1+x2-1 1=1; 解:方程两边同乘(x+1)(x-1),得 x(x+1)+1=(x+1)(x-1).解得 x=-2. 检验:当 x=-2 时,得(x+1)(x-1)≠0, 所以原分式方程的解为 x=-2.
是(B)
A.a≤-1
B.a≤-1 且 a≠-2
C.a≤1 且 a≠-2D来自a≤16.(眉山中考)已知关于 x 的分式方程x-x 3-2=x-k 3有一个正数解,
则 k 的取值范围为 k<6且k≠3 .
【易错提示】 求得的未知数不仅要满足所给出的范围,还要使分
式的分母不为零,两个条件必须同时具备,缺一不可.
类型 2 由分式方程无解确定字母的取值
7.若关于 x 的方程3xx+-12=2+x+m1无解,则 m 的值为(A)
A.-5
B.-8
C.-2
D.5
8.【分类讨论思想】若关于 x 的方程xa-x2=x-4 2+1 无解,则 a 的
值是 1或2 .
9.【分类讨论思想】若关于 x 的方程3x--23x-m3x--x2=-1 无解,则 m 的值是1 或53 . 【易错提示】 分式方程无解可能有两种情况:(1)由分式方程去分 母后化成的整式方程有解,但这个解使最简公分母为零;(2)由分式 方程去分母后化成的整式方程无解.

初中数学分式和二次根式专题训练【含答案】

初中数学分式和二次根式专题训练【含答案】

分式和二次根式专题训练一、填空题:(每题 3 分,共 36 分)1、当 x____时,分式有意义。

2、当____时,有意义。

3、计算:-a-1=____。

4、化简:(x2-xy)÷=____。

5、分式,,的最简公分母是____。

6、比较大小:2____3。

7、已知=,则的值是____。

8、若最简根式和是同类根式,则 x+y=____。

9、仿照2=·==的做法,化简3=____。

10、当 2<x<3 时,-=____。

11、若的小数部分是 a,则 a=____。

12、若=++2成立,则 x+y=____。

二、选择题:(每题 4 分,共 24 分)1、下列各式中,属于分式的是()A、 B、 C、x+ D、2、对于分式总有()A、=B、=C、=D、=3、下列根式中,属最简二次根式的是()A、 B、 C、 D、4、可以与合并的二次根式是()A、 B、 C、 D、5、如果分式中的 x 和都扩大为原来的 2 倍,那么分式的值()A、扩大 2 倍B、扩大 4 倍C、不变D、缩小 2 倍6、当 x<0 时,|-x|等于()A、0B、-2xC、2xD、-2x或0三、计算:(每题 6 分,共 24 分)1、()3÷()0×(-)-22、(+)÷3、-+4、(3-2)2四、计算:(每题 6 分,共 24 分)1、-+2、÷(x+1)·3、-·4、4b+-3ab (+)五、解答题:(每题 8 分,共 32 分)1、某人在环形跑道上跑步,共跑两圈,第一圈的速度是 x 米/分钟,第二圈的速度是米/分钟(x>),则他平均一分钟跑的路程是多少?2、若菱形的两条对角线的长分别为 3+2和 3-2,求菱形的面积。

3、如图,是某住宅的平面结构示意图,图中标明了有关尺寸(墙体厚度忽略不计,单位:m),房主计划把卧室以外的地面都铺上地砖,如果他选用的地砖的价格是 a 元/m2,则买砖至少需要多少元?若每平方米需砖 b 块,则他应该买多少块砖?(用含 a,x,的代数式表示)。

初中数学分式方程简答题专题训练含答案

初中数学分式方程简答题专题训练含答案

初中数学分式方程简答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共10题)1、一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y 天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?2、为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(5分)(2)若单独租用一台车,租用哪台车合算?(5分)3、如图是某公司经理和甲、乙工程队长针对一项工程的谈话.问题如下:(1)甲、乙两公司单独完成此项工程各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?4、阅读下面的对话。

小红:“售货员,我要买些梨。

”售货员说:“小红,你上次买的那种梨卖完了,我们还没来得及进货,我建议你这次买些新进的苹果,价格比梨贵一点,不过这批苹果的味道挺好哟!”小红:“好,这次和上次一样,也花30元。

”对照前后两次的电脑小票,小红发现,每千克苹果的单价是梨的1.5倍,买的苹果的重量比梨轻2.5Kg。

试根据上面的对话和小红的发现,分别求出苹果和梨的单价。

5、某商店第一次用800元购进2B铅笔若干枝,第二次又用800元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了40支.(1)求第一次每支铅笔的进价;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于560元,则每支铅笔的利润率至少为多少?(利润率=×100%)6、兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)7、某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?8、吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.9、某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?10、学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的倍;用元单独购买甲种图书比单独购买乙种图书要少本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共本,且投入的经费不超过元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?============参考答案============一、解答题1、 .(1)设乙队单独做需要x天才能完成任务,由题意得:×20=1.解得x=100.经检验,x=100是原方程的解,且符合题意.答:乙队单独做需要100天才能完成任务(2)由题意得:+=1,且x<15,y<70,且x,y为正整数,∴x=13或14.当x=13时,y=100-x不是整数,应舍去;当x=14时,y=100-x=65,符合条件.∴甲队做了14天,乙队做了65天2、【考点】一次方程及其解法分式方程的解法分式方程的应用【试题解析】(1)设甲车单独运的趟数为x趟,则由题意得乙车单独运的趟数为2x趟,设垃圾总量为1,由题意可得以下方程:解得:x=18,2x=36所以,甲车单独运完需18车,乙车单独运完需36车。

完整版)初中数学分式计算题及答案

完整版)初中数学分式计算题及答案

完整版)初中数学分式计算题及答案分式计算题精选1.计算 $x+y$。

2.化简 $\dfrac{a^2+4a}{a+2}+\dfrac{2a}{a+2}$,其结果是$\dfrac{a^2+6a}{a+2}$。

3.化简 $\dfrac{x^2-4}{4x-16}$。

4.化简 $\dfrac{3x^2-15x}{6x^2-18x}$。

5.化简 $\dfrac{x^2+4x+4}{x^2-4}$。

6.计算 $\dfrac{2x-1}{x+1}+\dfrac{2x+1}{x-1}$。

7.化简 $\dfrac{a^2-1}{a^2+1}-\dfrac{a}{a+1}$。

8.化简 $\dfrac{3}{2x-2}-\dfrac{2}{3x-3}$。

9.化简 $\dfrac{a^2-4a+4}{a^2-4}-\dfrac{a-2}{a+2}$。

10.计算 $\dfrac{2}{x+1}-\dfrac{3}{x-2}$。

11.计算 $\dfrac{2x^2+5x-3}{x^2-4x+3}\div \dfrac{x^2-3x}{x^2-2x-3}$。

12.解方程$\dfrac{2}{x-1}+\dfrac{3}{x+2}=\dfrac{1}{x}$。

13.解方程 $\dfrac{2x-1}{x-2}+\dfrac{3x+1}{x+1}=4$。

14.解方程$\dfrac{x}{x+1}+\dfrac{x+1}{x}=\dfrac{10}{3}$。

15.解方程 $\dfrac{x-1}{x+2}+\dfrac{2x+1}{x-1}=0$。

16.已知 $a,b,c$ 为实数,且满足 $\dfrac{b-3}{a-b}=\dfrac{c-2}{a-c}$,求 $\dfrac{11a}{b-c}$ 的值。

17.解方程 $\dfrac{x-1}{x+1}+\dfrac{2x+3}{x-2}=\dfrac{2x-1}{x-1}$。

(专题精选)初中数学分式易错题汇编附答案解析

(专题精选)初中数学分式易错题汇编附答案解析

(专题精选)初中数学分式易错题汇编附答案解析一、选择题1.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.2.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3B .1C .﹣1D .﹣3【答案】D【解析】【分析】 由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】 ∵11m n -=1, ∴n m mn mn -=1, 则n m mn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.3.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为() A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107【答案】B【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】4.x的取值范围为().A.x≥2B.x≠2C.x≤2D.x<2【答案】D【解析】【分析】根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】∴2x0 x20-≥⎧⎨-≠⎩∴x<2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.5.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.6.如果30x y -= ,那么代数式()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭的值为( ) A .23 B .2 C .-2 D .32【答案】A【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x =3y 代入化简可得.【详解】 解:()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭=()22213xy x y y x y -+-g =()2()13x y y x y --g =3x y y- ∵30x y -=,∴x=3y , ∴32333x y y y y y --==, 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a -= 【答案】B【解析】【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a -=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.8.若b a b -=14,则a b 的值为( ) A .5B .15C .3D .13 【答案】A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A.9.下列运算中,不正确的是( )A .a b b a a b b a --=++B .1a b a b--=-+C .0.55100.20.323a b a b a b a b ++=--D .()()221a b b a -=-【答案】A【解析】【分析】根据分式的基本性质分别计算即可求解.【详解】解:A.a b b a a b b a--=-++,故错误. B 、C 、D 正确.故选:A【点睛】 此题主要考查分式的基本性质,熟练利用分式的基本性质进行约分是解题关键.10.化简22a b b a +-的结果是( ) A .1a b - B .1b a - C .a ﹣b D .b ﹣a【答案】B【解析】【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】原式= a+b )()b a b a +-(= 1b a- 故答案选B.【点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.下列各式:①2193-⎛⎫= ⎪⎝⎭;②031-=;③()232639-=-ab a b ;④()2221243x y xy x y -÷=-; ⑤()2018201920182232--=⨯;其中运算正确的个数有( )个. A .1B .2C .3D .4 【答案】B【解析】【分析】分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.【详解】解:①22111913193-⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故①正确; ②031-=-,故②错误;③()232232263(3)()9-=-=ab a b a b ,故③错误; ④()21243-÷=-x y xy x ,故④错误;⑤()2018201920182019201820182018222222232--=+=+⨯=⨯,故⑤正确;∴运算正确的个数有2个,故选:B .【点睛】本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.13.计算2111x x x x -+-+的结果为( ) A .-1 B .1 C .11x + D .11x -【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.14.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.15.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣【答案】D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.16.计算b a a b b a +--的结果是 A .a-bB .b-aC .1D .-1【答案】D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】 b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.17.若把分式2x y xy+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍;B .缩小3倍;C .缩小6倍;D .不变; 【答案】B【解析】【分析】x ,y 都扩大3倍就是分别变成原来的3倍,变成3x 和3y .用3x 和3y 代替式子中的x 和y ,看得到的式子与原来的式子的关系.【详解】解:用3x 和3y 代替式子中的x 和y 得:()()33233x y x y +=()3x 18y xy +=13×x 2y xy+, 则分式的值缩小成原来的13,即缩小3倍. 故选:B .【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.18.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.下列用科学记数法表示正确的是( )A .10.000567 5.6710-=-⨯B .40.0012312.310=⨯C .20.0808.010-=⨯D .5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为( )A .63.610-⨯B .50.3610-⨯C .73610-⨯D .60.3610-⨯【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式化简、解分式方程和应用题三个重要问题
一、分式化简
1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后再计算。

2. 要注意运算顺序,先乘方、再乘除、后加减,同级运算从左到右(谁在前先 算谁)依次进行。

有括号的先算括号里面的
3. 如果分式的分子分母是多项式,可先分解因式,再运算。

4. 注意分式化简题不能去分母.
1.先化简,再求值:23393
x x x ++--,其中1x =-.
2.先化简,再求值
4
421642++-÷-x x x x ,其中 x = 3 .
3.先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2.
4.计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭
5.化简:
35(2)482y y y y -÷+---
6.化简,:
2211()22x y x y x x y x
+--++,
7.先化简,再求值:211122
x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.
8.计算:22221(1)121
a a a a a a +-÷+---+.
二.分式方程:
解分式方程的步骤:
1、去分母,化分式方程为整式方程两边同乘 以最简公分母,分子要括起来,
2、解整式方程-------去括号、移项、合并同类项、系数化为1
3、检验-------带入最简公分母,若为零,则为増根,应舍去。

1、解分式方程:
2131
x x =--.
2、解方程223-=x x
3、解分式方程:
3131=---x x x
4、解方程:
22333x x x -+=--
5、解方程
22111x x =---
6、解方程:
x x x -=+--23123.
7、解分式方程:
6122x x x +=-+
8、 解方程33122x x x
-+=--.
三.列分式方程——基本步骤:
① 审—仔细审题,找出等量关系。

② 设—合理设未知数。

③ 列—根据等量关系列出方程(组)。

④ 解—解出方程(组)。

注意检验
⑤ 答—答题。

列方程解应用题
1、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?
2、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是
大队的1.2倍,以便提前2
1 小时到达目的地做准备工作,求先遣队与大队的
速度各是多少?
3、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.
4、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?。

相关文档
最新文档