高中化学:2.1《共价键模型》教案(鲁科版选修3)

合集下载

2024-2025学年高中化学第2章第1节共价键模型第1课时共价键教案鲁科版选修3

2024-2025学年高中化学第2章第1节共价键模型第1课时共价键教案鲁科版选修3
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解共价键的基本概念。共价键是两个原子通过共享电子以达到稳定电子排布的一种化学键。它对于理解分子的结构和性质至关重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了共价键在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调极性共价键和非极性共价键这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
3.实验操作报告:要求学生完成一个简单的实验操作,并撰写实验操作报告,描述实验现象和结果,并解释共价键的基本原理。
4.小组讨论报告:要求学生围绕“共价键在实际生活中的应用”这一主题展开讨论,并撰写讨论报告,记录讨论过程和结果。
作业反馈:
1.对课本练习题进行批改,指出学生的错误和不足,并提供正确的答案和解释。
本节课的内容与学生的日常生活和前期学习有关联,通过分析实际例子,引导学生理解共价键的重要性。在教学过程中,我会结合学生的实际情况,采用生动有趣的教学方法,如模型展示、动画演示等,帮助学生直观地理解共价键的形成过程。同时,我会设计一些实验活动,让学生亲自动手操作,增强他们对共价键概念的理解。
在课程设计中,我会将教学内容与学生的认知水平相结合,注重培养学生的观察能力、思考能力和实践能力。通过启发式教学,引导学生主动探索、发现问题,并运用所学知识解决实际问题。此外,我还会注重培养学生的团队合作意识,鼓励他们相互讨论、交流,共同完成学习任务。
知识点梳理
1.共价键的基本概念:共价键是两个原子通过共享电子以达到稳定电子排布的一种化学键。它是由非金属原子之间形成的。
2.共价键的形成过程:共价键的形成通常涉及电子的互相配对。原子通过共享一对电子,各自达到更加稳定的电子排布,从而形成共价键。

鲁科高中化学选修三2.1《共价键模型》教案

鲁科高中化学选修三2.1《共价键模型》教案

第一节共价键模型第一课时共价键【教学目标】1. 使学生认识共价键的形成和实质,了解共价键的特征。

2.使学生了解共价键的主要类型,能利用电负性判断共价键的极性。

【重点、难点】共价键的形成、实质,对δ键与π键的认识。

【教学方法】启发,讲解,观察,练习【教师具备】课件【教学过程】【新课引入】这节课开始我们学习第二章微粒间的相互作用。

我们知道物质是由原子、分子、离子等微粒构成。

微粒间的相互作用(化学键或分子间相互作用)理论是物质构成的基本理论。

【回顾】回忆化学必修课程中有关化学键的知识,回答以下几个问题:(1)化学键的定义及基本分类(2)离子键、共价键的定义(3)离子化合物、共价化合物的定义【过渡】为什么原子之间可以通过共用电子对形成稳定的分子?共价键究竟是怎样形成的,它又具备怎样的特征呢?下面我们来一起学习第一节共价键模型【板书】第一节共价键模型一、共价键的形成及本质【指导阅读】课本P31——P32回答以下问题:(1)氢原子间距离与能量的关系:(2)为什么会出现这种情况?【板书】氢分子形成过程示意图【板书】1.本质:高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用说明:电性作用包括吸引和排斥,当吸引和排斥达到平衡时即形成了稳定的共价【练习】以HCl、H2、Cl2为例描述共价键的形成过程(分析成键原子的价电子排布及参与成键的价电子)【提问】共价键的形成需要满足哪些条件呢?是不是所有的非金属元素原子之间都能形成共价键?He与Cl之间能形成共价键吗,为什么?【板书】2.共价键的形成条件:①通常电负性相同或差值小的非金属元素原子形成的化学键;②成键原子一般有未成对电子,用来相互配对成键(自旋反向);③成键原子的原子轨道在空间重叠使体系能量降低。

【小结】(1)多数共价化合物中只含非金属元素,但AlCl3、FeCl3 等共价化合物中含有金属元素。

(2)NH4Cl均由非金属元素组成,但它是离子化合物。

【提出问题】为什么Cl2是双原子分子,而H2O则是1个O原子与2个H原子形成分子?【师】给出饱和性概念。

高中化学2.1共价键模型课件鲁科版选修3

高中化学2.1共价键模型课件鲁科版选修3

问题(wèntí)引名导师精讲
③π键的特征:
a.每个π键的电子云由两块组成,分别位于由两原子核构成平面的两侧,如果以 它们之间包含原子核的平面为镜面,它们互为镜像,这种特征称为镜面对称。
b.形成π键时原子轨道重叠程度比形成σ键时小,π键没有σ键牢固。
④π键的存在:π键通常存在于双键或叁键中。
第二十页,共39页。
第十六页,共39页。
探究(tànjiū) 一
探究 (tànjiū)二
即时检测
问题(wèntí)引名导师精讲
σ键与π键 (1)σ键。 ①σ键:形成共价键的未成对电子的原子轨道采取“头碰头”的方式重叠,这
种共价键叫σ键。
②σ键的类型:根据成键电子原子轨道的不同,σ键可分为s-s σ键、s-p σ键、 p-p σ键。
第三页,共39页。
一二
当成键原子相互接近时,由于电子在两个原子核之间出现的概率增加, 使它们同时受到两个原子核的吸引(相当于用一个负电荷的桥梁将两个 正电荷连接起来),从而导致(dǎozhì)体系的能量降低,形成化学键。即:高 概率地出现在两个原子核之间的电子与两个原子核之间的电性作用是共 价键的本质。
第九页,共39页。
一二
极性键又有强极性键(如H—F中的极性键)和弱极性键(如H—I中的极性键) 之分。当电负性差值为零时,通常(tōngcháng)形成非极性共价键;差值不为零 时,形成极性共价键;而且差值越小,形成的共价键极性越弱。
第十页,共39页。
一二
二、键参数 1.键能 把在101.3 kPa、298 K条件下,断开1 mol AB(g)分子中的化学键,使其 分别生成气态A原子和气态B原子所吸收的能量称为A—B键的键能,常用 EA—B表示。 键能的大小可定量地表示化学键的强弱程度。键能愈大,断开时需要 的能量就愈多,这个化学键就愈牢固;反之,键能愈小,断开时需要的能量 就愈少,这个化学键就愈不牢固。 2.键长 两个成键原子的原子核间的距离叫做该化学键的键长。一般而言,化 学键的键长愈短,化学键愈强,键愈牢固,键长是影响分子空间(kōngjiān) 构型的因素之一。键长的数值可以通过实验测定,也可以通过理论计算 求得。

高中化学第2章第1节共价键模型第1课时共价键课件鲁科版选修3

高中化学第2章第1节共价键模型第1课时共价键课件鲁科版选修3
√D.在分子中,化学键可能只有π键而没有σ键
解析 共价键形成时,原子轨道首先以“头碰头”的方式重叠形成σ键,然后才可能 以“肩并肩”的方式重叠形成π键,故B、C正确,D错误; 从原子轨道重叠程度看,π键的重叠程度比σ键的重叠程度小,故π键的稳定性比σ键 小,易被破坏,是化学反应的积极参与者,A正确。
D.当氧原子与氟原子形成共价键时,共用电子偏向氟原子一方
解析 不同元素的原子吸引电子的能力不同,形成极性键;同种元素的原子形成的 双原子分子中,两原子吸引电子的能力相同,形成非极性键。某些化合物中,如 Na2O2、H2O2中均含有非极性键。氟原子吸引电子的能力强于氧原子,二者成键时 共用电子偏向氟原子。
123456
(3)C 、 H 元 素 形 成 的 化 合 物 分 子 中 共 有 16 个 电 子 , 该 分 子 中 σ 键 与 π 键 的 个 数 比 为 5∶1 。 解析 设分子式为CmHn,则6m+n=16,解之得m=2,n=4,即C2H4,结构式为
解析 成键的两原子相互靠近,且两原子的原子轨道重叠,共用电子在两原子核之 间出现的概率增大;两个原子形成共价键时,体系的能量最低,若成键后原子核距 离更近些,则两个带正电荷的原子核之间的排斥作用又将导致体系能量升高,A项 错误。
例2 下列说法正确的是
√A.若把H2S分子写成H3S分子,违背了共价键的饱和性 B.H3O+的存在说明共价键不具有饱和性 C.所有共价键都有方向性 D.两个原子轨道发生重叠后,电子仅存在于两核之间
双键中有一个σ键和一个π键,单键全部是σ键。
123456
(2)已知CO和CN-与N2结构相似,CO分子内σ键与π键个数之比为 1∶2 。HCN分子 中σ键与π键数目之比为 1∶1 。 解析 N2的结构式为N≡N,推知CO结构式为C≡O,含有1个σ键、2个π键;CN- 结构式为[C≡N]-,HCN分子结构式为H—C≡N,HCN分子中σ键与π键均为2个。

2024-2025年高中化学第2章第1节共价键模型教案鲁科版选修3

2024-2025年高中化学第2章第1节共价键模型教案鲁科版选修3
核心素养目标
本节课的核心素养目标包括:提高学生的科学探究能力,培养学生的逻辑思维能力,提升学生的信息处理能力,培养学生的团队协作能力。通过本节课的学习,学生将能够运用观察、实验、分析等方法探究共价键的形成和类型;能够运用逻辑思维解释和预测化学反应的结果;能够运用信息处理能力,从各种信息源获取有用的化学知识;并能够在团队合作中,有效沟通、共享资源,共同解决问题。
教学方法/手段/资源:
-讲授法:通过讲解帮助学生理解共价键知识点。
-实践活动法:通过实践活动让学生掌握共价键知识。
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解共价键知识点,掌握相关技能。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
-视频:播放有关共价键形成过程的动画视频,帮助学生直观地理解共价键的形成;
-在线工具:利用在线化学仿真实验工具,让学生亲自操作,体验共价键的形成过程;
-网络资源:引导学生查阅相关网络资源,了解共价键知识在实际中的应用。
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:提供PPT、视频等预习资料,明确预习目标和要求。
重点难点及解决办法
重点:共价键的基本概念、形成原理和类型。
难点:共价键形成过程中的电子排布和能量变化,以及共价键类型之间的区别。
解决办法:
1.对于共价键的基本概念,可以通过生动的例子和实际案例来帮助学生理解。例如,可以用氯化氢分子和水分子的形成过程来解释共价键的概念。
2.对于共价键的形成原理和类型,可以通过动画演示和模型展示来帮助学生直观地理解。例如,可以利用计算机动画来展示电子排布和能量变化的过程,让学生更直观地理解共价键的形成。

2019-2020年高中化学 2.1.2共价键模型教案 鲁教版选修3

2019-2020年高中化学 2.1.2共价键模型教案 鲁教版选修3

2019-2020年高中化学 2.1.2共价键模型教案鲁教版选修3【教学目标】1.认识键能、键长、键角等键参数的概念2.能用键参数――键能、键长、键角说明简单分子的某些性质【教学重点】键参数的概念【教学难点】键参数的概念,【教学方法】运用类比、归纳、判断、推理的方法,注意各概念的区别与联系,熟悉掌握各知识点的共性和差异性。

【教师具备】多煤体、图像【教学过程】【联想质疑】氯化氢、碘化氢的分子结构十分相似,它们都是双原子分子。

分子中都有一个共价键,但它们表现出来的稳定性却大不一样。

这是为甚麽呢?【板书】二、键参数——键能、键长与键角【学生活动】引导学生利用表格与数据学习键能与键长,理解它们的含义。

【阅读与思考】认真阅读教科书中的表2—1-1,2-1-2了解一些共价键的键能、键长,并思考下列问题:【提出问题】(1)键能是共价键强度的一种标度,键能的大小与键的强度有什么关系?(2)键能与化学反应的能量变化有什么联系?怎样利用键能的数据计算反应的热效应?【板书】1.键能(1)概念:在101.3kPa,298K的条件下,断开1molAB(g)分子中的化学键,使其分别生成气态A原子和气态B原子所吸收的能量,叫A--B键的键能,(2)表示方式为 E A-B ,单位是 kJ/mol(3)意义:表示共价键强弱的强度,键能越大,键越牢固2.键长:(1)概念:两个成键原子之间的原子核间间隔叫键长。

(2)意义:键长越短,化学键越强,键越牢固。

【归纳总结】在上述学习活动的基础上,归纳1.键能的概念及其与分子性质的关系,即键能是气态基态原子形成1mol共价键释放的最低能量。

键能通常取正值键能越大,化学键越稳定。

2.分子内的核间距称为键长,它是衡量共价键稳定性的另一个参数,键长越短,往往键能越大,共价键越稳定【过渡】【提出问题】怎样知道多原子分子的形状?【讨论与启示】:要想知道分子在空间的形状,就必须知道多原子分子中两个共价键之间的夹角,即键角。

2024-2025学年高中化学第2章化学键与分子间作用力第1节共价键模型教案鲁科版选修3

2024-2025学年高中化学第2章化学键与分子间作用力第1节共价键模型教案鲁科版选修3
3.请判断下列分子中哪个具有非极性键,哪个具有极性键。
答案:非极性键是指共价键两端的原子电荷分布均匀,没有电荷的局部化。极性键是指共价键两端的原子电荷分布不均匀,一端带有正电荷,另一端带有负电荷。在下列分子中,甲烷(CH_4)分子中的共价键是非极性的,因为碳原子和氢原子都是非金属元素,它们之间的电荷分布均匀。而氨气(NH_3)分子中的共价键是极性的,因为氮原子带有部分负电荷,而氢原子带有部分正电荷,导致共价键一端带有正电荷,另一端带有负电荷。
2.原子轨道的重叠:讲解原子轨道的重叠方式,包括σ键和π键的形成。
3.杂化轨道:介绍杂化轨道的概念,解释杂化轨道的形成过程以及其对分子结构的影响。
4.分子几何构型:讲解分子几何构型的概念,以及如何根据价层电子对互斥理论判断分子的几何构型。
5.键长、键角与分子的稳定性:分析键长、键角与分子稳定性的关系。
6.实例分析:通过具体案例分析,加深学生对共价键模型的理解。
核心素养目标分析
本节课旨在培养学生的科学探究与创新意识,提高科学思维能力,强化科学、技术、社会、环境(STSE)的联系,以及增强学生的团队合作能力。
1.科学探究与创新意识:通过学习共价键模型,培养学生提出问题、收集证据、形成解释的科学探究能力,激发学生对化学键与分子间作用力的创新意识。
3.实验器材:本节课可能需要进行的实验有:共价键形成实验、杂化轨道的演示实验等。确保实验器材的完整性和安全性,包括显微镜、模型原子、化学试剂等。同时,准备好实验操作的安全指导书和实验报告模板。
4.教室布置:根据教学需要,布置教室环境,如分组讨论区、实验操作台等。在教室内设置多个小组讨论区,配备必要的桌椅和白板,以便学生进行小组讨论和实验操作。同时,确保实验操作台的安全性和卫生。

化学:2. 1《共价键模型》教案(鲁科版选修3)

化学:2. 1《共价键模型》教案(鲁科版选修3)

第一节共价键模型一、教案目标:1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。

2.知道共价键的主要类型δ键和π键。

3.说出δ键和π键的明显差别和一般规律。

4. 认识键能、键长、键角等键参数的概念;能用键参数――键能、键长、键角说明简单分子的某些性质5. 知道等电子原理,结合实例说明“等电子原理的应用”二、教案重点:理解σ键和π键的特征和性质键参数的概念三、教案难点:σ键和π键的特征键参数的概念和等电子原理四、教案方法启发,讲解,观察,练习五、教师具备课件六、教案过程第一课时【复习提问】什么是化学键?物质的所有原子间都存在化学键吗?【生】1.分子中相邻原子间强烈的相互作用,叫做化学键。

2.不是,像稀有气体之间没有化学键。

过电子得失达到稳定结构NaCl 的形成过程:【过渡】举例说明:共价化合物和离子化合物,我们学过哪些物质分子是原子之间是通过共价键结合的?【提出问题】 回忆H 、Cl 原子的原子轨道,思考它们在形成分子时是通过什么方式结合的。

1.两个H 在形成H 2时,电子云如何重叠?2.在HCl 、Cl 2中电子云如何重叠?<三种分子都是通过共价键结合的)【学生活动】制作模型:以小组合作学习的形式,利用泡沫塑料、彩泥、牙签等材料制作s 轨道和p 轨道的模型。

根据制作的模型,以H 2、HCl 、Cl2为例,研究它们在形成分子时原子轨道的重叠方式,即σ键和π键的形成过程。

通过学生的动手制作,感悟H 2、HCl 、Cl 2的成键特点,然后教师利用模型和图像进行分析。

【教师分析】利用动画描述σ键和π键的形成过程,体会σ键可以旋转而π键不能旋转。

1.σ键图像分析:①H 2分子里的“s —s σ键”氢原子形成氢分子的电子云描述 ②HCl 分子的s —p σ键的形成③C1一C1的p —p σ键的形成未成对电子的电子云互相靠拢 电子云互相重叠 形成的共价单键的电子云图像 理论分析:1.σ键是两原子在成键时,电子云采取“头碰头”的方式重叠形成的共价键,这种重叠方式符合能量最低,最稳定;σ键是轴对称的,可以围绕成键的两原子的连线旋转。

【化学】2.1.2《共价键模型》教案(鲁科版选修3)

【化学】2.1.2《共价键模型》教案(鲁科版选修3)

第一节共价键模型第2课时键参数【教学目标】1.认识键能、键长、键角等键参数的概念2.能用键参数――键能、键长、键角说明简单分子的某些性质【教学重点】键参数的概念【教学难点】键参数的概念,【教学方法】运用类比、归纳、判断、推理的方法,注意各概念的区别与联系,熟悉掌握各知识点的共性和差异性。

【教师具备】多煤体、图像【教学过程】【联想质疑】氯化氢、碘化氢的分子结构十分相似,它们都是双原子分子。

分子中都有一个共价键,但它们表现出来的稳定性却大不一样。

这是为甚麽呢?【板书】二、键参数——键能、键长与键角【学生活动】引导学生利用表格与数据学习键能与键长,理解它们的含义。

【阅读与思考】认真阅读教科书中的表2—1-1,2-1-2了解一些共价键的键能、键长,并思考下列问题:【提出问题】(1)键能是共价键强度的一种标度,键能的大小与键的强度有什么关系?(2)键能与化学反应的能量变化有什么联系?怎样利用键能的数据计算反应的热效应?【板书】1.键能(1)概念:在101.3kPa,298K的条件下,断开1molAB(g)分子中的化学键,使其分别生成气态A原子和气态B原子所吸收的能量,叫A--B键的键能,(2)表示方式为E A-B ,单位是kJ/mol(3)意义:表示共价键强弱的强度,键能越大,键越牢固2.键长:(1)概念:两个成键原子之间的原子核间间隔叫键长。

(2)意义:键长越短,化学键越强,键越牢固。

【归纳总结】在上述学习活动的基础上,归纳1.键能的概念及其与分子性质的关系,即键能是气态基态原子形成1mol共价键释放的最低能量。

键能通常取正值键能越大,化学键越稳定。

2.分子内的核间距称为键长,它是衡量共价键稳定性的另一个参数,键长越短,往往键能越大,共价键越稳定【过渡】【提出问题】怎样知道多原子分子的形状?【讨论与启示】:要想知道分子在空间的形状,就必须知道多原子分子中两个共价键之间的夹角,即键角。

【学生活动】制作模型学习键角制作模型:利用泡沫塑料、彩泥、牙签等材料制作CO2、H20和CH4的分子模型,体会键角在决定分子空间形状中的作用。

高中化学 第2章 化学键与分子间作用力 第1节 共价键模型教学案 鲁科版选修3

高中化学 第2章 化学键与分子间作用力 第1节 共价键模型教学案 鲁科版选修3

第1节共价键模型[课标要求]1.知道共价键的主要类型σ键和π键。

2.能用键能、键长、键角说明简单分子的某些性质。

1.共价键:原子间通过共用电子形成的化学键。

2.共价键分为:σ键和π键;极性键和非极性键;单键、双键和叁键。

3.共价键的特征:方向性和饱和性。

4.共价键的键参数:键能、键长、键角。

5.键能越大,键长越短,形成的共价键越牢固,含有该键的分子越稳定。

共价键1.共价键的形成及本质概念原子间通过共用电子形成的化学键本质高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用形成元素通常是电负性相同或差值小的非金属元素原子表示方法用一条短线表示由一对共用电子所形成的共价键,如H—H、H—Cl;“===”表示原子间共用两对电子所形成的共价键;“≡”表示原子间共用三对电子所形成的共价键2.共价键的分类(1)σ键和π键①分类标准:按电子云的重叠方式。

②σ键和π键:共价键σ键原子轨道以“头碰头”方式相互重叠导致电子在核间出现的概率增大而形成的共价键。

π键原子轨道以“肩并肩”方式相互重叠导致电子在核间出现的概率增大而形成的共价键。

(2)极性键和非极性键①分类标准:根据共用电子对是否偏移。

②极性键和非极性键:共价键极性键非极性键形成元素不同种元素同种元素共用电子的偏移共用电子偏向电负性较大的原子成键原子电负性相同,共用电子不偏移原子电性电负性较大的原子显负电性,另一原子显正电性两原子均不显电性3.共价键的特征(1)饱和性:每个原子所能形成共价键的总数或以单键连接的原子数目是一定的。

(2)方向性:在形成共价键时,原子轨道重叠愈多,电子在核间出现的概率愈大,所形成的共价键越牢固,因此,共价键将尽可能沿着电子出现概率最大的方向形成,这就是共价键的方向性。

1.σ键和π键的区别是什么?提示:σ键是原子轨道“头碰头”重叠成键,π键是原子轨道“肩并肩”重叠成键。

2.σ键是否一定比π键强度大?提示:否。

3.极性键和非极性键的区别是什么?提示:前者成键的共用电子对发生偏移,后者成键的共用电子对不发生偏移。

鲁科版《共价键模型》教学设计2

鲁科版《共价键模型》教学设计2
[过渡] 键能是共价键强弱的键参数,也可以从其他的量度来表示共价键强弱,那就是接下来我们要学习的键长。
[板书] 2.键长
[讲解] 化学键的键长就是两个成键原子的原子核间的距离。氯气分子中,两个氯原子的原子核间的距离就是Cl-Cl键的键长。
[比较阅读] 指导阅读表2-1-2常见共价键的键长,并与表2-1-1比较,键长越短,还是键长越长,键能越大?
[学生归纳]
[板书] 键长越短化学键越强,反之相反。
[过渡] 键长会影响分子空间构型,而我们一般用键角来描述多原子分子的空间构型。
[板书] 3.键角
[利用粉笔构筑模型,并且在黑板上画图并讲解]
[归纳总结] 键能与键长都可以度量共价键的强度,一般而言,结构相似的物质,键长越短,键越牢固,键能越大。另外键长会影响分子空间构型,一般是用键角来描述多原子分子的空间构型。
第一节共价键模型
(第三课时)
知识与技能:
1.了解键长、键角、键能的概念;
2.知道键长、键能反映了共价键的强弱程度,键长、键角通常用来描述分子的空间构型。
过程与方法:
通过联想质疑,激发学习动机,指导阅读,引导分析数据从而获得认识并体会其意义。
情感态度和价值观:
认识生活中的化学,从而激发学习兴趣;培养多角度看待事物。
[复习] 练习判断H2O2分子中键的极性。
[学生分析]
[联想质疑,激发兴趣] 氯化氢、碘化氢的分子结构非常相似,它们都是双原子分子,分子中都只有一个共价键,但它们表现出来的稳定性却大不一样。例如,在1000℃时,只有%的氯化氢分解生成氢气和氧气,却有高达33%的碘化氢分解为氢气和单质碘,这是为什么?
2.分析N2的稳定性。
[师生一起总结]
[板书] 键能越大化学键越强,形成的物质越稳定;反之相反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节共价键模型一、教学目标:1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。

2.知道共价键的主要类型δ键和π键。

3.说出δ键和π键的明显差别和一般规律。

4. 认识键能、键长、键角等键参数的概念;能用键参数――键能、键长、键角说明简单分子的某些性质5. 知道等电子原理,结合实例说明“等电子原理的应用”二、教学重点:理解σ键和π键的特征和性质键参数的概念三、教学难点:σ键和π键的特征键参数的概念和等电子原理四、教学方法启发,讲解,观察,练习五、教师具备课件六、教学过程第一课时【复习提问】什么是化学键?物质的所有原子间都存在化学键吗?【生】1.分子中相邻原子间强烈的相互作用,叫做化学键。

2.不是,像稀有气体之间没有化学键。

过电子得失达到稳定结构【过渡】举例说明:共价化合物和离子化合物,我们学过哪些物质分子是原子之间是通过共价键结合的?【提出问题】 回忆H 、Cl 原子的原子轨道,思考它们在形成分子时是通过什么方式结合的。

1.两个H 在形成H 2时,电子云如何重叠?2.在HCl 、Cl 2中电子云如何重叠?(三种分子都是通过共价键结合的)【学生活动】制作模型:以小组合作学习的形式,利用泡沫塑料、彩泥、牙签等材料制作s 轨道和p 轨道的模型。

根据制作的模型,以H 2、HCl 、Cl 2为例,研究它们在形成分子时原子轨道的重叠方式,即σ键和π键的形成过程。

通过学生的动手制作,感悟H 2、HCl 、Cl 2的成键特点,然后教师利用模型和图像进行分析。

【教师分析】利用动画描述σ键和π键的形成过程,体会σ键可以旋转而π键不能旋转。

1.σ键图像分析:①H 2分子里的“s—s σ键”氢原子形成氢分子的电子云描述 ②HCl 分子的s —pσ键的形成③C1一C1的p —pσ键的形成未成对电子的电子云互相靠拢电子云互相重叠形成的共价单键的电子云图像理论分析:1.σ键是两原子在成键时,电子云采取“头碰头”的方式重叠形成的共价键,这种重叠方式符合能量最低,最稳定;σ键是轴对称的,可以围绕成键的两原子核的连线旋转。

(1)H2分子里的σ键是由两个s电子重叠形成,称为“s—sσ键”;(2)HCl分子里的共价键是由氢原于提供的未成对电子,1s的原子轨道和氯原子提供的未成对电子3p的原子轨道重叠形成的,称为“s—pσ键”;(3)C12分子中的共价键是由两个氯原子各提供1个未成对电子3p的原予轨道重叠形成的,称为“p—pσ键”。

2. π键:p电子和p电子除能形成σ键外,还能形成π键。

C1一C1的p—pπ键的形成[讲解]π 键是电子云采取“肩并肩”的方式重叠,成键的电子云由两块组成,分别位于由两原子核构成平面的两侧,互为镜像,不可以围绕成键的两原子核的连线旋转。

在分子结构中,共价单键是σ键。

而双键中有一个是σ键,另一个是π 键;共价三键是由一个σ键和两个π 键组成的。

【归纳总结】引导学生观察和讨论,归纳总结出以下几点:一、共价键1.共价键的形成及其本质定义:原子间通过共用电子对形成的化学键本质:高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。

[讨论交流] 列表比较σ键和π键键,另两个为【科学探究】1.已知氮分子的共价键是三键(N三N),你能模仿图2—1、图2—2、图2—3,通过画图来描述吗?(提示:氮原子各自用三个p轨道分别跟另一个氮原子形成1个σ键和两个π键结论:当原子的电负性相差很大,化学反应形成的电子对不会被共用,形成的将是离子键;【归纳】形成条件:电负性相同或差值小的非金属元素原子易形成共价键电子配对理论:如果两个原子之间共用两个电子,一般情况下,这两个电子必须配对才能形成化学键2.共价键的类型【科学探究】3.乙烷、乙烯和乙炔分子中的共价键分别由几个σ键和几个π键组成?【学生回答】【思考】为什么两个氢原子合成氢分子,两个氯原子合成氯分子,而不是3个、4个呢?为什么1个氢原子和一个氯原子结合成氯化氢分子,而不是以其他的个数比相结合呢?共价键有哪些特征?【学生讨论】【归纳】由氢原子和氯原子的电子式可知两个原子都有一个未成对的电子,从分子的形成过程来看,只有未成对的电子才能形成共用电子对,因此H2、HCl、Cl2只能由两个原子各提供一个未成对电子形成一个共用电子对,因此H2、HCl、Cl2只能由两个原子形成。

而不是3个、4个。

这说明在原子间在形成共价键时有一定的特征。

3.共价键的特征:(讲解)(1)饱和性:在共价键的形成过程中,一个原于中的一个未成对电子与另一个原子中的一个未成对电子配成键后,一般来说就不能再与其他原于的未成对电子配成键,即每个原子所能形成共价键的数目或以单键连接的原于数目是一定的,饱和性决定了原子形成分子时相互结合的数量关系。

(2)方向性:形成共价键时,原子轨道重叠愈多,电子在核间出现的概率愈大,所形成的共价键就愈牢固,因此共价键将尽可能地沿着电子概率出现最大的方向形成,这就是共价键的方向性。

【板书设计】一、共价键1.共价键的形成及其本质2.共价键的类型3.共价键的特征:(1)饱和性:(2)方向性第二课时三、教学过程【引入】方向性决定了分子的空间构型,我们通过下面知识的学习,更好的理解共价键的方向性。

下面我们主要研究共价键的参数。

【学生活动】引导学生利用表格与数据学习键能与键长,理解它们的含义。

阅读与思考:认真阅读教科书中的表2—1,2-2了解一些共价键的键能、键长,并思考下列问题:【提出问题】(1)键能是共价键强度的一种标度,键能的大小与键的强度有什么关系?(2)键能与化学反应的能量变化有什么联系?怎样利用键能的数据计算反应的热效应?【归纳总结】:在上述学习活动的基础上,归纳1.键能的概念及其与分子性质的关系,即键能是气态基态原子形成1mol共价键释放的最低能量。

键能通常取正值键能越大,化学键越稳定。

2.分子内的核间距称为键长,它是衡量共价键稳定性的另一个参数,键长越短,往往键能越大,共价键越稳定。

知识应用:【学生活动】完成“思考与交流”中的第1、2、3题。

1.试利用表2—1局数据进行计算,l mol H2分别跟1 molC12、1molBr2 (蒸气)反应,分别形成2mo1HCl分子和2molHBr分子,哪一个反应释放的能量更多?如何用计算的结果说明氯化氢分子和溴化氢分子哪个更容易发生热分解生成相应的单质?2.N2、02、F2与H2的反应能力依次增强,从键能的角度应如何理解这一化学事实?3.通过上述例子,你认为键长、键能对分子的化学性质有什么影响?【学生活动】思考,然后教师点评1.经过计算可知:1molH2与1 molCl2反应生成2molHCl放热184.9kJ,而1molH2与1molBr2:反应生成2molHBr放热102.3kJ。

显然生成氯化氢放热多,或者说溴化氢分子更容易发生热分解。

2.从表2—1的数据可知,N—H键、O—H键与H—F键的键能依次増大;意味着形成这些键时放出的能量依次增大,化学键越来越稳定。

所以N2、02、F2与H2的反应能力依次增强。

3.简言之,分子的键长越短,键能越大,该分子越稳定。

【思维拓展】N2与H2在常温下很难发生化学反应,必须在高温下才能发生化学反应,而F2与H2在冷暗处就能发生化学反应,为什么?讨论与启示:学生就上述问题展开讨论,认识到化学反应是一个旧键断裂、新键生成的过程,N2与H2在常温下很难发生化学反应,而F2与H2在冷暗处就能反应,说明断开N三N键比断开F—F键困难。

【过渡】【提出问题】:怎样知道多原子分子的形状?讨论与启示:要想知道分子在空间的形状,就必须知道多原子分子中两个共价键之间的夹角,即键角。

【学生活动】制作模型学习键角制作模型:利用泡沫塑料、彩泥、牙签等材料制作CO2、H20和CH4的分子模型,体会键角在决定分子空间形状中的作用。

【归纳总结】:键角:多原子分子中,两个化学键之间的夹角,键角是描述分子空间立体结构的重要参数。

例如,在C02中,∠OCO为180°,所以C02为直线形分子;而在H20中,∠HOH为105°,故H20为角形分子。

多原子分子的键角一定,表明共价键具有方向性。

键角是描述分子立体结构的重要参数,分子的许多性质都与键角有关。

【归纳整理】二、键参数——键能、键长与键角1.键能(1)概念:在101.3kPa,298K的条件下,断开1molAB(g)分子中的化学键,使其分别生成气态A原子和气态B原子所吸收的能量,叫A--B键的键能,(2)表示方式为E A-B ,单位是kJ/mol(3)意义:表示共价键强弱的强度,键能越大,键越牢固2.键长:(1)概念:两个成键原子之间的原子核间间隔叫键长。

(2)意义:键长越短,化学键越强,键越牢固。

3.键角:概念:多原子分子中,两个化学键之间的夹角叫键角。

(2)写出下列分子的键角:CO2:H20:NH3:(3)键角、键长、键的极性决定着分子的空间构型。

【学生活动】引导学生利用表格2-3的数据学习等电子原理,理解它的含义。

阅读与思考:认真阅读教科书中的表2—3,【总结】三、等电子原理等电子原理是指原子总数相同,价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。

【例题精析】例 1. 化学反应可视为旧键断裂和新键形成的过程。

化学键的键能是形成(或拆开)lmol化学键时释放(或吸收)的能量。

已知白磷和P4O6的分子结构如图所示,现提供以下化学键的键能(kJ/mol):P—P:198 P—O:360 O=O:498,则反应P4 (白磷)+302=P4O6的反应热△H为( )白磷P4O6A.一1638 kJ/mol B.+1638 kJ/molC.一126k kJ/mol D.+126 kJ/mol(解析) 由反应方程式知,该反应的能量变化包括1mol P4和3 mol02断键吸收的能量和1mol P4O6成键放出的能量。

由各物质的分子结构知1mol P4含6moIP—P键,3 mol02含3 mol0=O键,1mol P4O6含12mol P—O键,故△H=(198 kJ/mol ×6+498kJ/mol ×3)一360 kJ/mol ×12=一1638 kJ/mol (答案) A(点评) 本题通过几组数据进行计算,使我们从定量的角度加深了对化学反应的实质及能量变化的本质认识,并能更加深刻地体会分子结构与其性质的关系。

例2. 1919年,1angmuir提出等电子原理:原子数相同、最外层电子总数相同的分子,互称为等电子体。

等电子体的结构相似、物理性质相近。

(1)根据上述原理,仅由第二周期元素组成的共价分子中,互为等电子体的是:和;和。

(2)此后,等电子原理又有发展。

相关文档
最新文档