LC谐振放大器
LC谐振放大器的设计
LC谐振放大器的设计摘要:本文是基于LC高频小信号放大电路的设计,它由前级衰减电路、LC谐振放大电路、多级增益放大电路、电源电路组成。
其中前级衰减电路用π型电阻网络实现40dB的衰减;核心LC谐振放大器采用三极管2SC1815构成的单调谐回路选频放大器,实现15MHz的谐振频率和300KHz的带宽调节,增益放大电路由SGM8067组成的三级同相放大电路实现15MHz带宽60dB放大倍数的放大,整个LC放大电路的带内波动不大于2dB;电路所需的3.6V稳定电压由锂电池18650提供。
本设计很好实现谐振频率15MHz、带宽300KHz、增益76dB以及带内波动小于1dB的谐振放大电路,并且本设计采用高频三极管2SC1815和高速高带宽运算放大器SGM8067联合组成LC谐振放大电路,比单纯用高频三极管组成的多级LC 谐振放大电路要简单,调试起来也很容易。
关键词:π形网络;LC谐振;SGM8067Design of the LC resonant amplifierAbstract:This paper is based on LC high frequency amplifier circuit design of small signal, it by the former stage attenuation circuit, LC harmonic oscillator amplifier circuit, multi-level amplifier circuit, the power supply circuit. The top level with π attenuation circuit type resistance network realization of 40 dB attenuation; Core LC resonance with transistor amplifier 2 SC1815 consists of the single tuned circuit choose frequency amplifier, realize the resonance frequency of the 15 MHz of bandwidth and 300 KHz regulation, gain the SGM8067 amplifier circuit of the same phase 3 amplifier circuit realize 15 MHz bandwidth 60 dB magnification magnification, the whole LC amplifier circuit with the fluctuated in not greater than 2 dB; Circuit of 3.6 V voltage stability needed by the lithium battery 18650 provides. This design is very good realize the resonance frequency 15, 300 MHz bandwidth, gain 76 dB KHz and with less than 1 dB fluctuated in resonant amplifying circuit and the design USES high frequency transistor 2 SC1815 and high speed high bandwidth operational amplifier SGM8067 together, LC resonance amplifier circuit, than pure with high frequency transistor composed of multilevel LC resonance amplifier circuit is simple, it is easy to debug.目录1 绪论 (1)1.1 课题意义与背景 (1)1.2高频小信号调谐放大器的原理分析 (1)2 系统的整体方案论证与分析 (3)2.1 系统设计的功能目标 (3)2.2 系统设计方案分析 (3)3 硬件电路设计 (5)3.1 衰减器的设计 (5)3.2 LC谐振电路 (6)3.2.1 LC谐振电路的原理 (6)3.2.2 LC谐振电路的参数计算 (8)3.2.3 LC谐振电路设计 (8)3.3 增益放大电路 (12)3.3.1 双电源同相比例运算电路 (12)3.3.2 单电源运算放大电路 (13)3.3.3 SGM8067基本资料 (15)3.4 增益放大电路的设计 (16)3.5 电源 (17)4 电路的仿真与测试 (18)4.1 电路基于multisim仿真 (18)4.2 系统的测试方案与数据分析 (19)4.2.1 测试仪器 (19)4.2.2 测试方案 (20)4.2.3 测试数据 (20)5 结束语 (21)[参考文献] (22)附录 (23)致谢 (24)1 绪论1.1 课题意义与背景在无线通信中,发射与接收的信号应当适合于空间传输。
LC谐振放大器的实验报告
LC谐振放大器设计报告(D题)内容摘要:本文介绍了LC谐振放大器的设计原理,分析了有可能影响LC 谐振放大器的因素以及采取的针对性措施。
在此设计中我们运用衰减器来减小输入电压的值进而方便了放大器电路的测量。
中周电感和聚酯电容来提取频率为15MHz的波。
用三极管来放大电路,并使用其他措施来减小电路误差。
整个系统的-3dB带宽为300kHz。
在较低的外部电压下,放大器电路的整体功耗很小。
关键词:LC谐振放大器衰减器中周电感第一章绪论1.1:设计任务设计并制作一台LC谐振放大器。
设计的大体示意图如下所示:1.2:设计要求1.2.1:基本要求(1)衰减器指标:衰减量40±2dB,特性阻抗50Ω,频带与放大器相适应。
(2)放大器指标:(a)谐振频率:f0=15MHz;允许偏差±100KHz;(b)增益:不小于60dB;(c)-3dB带宽:2Δf0.7=300KHz;带内波动不大于2dB;(d)输入电阻:Rin=50Ω;(e)失真:负载电阻为200Ω,输出电压1v时,波形无明显失真。
(3)放大器使用3.6v稳压电源供电(电源自备)。
最大不允许超过360mW,尽可能减小功耗。
1.2.2:发挥部分(1)在-3dB 带宽不变条件下,提高放大器增益到大于等于80dB。
(2)在最大增益情况下,尽可能减小矩形系数Kr0.1。
(3)设计一个自动增益控制(AGC)电路。
AGC控制范围大于40dB。
AGC控制范围为20lg(Vomin/Vimin)-20lg(Vomax/Vimax) (dB)。
(4)其他。
附录:图二是LC谐振放大器的特性曲线,矩形系数Kr0.1=2Δf0.1/2Δf0.7第二章方案的比较与论证本系统主要有以下几个模块:自制电源衰减器LC谐振放大器等三大功能模块。
2.1自制电源模块:方案一:线性稳压源。
采用效率较高的串联电路,尤其是采用集成三端稳压器,输出电压波纹小,可靠性高,性价比高。
可为后面的谐振放大电路提供不失真保障。
LC谐振放大器
LC谐振放大器LC谐振放大器摘要LC谐振放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。
LC谐振放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
LC谐振放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器;按频带分为:窄带放大器、宽带放大器;按电路形式分为:单级放大器、多级放大器;按负载性质分为:谐振放大器、非谐振放大器;其中LC谐振放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。
LC谐振放大器理论非常简单,但实际制作却非常困难。
其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。
本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的。
关键词:LC谐振、放大、选频、震荡目录1 方案设计与论证﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.1衰减器的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.2 选频电路的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51.3 LC谐振放大选型﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52 主要技术指标﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍62.1电压增益﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.2放大器的通频带﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.3放大器矩形系数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 2.4谐振频率﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 3 电路设计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.1 T型电阻网络﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.2 LC并联谐振回路﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73.3LC谐振放大器电路图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84 仿真调试﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.1 仿真软件﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.2测试方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.3 衰减器仿真﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍84.4仿真电路图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍94.5谐振频率测试﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍94.6 幅频特性图﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍105 设计总结﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106 实物调试记录解说﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106.1 制作好的芯片﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍106.2 调试电压显示﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍111.方案设计与论证1.1衰减器的选择方案一:非线衰减网络,根据题目要求频带要与放大器相适应,则要求3dB带宽足够宽,特性阻抗保持50欧,这样时比较难达到的。
LC谐振放大器论文
2011年全国大学生电子设计竞赛LC谐振放大器(D题)【本科组】2011年9月3日摘要本系统以高频低噪声放大器2SC3358为核心组成的LC谐振放大器,外加AGC电路进行增益自动控制,在保证信号不明显失真的前提下输出幅值保持稳定。
系统主要由衰减器、谐振放大器、功率放大器、AGC和扩展电路等构成。
LC谐振放大器能将中心频率为15MHz微伏级别的小信号放大最大到约101dB,带宽保持300KHz,输入阻抗50Ω。
AGC电路增益控制范围达到46dB,整个放大器最大功耗约为114.8mW。
后级功放由功放管2SC2053和LC谐振组成,提高了输出级的驱动能力,改善了阻抗匹配性能。
本系统经过测试,抗干扰能力强,加上精致的外壳和防自激电路的设计,放大器具备了很好的稳定性。
关键词:LC谐振AGC 谐振放大器增益小信号目录1系统方案 (1)1.1 谐振放大器的论证与选择 (1)1.2 AGC电路方案的论证与选择 (1)1.3 电源方案的论证与选择 (2)2系统理论分析与计算 (2)2.1 衰减器的分析 (2)2.2 LC谐振放大器的指标的分析 (2)2.2.1 增益 (2)2.2.2 AGC的分析 (2)2.2.3 通频带 (3)2.2.4 矩形系数 (3)2.2.4 放大器的稳定性 (3)3电路的设计 (3)3.1系统总体框图 (3)3.2 衰减器电路 (4)3.3 一级谐振放大器电路 (4)3.4 二级谐振放大器电路 (4)3.5 谐振功率放大器电路 (4)3.6 AGC电路 (4)3.7电源电路 (4)3.8扩展电路 (5)4测试方案与测试结果 (5)4.1测试仪器和设备: (5)4.2 测试方法和步骤: (5)4.2.1 增益测试 (5)4.2.2 功耗测试 (5)4.2.3 带宽和矩形系数测试 (5)4.2.4 AGC增益范围测试 (6)4.3 测试结果及分析 (6)4.3.1测试结果 (6)4.3.2测试分析与结论 (6)附录:LC谐振电路主原理图 (8)LC谐振放大器(D题)【本科组】1系统方案本系统主要由衰减模器、LC谐振放大器、功率放大器、3.6V电源、AGC和扩展电路组成,下面分别论证这几个模块的选择。
LC谐振放大器(宾峰 叶永雄 饶学良)
LC谐振放大器(D题)摘要:本作品由衰减器、LC并联谐振选频网络、固定增益放大电路和自动增益控制电路四个模块组成。
衰减器由精密电阻构成的π型衰减网络,各放大器模块之间采用电容耦合,可达到消除前级的零漂对后级的影响,LC并联谐振电路由自绕线圈构成的电感和槽路电容组成,并通过微调磁芯使其谐振频率尽量靠近15MHZ。
在三级LC并联单谐调回路中间加AD8061作跟随器,实现前后级的阻抗匹配。
前级固定增益放大电路由三极管搭建的共射级放大电路构成,后级固定增益放大电路由集成芯片OPA355构成,自动增益控制电路由AGC三极管构成。
放大器所用直流稳压电源采用自制串联型线性电源,合理PCB布局减少板载电容,并采用多级滤波,减少电源纹波对输入小信号的影响及抑制放大器噪声,提高了系统稳定性。
关键词:LC并联谐振、中周、AD8061、OPA355、自动增益控制、串联型线性电源目录LC谐振放大器(D题) (1)1、方案比较与选择 (1)1.1 衰减器设计 (1)1.2 LC谐振放大器设计 (1)1.3 自动增益控制(AGC)设计 (1)1.4 系统整体方案 (2)2、理论分析计算 (2)2.1带宽和矩形系数 (2)2.2静态工作点设置 (3)2.3谐振增益 (5)2.4自动增益控制 (5)3、系统电路设计 (6)3.1衰减器设计 (6)3.2 LC选频放大器 (7)3.3前级固定增益电路设计 (8)3.4后级固定增益电路设计 (8)3.5电源设计 (9)4、测试方案与测试结果 (10)1、测试仪器 (10)2、测试方案和测试结果 (10)(1)-3dB带宽测试 (10)(2)最大不失真输出电压测试 (10)(3)功耗测试 (10)(4)AGC测试 (11)(5) 衰减器衰减量测试 (11)(6) 矩形系数测试 (11)(7) 最大放大倍数 (11)5、总结 (12)6、参考文献 (12)附件A 系统电路图 (13)1、方案比较与选择1.1衰减器设计方案一:增益可控运放。
lc谐振放大器
LC谐振放大器1. 引言LC谐振放大器是一种电子放大器电路,能够在特定频率下实现放大信号的功能。
它使用了电感和电容组合成谐振回路,在谐振频率处具有较高的增益,而在其他频率下的增益较低。
这使得LC谐振放大器在无线电通信、音频放大以及其他需要放大特定频率信号的应用中非常有用。
本文将介绍LC谐振放大器的基本原理、电路结构、工作原理,以及使用LC谐振放大器的注意事项。
2. 基本原理LC谐振放大器的基本原理是利用电感和电容的参与形成谐振回路,使得在谐振频率下能够放大信号。
谐振回路由一个电感和一个电容串联或并联而成,其谐振频率可以通过以下公式计算:$$ f_{res} = \\frac{1}{2\\pi \\sqrt{LC}} $$其中,f res是谐振频率,L是电感的感值,C是电容的容值。
3. 电路结构LC谐振放大器的电路结构可以被分为三个主要部分:输入匹配网络、谐振回路和输出匹配网络。
3.1 输入匹配网络输入匹配网络的作用是将输入信号与谐振频率进行匹配,使得输入信号能够被谐振回路有效地吸收和放大。
输入匹配网络通常由电容和电感构成,其设计原则是使得输入阻抗与输入信号源的输出阻抗匹配。
3.2 谐振回路谐振回路由电感和电容串联或并联而成,用于放大谐振频率的信号。
谐振回路的选择取决于应用需求,常见的有串联LC回路和并联LC回路。
串联LC回路在谐振频率处具有较高的电压增益,适用于需要高电压放大的应用;并联LC回路在谐振频率处具有较高的电流增益,适用于需要高电流放大的应用。
3.3 输出匹配网络输出匹配网络的作用是将谐振回路放大后的信号与负载进行匹配,使得信号能够传递给负载而不损失大量的能量。
输出匹配网络也由电容和电感构成,其设计原则是使得输出阻抗与负载的输入阻抗匹配。
4. 工作原理LC谐振放大器的工作原理可以通过下面的步骤来解释:1.输入信号经过输入匹配网络,使得其阻抗与信号源输出阻抗匹配。
2.匹配后的信号进入谐振回路,在谐振频率处经过放大。
LC谐振放大器的参数选择研究
LC谐振放大器的参数选择研究首先,我们需要选择谐振频率。
谐振频率是LC谐振电路的共振频率,决定了放大器的工作频率范围。
通常情况下,谐振频率需要和输入信号的频率相匹配。
如果需要放大多个频率,可以选择一个工作范围较宽的谐振频率。
接下来,我们需要选择输入和输出电容。
输入电容决定了输入信号的频率特性。
较大的输入电容可以滤掉高频信号,从而实现对于低频信号的放大。
输出电容决定了放大器的输出阻抗。
较大的输出电容可以提高放大器的低频响应。
然后,我们需要选择电感的数值。
电感的数值决定了谐振电路的频率响应。
较小的电感值会导致谐振频率偏高,较大的电感值会导致谐振频率偏低。
根据需要,我们可以选择合适的电感值来满足所需的频率范围。
此外,还需要选择耦合电容的数值。
耦合电容用于将输出信号传输到下一级电路。
较小的耦合电容值会导致低频信号衰减,较大的耦合电容值会导致高频衰减。
根据所需的频率响应,我们可以选择合适的耦合电容值。
最后,我们需要选择放大倍数。
放大倍数决定了输入信号经过放大器后的输出信号大小。
通过选择合适的电容和电感数值,可以调整放大倍数。
需要注意的是,在设计LC谐振放大器时,要考虑到电路的稳定性和抗干扰能力。
过大的放大倍数可能会导致电路不稳定或易受到干扰。
在研究LC谐振放大器的参数选择时,我们可以通过仿真和实验来验证参数的选择是否符合要求。
通过改变各个参数的数值,观察电路的频率响应和输出信号的放大倍数,来优化参数的选择。
综上所述,LC谐振放大器的参数选择需要考虑到谐振频率、输入输出电容、电感和耦合电容。
通过合理选择这些参数,可以得到满足要求的频率响应和放大倍数。
同时,需要结合仿真和实验来验证参数的选择是否符合设计要求。
LC谐振放大器
高频电路课程设计实习报告LC 谐振放大器学校专业班级学号姓名日期目录序言 (2)1、设计课题 (3)2、实践目的 (3)3、设计要求 (3) (3)4、设计原理. (4) (4)4.2输出电压、功率与效率 (4) (5)4.4电压增益、谐振频率、品质因素、通频带理论计算 (7) (8) (8) (9)5、设计电路 (9)6、心得体会 (11)7、参考文献 (12)序言高频谐振放大器广泛应用于通信系统和其他电子系统中,如在发射设备中,为了有效地使信号通过信道传送到接收端,需要根据传送距离等因素来确定发射设备的发射功率,这就要用高频谐振放大器将信号放大到所需的发射功率;在接受设备中,从天线上感应到的信号是非常微弱的,要将传送的信号恢复出来,需要将信号放大,这就需要用高频小信号谐振放大器来完成。
已知功率是不能放大的,高频信号的功率放大,其实质是在输入高频信号的控制下将电源直流功率转换成高频功率,因此除要求高频功率放大器产生符合要求的高频功率外,还要求尽可能高的转换效率。
高频功放的输出功率范围,可以小到便携式发射机的毫瓦级,大到无线电广播电台的几十千瓦,甚至兆瓦级。
目前,功率为几百瓦以上的高频功率放大器,其有源器件大多为电子管,几百瓦以下的高频功率放大器则主要采用双极晶体管和大功率场效应管。
应当指出,尽管高频功放和低频功放的共同特点都要求输出功率大和效率高,但二者的工作频率和相对频带宽度相差很大,因此存在着本质的区别。
低频功放的工作频率低,但相对频带很宽。
工作频率一般在20--20000Hz,高频端与低频端之差达1000倍。
所以,低频功放的负载不能采用调谐负载,而要用电阻,变压器等非调谐负载。
而高频功放的工作频率很高,可由几百千赫到几百兆赫,甚至几万兆赫,但相对频带一般很窄。
例如调幅广播电台的频带宽度为9kHz,若中心频率取900kHz,则相对频带宽度仅为1%。
因此高频功放一般都采用选频网络作为负载,故也称为谐振功率放大器。
LC谐振放大器报告
2011全国大学生电子设计竞赛LC谐振放大器(D题)设计报告2011年9月3日LC谐振放大器(D题)摘要本设计采用三级管两级放大实现一个低压、低功耗的LC谐振放大器。
该放大器实际上是一个高频小信号谐振放大器,其核心元件是高频小功率晶体管和LC并联谐振回路。
无线通信接收设备的接收天线接收从空间传来的电磁波并感应出的高频信号的电压幅度是(μV)到几毫伏(mV),而接收电路中的检波器(或鉴频器)的输入电压的幅值要求较高,最好在1V左右。
这就需要在检波前进行高频放大和中频放大。
为此,高频小信号放大器,完成对天线所接受的微弱信号进行选择并放大,即从众多的无线电波信号中,选出需要的频率信号并加以放大,而对其它无用信号、干扰与噪声进行抑制,以提高信号的幅度与质量。
关键词:高频小功率晶体管 LC并联谐振回路高频小信号放大器AbstractThis design uses the level 3 tube two stage amplifier achieve a low pressure, low power consumption LC resonance amplifier. The amplifier is actually a high frequency amplifier, small signal resonance its core element is high frequency small power transistors and LC parallel resonant circuit. Wireless communication receiving equipment receiving antenna receive from space of electromagnetic waves came out and induction of high frequency signals of voltage amplitude is (u V) to several millivolt (mV), and the detectors receiving circuit (or is popularly used implement) input voltage amplitude the demand is higher, the best around 1 V. This needs to be in the detection of high frequency amplifier and before medium frequency amplifier. Therefore, high frequency amplifier, small signal of the antenna to complete a weak signal and amplified, namely to choose from so many of the radio signal, elected in the frequency of the signal and the need to be amplified, and for other useless signal, interference and noise control, in order to improve the signal amplitude and quality. Keywords: high frequency small power transistors LC parallel resonant frequency small signal amplifier circuit1、系统方案论证与比较系统总体设计框图1.1衰减器的设计方案方案一:采用纯电阻电路网络使输入电压衰减40dB,有两种电阻衰减器的结构:T型和PI型,都是对称结构。
LC谐振放大器设计
2011年全国大学生电子设计竞赛LC谐振放大器设计报告摘要:用LC谐振回路作为选频网络构成的选频放大器称为谐振放大器或调谐放大器,其用来从众多的微弱信号中,选出有用信号加以放大并对其他无用频率信号予以抑制,它广泛应用于通信设备的接收机中。
高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数千赫兹到数百兆赫兹,LC谐振放大器的功能是实现对微弱信号的高频信号进行不失真的放大,所以本设计就是应<50uv的小信号进行放大并保持频率在15MHZ左右不失真而产生的。
一.总体框图本设计主要由衰减器、LC 谐振放大和稳压电源电路四部分组成,系统框图如图1所示。
图1二、设计方案论证 1、衰减器方案一 用4个PIN 管组成的Pi 型衰减器,电路图如图2所示。
此方案构成的衰减器网络是对称的,而且偏置电路非常简单。
R5和R6分别作为串联PIN 管D7和D8的偏流电阻。
R1、R2和R4将在串联与并联的PIN 管之间提供恰当的电流分配,以保持在整个衰减动态范围内的良好的阻抗匹配特性。
图2我们经过仿真得出,此方案元件的数量较多、所需的PIN 管不是常用的,我们用常用的PIN 管1N4007来代替,结果能达到12MHz 的频率和小信号的输入的要求,但是衰减量达不到40dB 的要求。
方案二 用∏型电阻网络来做衰减器,电路如图3所示。
此方案电路非常信号源 前置分压 衰减器放大器3.6V 稳压电源简单,实现起来也非常容易,只需要3个电阻就可以达到要求,所以我们选用方案二。
图32、LC谐振放大电路方案一采用变容二极管来调频并实现放大,电路如图4所示。
此方案是由调制信号控制并改变变容二极管的电容量,从而改变输出信号的频率,达到调频的目的。
调制信号有耦合电容C5输入,经电感L2加到变容二极管的阴极。
C5是耦合电容,调制信号通过它加到Vd上。
此方案调制信号的频率范围是几百Hz 到几十KHz,故达不到题目要求。
图4方案二采用调频收音机原理实现调频放大,电路如图5所示。
LC谐振放大器
LC谐振放大器(D题)摘要谐振放大器,就是采用谐振回路(串、并联及耦合回路)作为负载的放大器。
根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于偏离谐振频率的信号,增益迅速下降。
所以谐振放大器不仅有放大的作用,而且也起着滤波或者选频的作用。
本系统输入信号很小,小于50μV,放大倍数很高,超过80dB,再加上对低压低功耗的要求,所以采用分立元件进行多级谐振放大,加入反馈防止自激电路,AGC电路,使电路更加可靠,稳定。
关键词:谐振放大器选频自激AGC电路滤波目录1.前言: (3)2.总体方案设计: (3)3.单元模块设计: (5)(1)40db衰减器设计: (5)(2)谐振放大器设计 (6)1).谐振频率 (10)2).电压放大倍数 (10)3).通频带 (11)4).选择性——矩形系数 (12)(3).自动增益调节AGC设计 (16)1).AGC的作用 (16)2).AGC的组成框图 (16)4.测试方法和仪器: (16)5.系统功能、指标参数: (17)6.设计总结: (18)7.参考文献: (19)8.附录: (20)1.前言:小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
1)高频小功率晶体管与LC并联谐振回路①高频小功率晶体管高频小信号放大电路中采用的高频小功率晶体管与常用电路低频小功率晶体管不同,主要区别是工作截止频率不同。
低频晶体管只能工作在3MHz以下的频率上,而高频晶体管可以工作在几十到几百兆赫兹,甚至更高的频率上。
目前高频小功率晶体管工的作频率可达几千兆赫,噪声系数为几个分贝。
高频小功率晶体管的作用与低频小功率晶体管一样,工作在甲类工作状态,起电流放大作用。
②LC并联谐振回路在接收机的各级高频小信号放大器中,利用LC并联谐振回路的选频作用,对谐振点频率的电流信号呈现较大的阻抗,而且是纯电阻性的,将电流信号转换成电压信号输出,而对失谐点频率的电流信号呈现很小的阻抗,抑制失谐点频率电流信号的输出,起到选择出所需接收的信号,抑制无用的信号和干扰的目的。
LC谐振放大器分析
LC谐振放大器分析谐振放大器是一种特殊的放大器,利用负反馈和谐振原理来提高放大器的增益。
在谐振放大器中,输入信号以及增益被特定频率的谐振网络所限制,从而实现放大器输出的谐波失真较小,增益稳定和频率选择性较好的特点。
本文将对谐振放大器的原理、特点和分析进行详细阐述。
首先,谐振放大器的基本原理是在放大电路中引入谐振网络,通过调谐谐振频率,使放大器对输入的信号有一个较高的增益。
谐振放大器的核心是谐振电路,它由一个电感和一个电容串联或并联而成,形成一个谐振回路。
在谐振频率附近,谐振电路具有很高的阻抗,对输入信号起到放大作用。
谐振放大器的增益受到谐振频率和谐振电路的参数确定。
谐振放大器的特点首先包括增益稳定性好。
由于谐振放大器的增益受到谐振频率和谐振电路的参数影响,一旦确定了这些参数,放大器的增益就基本上保持不变。
其次,谐振放大器在谐振频率附近具有较高的增益。
在谐振频率附近,谐振电路的阻抗变得较大,这样可以对输入信号进行较大的增益。
此外,谐振放大器还具有较好的频率选择性,只对特定频率的信号进行放大,对其他频率的信号具有较小的增益。
对于一个谐振放大器,我们可以通过分析它的频率响应来评估其性能。
频率响应曲线描述了放大器在不同频率下的增益。
在谐振频率附近,频率响应曲线有一个峰值,表示放大器在谐振频率附近具有最大的增益。
而在谐振频率上下,增益逐渐减小,形成两个增益曲线。
我们可以通过测量这些性能指标来评估放大器的性能,例如谐振频率、增益、带宽等。
此外,还可以通过控制谐振网络中的电容和电感的参数来调整谐振频率和增益。
在实际应用中,谐振放大器具有广泛的用途,特别是在高频电子设备中。
例如,谐振放大器可以在无线通信系统中用于放大射频信号,以提高信号传输的距离和质量。
此外,谐振放大器还可以用于音频放大器、功率放大器、示波器和频谱分析仪等设备中。
总之,谐振放大器是一种特殊的放大器,利用谐振网络来增强放大器的增益和频率选择性。
通过分析谐振放大器的频率响应,并控制谐振网络中的参数,可以实现放大器的增益稳定和频率选择性。
毕业设计LC谐振放大器
毕业设计LC谐振放大器LC谐振放大器是一种常用的电子放大器电路,可以实现信号放大和滤波的功能。
在毕业设计中,我们可以针对LC谐振放大器进行深入研究和实践,例如设计和优化不同类型的谐振放大器电路,比较它们的性能等。
首先,毕业设计的开篇可以从对LC谐振放大器的介绍开始。
可以介绍LC谐振放大器的基本原理,即如何通过谐振频率实现信号放大和频率选择的功能。
同时,可以讨论谐振放大器的优势和局限性,例如其在特定频率附近的放大和滤波性能较好,但在其他频率下可能出现衰减。
接着,可以进行LC谐振放大器的设计和优化。
设计过程中需要确定放大器的增益目标和工作频率范围。
根据需求,可以选择并优化不同类型的谐振放大器电路,如平行谐振放大器、串联谐振放大器和并联谐振放大器等。
同时,需要选取适当的电感和电容值,以满足谐振频率条件和对信号的放大要求。
在设计过程中,可以利用MATLAB或其他电路仿真工具进行性能分析和参数优化,比较不同方案的优劣并选择最佳方案。
在设计完成后,可以进行LC谐振放大器的实验验证。
可以使用实际的电子元器件进行电路搭建,并通过信号发生器和示波器等设备进行测量和分析。
实验过程中需要注意电路稳定性、功率控制以及噪声抑制等问题,并根据实际测量结果进行电路优化和参数调整。
最后,可以对设计和实验结果进行总结和讨论。
可以分析LC谐振放大器的增益特性、频率响应和抗干扰能力等性能指标,并与设计目标进行对比。
同时,可以讨论LC谐振放大器在实际应用中的局限性和改进方向,例如如何提高谐振放大器的带宽和线性度等。
此外,还可以讨论不同类型的谐振放大器电路在不同应用场景中的适用性和优势。
总的来说,毕业设计的LC谐振放大器可以涵盖电路设计、参数优化、实验验证和性能分析等方面。
通过此次设计,不仅可以提高对谐振放大器的理解,还可以培养实际电路设计和实验技术。
高增益LC谐振放大器的设计
高增益LC谐振放大器的设计
采用分立元件设计了一个3级单调谐放大器,可用于通信接收机的前端电路,通过合理分配各级增益和多种措施提高抗干扰性,具有中心频率容易调整、稳定性高的特点。
电路经实际测试表明具有低功耗、高增益和较好的选择性。
本文设计的放大器具有增益和中心频率可调、低功耗、选择性好的特点。
1 电路原理及设计思路
高频小信号调谐放大器对中心频率的信号具有最大放大能力,中心频率为:
式(2)中,ri为晶体管的输入电阻,QL是回路的有载品质因素,RL。
电子设计大赛——LC谐振放大器ppt
谢谢观看!
请您提出宝贵的意见或建议.
具体操作
• 1 制作电路板 • 根据仿真软件的仿真效果,将实物图连接成电路(焊接电 路板) • 2 实际检测 • 在检测实验仪器正常后,对实物电路板进行检测。包括用 示波器对衰减进行检测以及用波特仪对谐振放大器进行检 测。 • 3 记录实验数据 • 示波器的输入输出波形 波特仪中信号的中心频率及其增 益
系统要求及元件类型选择
• 衰减器的确定
第一级的衰减器需要衰减40dB。 经过分析可以采用π型衰减器。
• LC谐振放大器的确定
在信号传输过程中,被通讯设备处理和传输的信号是 经过调制处理过的高频信号,这种信号具有窄带特性。信 号受到衰减和干扰到达接收设备的信号是非常弱的高频窄 带信号,再进一步处理之前应当经过放大和限制干扰的处 理。这就需要高频小信号放大器来完成。 经过分析lc谐振 放大器要运用三极管来实现,因为放大器的选取比较困难, 而且不好调整。三极管最终决定选取2N2222。由于受到 元器件的约束实际电路决定用S9018替换。
LC谐振放大器
设计要求
设计简介
本系统是由衰减器和3级LC谐振放大电路构成 的LC谐振放大器。衰减器衰减量40dB±2,特性 阻抗50欧姆。放大器谐振频率为15MHZ,增益在 60dB以上,测试条件下输出负载为200欧姆,采 用三级级联的方式,每一级都需考虑与其它级之 间的匹配,综合多种干扰因素,将信号放大到预 定的倍数。
电路分析及设计
衰减器的设计图
我们设计的电路主要功能是将5mV输入信号衰减到所需的输 入信号,特性阻抗为50欧姆。经过公式可以求出,电路可达到衰 减40DB.设计图形如下图所示:
LC谐振电路设计图
用2N2222三极管设计出来的电路,采用三级运算放大 到题目所需增益,在中心频率达到76.65 dB。电路如图:
LC谐振放大
• 1.确定静态工作点 • 由于放大器是工作在小信号放大状态,放大器工作电流 ICQ 一般在 0.8-2mA之间选取为宜,设计电路中取 Ic = 1.2mA, • 设 Re = 1KΩ 。 • 因为 :VEQ = IEQ Re 而 ICQ≈ IEQ • 所以: VEQ = 1.2mA × 1K Ω = 1.2V • 因为: VBQ = VEQ + VBEQ (硅管的发射结电压 VBEQ 为 0.7V) • 所以: VBQ = 1.2V + 0.7V = 1.9V • 因为: VCEQ = VCC − VEQ • 所以: VCEQ = 12V − 1.9V = 11.1V • 因为: Rb2 = VBQ /( 5 − 10) IBQ 而 IBQ = ICQ/β = 1.2mA / 50 =0.024mA • 取 10*IBQ • 则: Rb2 = VBQ / 10IBQ = 1.9V / 0.3 =6.3KΩ • 因为:Rb1 = [(VCC − VBQ ) / VBQ ] Rb2 • 则:Rb 1 = [(12V − 1.9V ) / 2.2V ] ∗ 8.2 K Ω = 32.2 K Ω, • 考虑调整静态工作点, Rb1 用 20KΏ电位器与 15KΏ串联
• 4.确定耦合电容与高频滤波电容: • 耦合电容C1、C2 的值,可在1000pf— 0.01uf之间选择,一般用瓷片电容。 • 旁路电容 Ce、C3、C4 的取值一般 为 0.01-1 μF, • 滤波电感的取值一般为220-330uH。
12
107
B1
12V
C D A B
R1
15K
TR2
RV1 R4
+
75%
C5
1UF 20K
50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LC谐振放大器(D题)目录摘要 (2)一、方案论证与比较 (3)1、总体设计方案 (3)2、衰减器部分方案与选择 (3)3、LC谐振选频网络 (3)4、AGC自动增益控制 (4)二、硬件单元电路部分 (4)1、固定衰减器 (4)2、LC谐振 (4)3、固定增益放大 (5)4、AGC可控增益放大 (5)三、理论分析与计算 (6)1、LC谐振部分参数 (6)2、系统总增益 (6)3、带宽与矩形系数 (7)四、测试方案与测试结果及分析 (7)1、调试与测试所用仪器 (7)2、测试条件` (7)3、测试方法、测试数据及测试结果分析 (7)五、总结 (9)六、参考文献 (9)七、附录 (10)LC谐振放大器(D题)摘要本系统以硬件电路为主体,主要由双π衰减电路、LC谐振放大电路、固定增益模块、AGC自动增益控制模块组成。
双π衰减电路作为衰减器部分完成=15MHz为中心频率,带40 2dB的衰减量;LC谐振放大电路主要是选出以f宽为300kHz的频带;固定增益模块实现一定的增益以保证电路有大于等于40dB 的固定增益;AGC自动增益控制模块实现大于40dB的控制范围。
整个系统在低压、低功耗的条件下实现高频小信号的传输,放大器增益大于80dB,且在最大增益情况下尽可能减小矩形系数K。
1.0r关键词:双π衰减电路;LC谐振放大;AGC自动增益控制;一、方案论证与比较1、总体设计方案本系统设计完全由硬件电路实现,具体框图如图1-1所示:2、衰减器部分方案与选择方案一、采用现成的集成产品衰减器。
此方案不合本课题宗旨,故不采用。
方案二、采用有源衰减电路。
采用高频带运算放大器(如OPA642)搭建反向衰减电路,合理选择电阻阻值使其衰减倍数为40dB 。
但由于题目要求衰减器部分特性阻抗为50Ω,用运放搭建该衰减电路难以实现。
方案三、采用无源衰减网络。
该部分由纯电阻搭建,有两种基本电路模型T 型、Π型网络。
如上图(a )为T 型网络,(b )为Π型网络。
若衰减器的电压衰减倍数N=(21U U )和特性阻抗给定,则元件参数可由(2-1)式或(2-1)式决定。
对T 型网络有 R 1=NZ 21N *2c - 11*c 2-+=N N Z R (2-1)对Π型网络有 R 1=11-N *c +N Z 12*2c 2-=NN Z R (2-2)通常这种无源衰减网络接于信号源与负载之间,这种由纯电阻元件组成的四端网络,其特性阻抗、衰减值都是与频率无关的常数,相移等于零。
综上,我们选择方案三,搭建一个双Π型网络。
3、LC 谐振选频网络方案一、采用单级调谐放大器,即单级LC 谐振网络。
方案二、采用双调谐放大器,具有频带较宽、选择性较好的优点。
根据本课题要求矩形系数尽量小,故应尽量减小谐振频率周围的带宽。
而单级LC谐振网络即可达到一定的电压放大,且其谐振频率周围频带较窄,正好满足题目要求。
故我们选择方案一。
4、AGC自动增益控制方案一、采用增益带宽积大的运算放大器制作多级放大电路。
以OPA842和OP37为例,利用OPA842增益带宽积大的特点,使输入的小信号充分放大,在用OP37或其他高压运放放大至有效值10V。
这种方法采用电位器或者数字电位器连续调节放大倍数,设计简洁,但是要实现数字控制的可控对数增益很不方便。
方案二、采用基于DAC的PGA方法。
可以实现D/A芯片的电阻网络改变反馈电压控制电路增益,其功能类似于电位计。
放大器的增益准确度取决于DAC的分辨率和电路增益。
优点是便于实现数控,结构简单,控制方便。
但是增益增大时,对应的数字位也越小,增益准确度会降低,一般将增益限制在256倍以内。
但是由于我们所拥有的单片机系统的本身晶振频率只有72MHz,而本课题信号频率为15MHz,单片机D/A无法采集到精确的数据,难以实现软件控制。
方案三、采用集成宽带的可调增益放大器。
以VCA822为例,单片VCA822可以有最大58dB的可调增益范围,最大工作频带宽度可达150MHz,可以很好的满足要求。
对于程控方面的策略,同样因为单片机本身晶振频率与信号频率的原因而无法实现。
但我们可以通过在放大器加检波电路,通过硬件电路将输出的信号进行反馈,从而实现增益自动控制。
综上,我们采用方案三。
二、硬件单元电路部分1、固定衰减器本部分我们采用纯电阻电路搭建双Π型网络,根据题目要求实现的衰减倍数,通过实际参数计算,我们配出电路所需阻值。
在信号为任何频率时均满足其衰减量在40 2dB的范围内。
根据电路基本阻抗计算知识我们可得其特性阻抗为50Ω。
具体电路图如图2-1:图2-1 固定衰减器电路2、LC谐振这一部分我们采用单级调谐放大电路,具体电路如图2-2所示:图2-2 LC 谐振放大电路由LC 谐振部分和三极管放大部分组成一个谐振频率为15MHz 、反向放大的电路,调节10K 电位器是三极管9018工作在合适的静态工作点(V E =0.92V );图中2.2uH 、50p 、50p 可调电容三个元件构成谐振部分,调节20p 可调电容使得谐振频率为15MHz ;在集电极输出处的接一个小电容(22p )防止高频自激现象;由51Ω和100p 电容构成的是一条全通滤波电路,主要是为了滤去谐振时产生的高次谐波;最后的3K 作为电路的假负载,为了使电路能正常工作。
对于2.2uH 的电感,为保证精度我们采用自行绕制的电感。
采用工作频率为30MHz 的工字磁芯,从而保证了信号频率为15MHz 的正常工作。
3、固定增益放大为了满足总增益大于80dB ,我们设计一个固定增益模块,使得固定增益模块与LC 谐振放大模块两级达到40dB 的固定增益。
本部分我们采用同相比例放大器,达到21倍放大。
具体电路如图2-3所示:图2-3 固定增益放大电路4、AGC 可控增益放大根据题目要求,这部分实现自动增益控制。
我们采用高带宽低功耗芯片VCA820,根据其芯片资料可知,当200=G R Ω、1=FR K Ω,控制电压G V 在0~2V之间变化时,可以实现-20~+20dB 的增益变化范围(V G =0V 时,增益为-20dB ;V G =2V 时,增益为+20dB ),后级再增加一级20dB 的固定增益,使得整个可控增益范围为0~40dB 。
将OPA820输出的电压通过高速二极管1N4150整流以及用OPA820芯片搭建的积分电路,将电位器调节到合适位置使控制电压G V 在0~2V 之间变化,从而控制增益变化。
具体电路如图2-4所示:图2-4 AGC 自动增益控制三、理论分析与计算1、LC 谐振部分参数定义B=w 2-1w =2∆f 7.0=300kHz 谐振频率π2w f 00==15MHz根据并联谐振特性,CL 00w 1w =,品质因数Q=LR 00w =C R B000w w =取C=51pF ,则L 0=2.2uH 2、系统总增益根据公式:增益=20lg 放大倍数 衰减器部分衰减量为40dB ;放大器部分:固定增益模块增益=20lg 21=26.44dBLC 谐振放大器增益=20lg 8-=18.06dBAGC 增益自动控制部分增益范围为40dB合计放大器部分增益为84.5dB>80dB,达到指标3、带宽与矩形系数谐振频率为0f =15MHz ,当输入信号频率为15MHz 时,系统放大倍数最大,输出信号幅值为m a x V 。
增大或减小信号频率则放大倍数减小,当输出幅值为0.7max V 时,对应频率21f f 、,由此得到-3dB 带宽2∆f 7.0=21f -f 。
继续增大或减小信号频率,当输出幅值为0.1max V 时,对应频率为43f f 、,由此得2∆f 1.0=43f -f ,最终得到矩形系数7.01.01.0r f 2f 2∆∆=K 。
四、测试方案与测试结果及分析测试时间:2011年9月3日;环境温度:31°C 3、测试方法、测试数据及测试结果分析 (1)40dB 固定衰减器部分测试方法:设定三个频率档13M 、15M 、16M ,记录三个频率档在不同输入信号幅值时的输出值,从而测定这部分的衰减量是否达标。
衰减量=20lg输入值输出值(dB )记录数据如下表4-1所示:的题目要求。
(2)、幅频特性曲线测量测试方法:根据题目要求我们给定输入信号为4.80mV ,输出接200Ω负载时,测量不同频率下的输出值。
先测得谐振中心频率,此时增益为A 0v ,增大减小频率记录输出值,并作出幅频特性曲线。
记录数据如下表4-2所示:(放大倍数=v V A A ,谐振频率f=15.02MHz )表4-2 幅频特性曲线图3-1 幅频特性曲线(3)、矩形系数结合图4-1和表4-2可知2 f 7.0=(15.165—14.870)*2=0.590MHz ,即—3dB 带宽为295kHz2∆f 1.0=(16.09—13.811)*2=4.558MHz矩形系数7.01.01.0r f 2f 2∆∆=K =7.725(4)、AGC 控制范围测试方法:单独测量AGC 模块电路,在输入信号频率为15MHz 时,给定不同幅值的输入信号,测得AGC 带200负载的输出电压,从而得到AGC 的控制范围。
记录数据如下表4-3所示:表4-3 AGC 测试范围数据数据分析:AGC 控制范围为20lg (minmin0i V V )--20lg (maxmax0i V V )(dB )由表4-3可知,20lg5.71000*02.1=42.92dB ,所以AGC 控制范围为42.92dB~82.92dB 。
(5)、功耗测试测试方法:在电源输出处串联一个电流表,测得电流。
测得电流I=70mA ,由供电电源为U=3.6V 得,整个系统功耗为P=UI=252mW<360mW ,达到指标。
系统输出最大不失真电压为1.04V 。
五、总结本系统为高频小信号传输,通过一系列的硬件电路将小信号先进行衰减100倍,再由LC 谐振放大电路选出频率为15MHz 的信号进行放大,经过固定增益放大模块、AGC 自动增益控制模块最终将信号放大10000倍(80dB )。
本设计着重于考察我们选取合适元件、最佳设计方案、以及硬件电路设计、焊接、调试等能力。
对于高频小信号的传输,要特别注意排除外界噪声干扰,对此我们在电源引入处、芯片电源引脚处都加有退耦电容,各模块之间的信号传输采用同轴电缆,同时在电路元件布局焊接时尽量使元器件紧凑,走线方向统一(不能形成环路)。
为达到题目低压低功耗的要求,我们自备3.6V 电源并尽量选择低压低功耗的元件。
四天三夜的的时间,我们收获颇多,在调试过程中我们通过不断的尝试、改换元器件、改换参数,力求达到最佳效果。
六、参考文献《电子技术基础—模拟部分》 主编 康华光 高等教育出版社 万方—数字化期刊七、附录附录一、完整电路图。