七年级暑假提高练习4期末考综合题
七年级数学(人教版)暑假作业四(附答案)
第二单元 平面直角坐标系一、选择题(本大题共10个小题,每小题只有一个符合条件的选项,每小题3分,满分30分)1.在平面直角坐标系中,点)2012,2011(-所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.七年级(1)班教室里的座位共有6排8列,其中李明的座位在第2排第5列,简记为(2,5).王红坐在第5排第3列,则王红的座位可记作( ) A.( 6,8) B.(8,6) C.(5,3) D.(3,5)3.在平面直角坐标系内,把点M )1,2(-向左平移一个单位,则得到的对应点M '的坐标是( )A.)2,2(-B. )1,1(-C. )1,3(-D. )0,2(- 4.点P )3,1(-关于x 轴对称的对称点P '的坐标是( )A.)3,1(-B. )3,1(-C. )3,1(D. )3,1(--5.点N 在第二象限,且到x 轴的距离是3,到y 轴的距离是2,则点N 的坐标为( )A.)2,3(-B. )2,3(-C. )3,2(-D. )3,2(-6.在直角坐标系中,线段A 'B '是由线段AB 平移得到的,已知对应点A 、A '的坐标分别为)1,0(、)3,2(-,则点B )2,2(-的对应点B '的坐标为( ) A.)0,0( B. )4,4(- C. )4,0(- D. )0,4(7. 已知点P (a ,b )是平面直角坐标系中第二象限的点,则化简 │a-b │+•│b-a │的结果是( )A .-2a+2bB .2aC .2a-2bD .08. 如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点( ).A .(1,3)B .(-2,0)C .(-1,2)D .(-2,2)9. 在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ) A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)10.在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是( ) A.(-3,300) B.(7,-500) C.(9,600) D.(-2,-800)二、填空题(本大题共10个小题,每小题3分,满分30分)11.请写出一个点,使它位于第三象限,这个点的坐标可以是 。
浙教版2020七年级数学期末复习综合练习题4(基础部分 含答案)
浙教版2020七年级数学期末复习综合练习题4(基础部分 含答案) 1.下列方程中分式方程有( )个. (1)x 2﹣x +;(2)﹣3=a +4;(3);(4)=1.A .1B .2C .3D .以上都不对2.如图,AB ∥CD ,CP 交AB 于O ,AO=PO ,若∠C=50°,则∠A 的度数为( )A .25°B .35°C .15°D .50°3.某城市家庭人口数的统计结果为:2口人家占10%,3口人家占50%,四口人家占20%,5口人家占10%,其他占10%.选择合适的统计图表示,应采用( ) A .条形统计图B .扇形统计图C .折线统计图D .频数直方图4.已知空气单位体积质量是,将用科学记数法表示为( )A .B .C .D .5.如图是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .a 2+b 2B .4abC .(b +a )2﹣4abD .b 2﹣a 26.若代数式()242M 39x y yx ⋅-=-,那么代数式M 为( )A .23x y --B .23x y -+C .23x y +D .23x y -7.(4分)下列运算正确的是( ) A .B .C .D .8.若32n =,35m =,则23m n -的值是( ) A .45B .252C .1-D .279.下列事件中,最适合采用普查的是( ) A .对某班全体学生出生月份的调查B .对全国中学生节水意识的调查C .对某批次灯泡使用寿命的调查D .对山西省初中学生每天阅读时间的调查10.计算221(1)(1)a a a +++的结果为( )A .1B .1aC .1a +D .11a + 11.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次? 12.如图AB ∥EF ,BC ∥DE ,则∠E +∠B 的度数为__________.13.已知x 2+x -1=0, x 3+2x 2+3=________________. 14.把多项式3x 2+3x ﹣6分解因式的结果是 .15.在“新课程创新论坛”活动中,对收集到的60篇”新课程创新论文”进行评比,将评比成级分成五组画出如图所示的频数分布直方图.由直方图可得,这次评比中被评为优秀的论文有______篇.(不少于90分者为优秀)16.21()(21)(41)2x x x +-÷-= 17.02019的相反数是____.18.分式1a b +,22b a b -,22a a b-的最简公分母是____________. 19.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为__________. 20.当x_____时,分式235x x -+有意义.21.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义.22.某班同学上学期全部参加了捐款活动,捐款情况如下统计表: 金额(元) 5 10 15 20 25 30 人数(人)81210622(1)求该班学生捐款额的平均数和中位数;(2)试问捐款额多于15元的学生数是全班人数的百分之几?(3)已知这笔捐款是按3:5:4的比例分别捐给灾区民众、重病学生、孤老病者三种被资助的对象,问该班捐给重病学生是多少元? 23.计算:2(1)(3)(3)x x x ---+ 24.先化简,再求值:225)3)(()2(y y x y x y x --+-+,其中21,2=-=y x . 25.某校利用暑假进行田径场的改造维修,项目承包单位派遣甲施工队进场施工,计划用40天时间完成整个工程.当甲施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣乙施工队与甲施工队共同完成剩余工程,结果按通知要求如期完成了整个工程. (1)若乙施工队单独施工,完成整个工程需要多少天?(2)若此项工程甲、乙施工队同时进场施工,完成整个工程需要多少天? 26.(m ﹣2n )2.27.如图,AC ,BD 相交于点O ,AC 平分∠DCB ,CD ⊥AD ,∠ACD =45°,∠BAC =60°.(1)证明:AD ∥BC ; (2)求∠EAD 的度数;(3)求证:∠AOB =∠DAC +∠CBD28.对于任何实数,我们规定符号a b c d的意义是:a b c d=ad-bc .按照这个规定请你计算:当x 2-3x+1=0时,x 13xx 2x 1+--的值.29.解方程:.30.计算:12021)|3|(π-+-+参考答案1.B【解析】根据分式方程的定义:分母里含有未知数的方程叫做分式方程即可判断.解:(1)x2﹣x+不是等式,故不是分式方程;(2)﹣3=a+4是分式方程;(3)是无理方程,不是分式方程;(4)=1是分式方程.故选B.2.A【解析】试题解析:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选A.考点:1.平行线的性质,2.三角形外角的性质,3.等腰三角形的性质3.B【解析】【分析】根据常用的几种统计图反映数据的不同特征结合实际来选择.【详解】因为要表示家庭人口数量所占的百分比,所以宜采用扇形统计图,故选B.【点睛】本题主要考查统计图的选择,解题的关键是根据常用的几种统计图反映数据的不同特征结合实际来选择.4.C【解析】分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:=.故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【解析】【分析】根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【详解】解:由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab.故选:C.【点睛】本题考查了完全平方公式的几何背景,求出正方形的边长是解题的关键.6.A【解析】【分析】由题可得4229M3y xx y-=-,运用平方差公式将429y x-进行因式分解可得22(3)(3)y x y x+-,提“-”号得22(3)(3)y x x y-+-,分子分母约分后去括号可得结果.解:由题可得4229M 3y x x y -=-22222222(3)(3)(3)(3)(3)333y x y x y x x y y x y x x y x y+--+-===-+=----. 故选:A 【点睛】本题考查了分式的约分,利用因式分解找准分子分母的公因式是解题的关键.分式约分时分子或分母能因式分解时先进行因式分解. 7.B 【解析】 试题分析:A .,故本选项错误;B .,正确;C .,故本选项错误;D .,故本选项错误.故选B .考点:1.单项式乘多项式;2.立方根;3.合并同类项;4.完全平方公式. 8.B 【解析】 【分析】根据同底数幂的除法逆运算即可求解. 【详解】∵32n =,35m =,∴23m n -=()233m n ÷=52÷2=252故选B. 【点睛】此题主要考查幂的运算,解题的关键是熟知公式的逆用. 9.A 【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行分析判断即可. 【详解】解:A 、对某班全体学生出生日期的调查情况适合普查,故此选项符合题意; B 、对全国中学生节水意识的调查范围广适合抽样调查,故此选项不符合题意; C 、对某批次灯泡使用寿命的调查具有破坏性适合抽样调查,故此选项不符合题意; D 、对山西省初中学生每天阅读时间的调查范围广适合抽样调查,故此选项不符合题意; 故选:A . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 10.D 【解析】 【分析】利用分式的运算法则,即可求解答案. 【详解】2221(1)(1)+1=(1)1=+1a a a a a a ++++ 【点睛】本题考查分式的化简,分式化简一定要注意隐含条件,分式分母部分表达式不为0, 所以本题可以约分,约掉a+1 11.8 【解析】 【分析】根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可. 【详解】解:设:在甲机换了x 次.乙机换了y 次.丙机换了z 次. 在甲机上每换一次多 1 个; 在乙机上每换一次多 3 个; 在丙机上每换一次多 9 个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴123980x y z x y z ++=⎧⎨++=⎩①②由②-①,得:2y+8z=68, ∴y+4z=34, ∴y=34-4z ,结合x+y+z=12,能满足上面两式的值为: ∴x 2y 2z 8===,,; 即在丙机换了8次. 故答案为:8. 【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可. 12.180o . 【解析】 ∵BC ∥DE , ∴∠E=BFG ; ∵AB ∥EF ,∴∠B+∠GFB=180°; ∴∠E+∠B=180°. 故答案是:180°. 【点睛】此题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.还要注意数形结合思想的应用.13.4【解析】【分析】先据x2+x-1=0求出x2+x的值,再将x3+2x2+3化简为含有x2+x的代数式,然后整体代入即可求出所求的结果.【详解】解:∵x2+x-1=0,∴x2+x=1,x3+2x2+3=x(x2+x)+x2+3=x+x2+3=4.故答案为:4.【点睛】此题考查了提公因式法分解因式,从多项式中整理成已知条件的形式,然后利用“整体代入法”求代数式的值.14.3(x+2)(x﹣1)【解析】首先提公因式,然后运用十字相乘法分解因式.解:3x2+3x﹣6=3(x2+x﹣2)=3(x+2)(x﹣1).15.15【解析】【分析】根据题意可得不少于90分者为优秀,读图可得分数低于90分的作文篇数.再根据作文的总篇数为60,计算可得被评为优秀的论文的篇数.【详解】由图可知:优秀作文的频数=60-3-9-21-12=15篇;故答案为15.【点睛】本题属于统计内容,考查分析频数分布直方图和频数的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.16.12. 【解析】 试题分析:先把(x+12)提12,再把4x 2-1分解,然后约分即可. 试题解析:原式=12(2x+1)(2x-1)÷[(2x-1)(2x+1)] =12. 【考点】整式的混合运算.17.-1【解析】【分析】先求出02019,再求相反数.【详解】因为02019=1,所以02019的相反数是-1故答案为:-1【点睛】考核知识点:相反数,0指数幂.18.2(a+b )(a-b)【解析】【分析】取各分母系数的最小公倍数与字母因式的最高次幂的积,即可得到答案.【详解】 ∵22b a b -=2()b a b -,22a a b -=()()a ab a b -+,∴分式1a b +,22b a b -,22a ab -的最简公分母是:2(a+b)(a-b). 故答案是:2(a+b)(a-b).【点睛】本题主要考查分式的最简公分母,掌握“各分母系数的最小公倍数与字母因式的最高次幂的积” 叫做最简公分母,是解题的关键.19.6m >-且4m ≠-【解析】【分析】首先求出关于x 的方程232x m x +=-的解,然后根据解是正数,再解不等式求出m 的取值范围.【详解】解关于x 的方程232x m x +=-得x =m +6, ∵x−2≠0,解得x≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m≠−4.故答案为:m >−6且m≠−4.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.20.≠﹣53【解析】【分析】根据,分式有意义,可得答案.【详解】由题意,得3x+5≠0,解得x≠-53,故答案为≠-53. 【点睛】 本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.21.213x <<;1x > 或23x <;1x =;23x =. 【解析】(1)y 的值是正数,则分式的值是正数,则分子与分母一定同号,分同正与同负两种情况;(2)y 的值是负数,则分式的值是负数,则分子与分母一定异号,应分分子是正数,分母是负数和分子是负数,分母是正数两种情况进行讨论;(3)分式的值是0,则分子等于0,分母不等于0;(4)分式无意义的条件是分母等于0.解:(1)当10230x x ->⎧⎨->⎩或10230x x -<⎧⎨-<⎩时,即213x <<时,y 为正数; (2)当10230x x ->⎧⎨-<⎩或10230x x -<⎧⎨->⎩时,即x >1或x <23时,y 为负数; (3)当10230x x -=⎧⎨-≠⎩时,即1x =时,y 值为零;(4)当230x -=时,即23x =时,分式无意义. 点睛:本题主要考查分式的定义及分式的值.掌握分式的概念及分式的值为正或负时分子与分母的符号关系是解题的关键.22.(1)捐款平均数为13.5元;中位数为12.5元;(2)捐款额多于15元的学生数是全班人数的25%;(3)重病学生可以得到225元的救助.【解析】【分析】(1)根据平均数和中位数公式即可求解,(2)找到捐款多于15元的人数,与总人数相比即可,(3)找到重病学生在三种资助对象中的占比即可解题.【详解】(1)捐款平均数为581012151020625230281210522⨯+⨯+⨯+⨯+⨯+⨯+++++ =13.5元;∵共40人, ∴中位数应该是第20和第21人的平均数,∵第20人捐款10元,第21人捐款15元,∴中位数为12.5元;(2)捐款多于15元的有6+2+2=10人,故10÷40×100%=25%; (3)∵捐款共计540元,按照3:5:4的比例分配给灾区民众、重病学生、孤老病者三种被资助的对象,∴重病学生可以得到540×5354++=225元的救助. 【点睛】本题考查了条形统计图的实际应用,属于简单题,熟记公式是解题关键.23.-2x+10.【解析】【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,去括号合并即可得到结果;【详解】原式=x 2-2x+1-(x 2-9)=-2x+10.【点睛】此题考查整式的混合运算,解题关键在于熟练掌握运算法则.24.-10.【解析】试题分析:先利用完全平方公式和多项式乘以多项式把括号展开,再合并同类项,再把x 、y 的值代入即可求值.试题解析:原式=2222244(33)5y x xy y x xy xy y ++--+--=2222244335y x xy y x xy xy y ++-+-+-=xy x 222+- 当21,2=-=y x 时,原式=-10. 考点:1.整式的化简求值.25.(1)由乙施工队单独施工,完成整个工期需要60天;(2)若由甲乙施工队同时进场施工,完成整个工程需要24天.【解析】【分析】(1)设乙施工队单独施工需要x 天,根据甲施工队完成的工作量+乙施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】(1)设乙施工队单独施工需要x 天, 根据题意得:401440514140x---+= 解得:x=60,经检验,x=60是原分式方程的解.答:若由乙施工队单独施工,完成整个工期需要60天.(2)由题可得111244060⎛⎫÷+= ⎪⎝⎭(天) 答:若由甲乙施工队同时进场施工,完成整个工程需要24天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.26.m 2﹣4mn+4n 2【解析】试题分析:直接利用完全平方公式计算,要注意2n 是一个整体平方.试题解析:(m ﹣2n )2= m 2﹣2m 2n n +(2n )2= m 2﹣4mn +4n 2.27.(1)见解析;(2)75°;(3)见解析.【解析】分析:(1)由AC 平分∠DCB ,∠ACD =45°,可得∠BCD =90°,从而可证AD ∥BC ;(2)由AD∥BC可求∠ACB=∠ACD=45°,然后由三角形内角和可求出∠ABC的度数,再根据两直线平行,同位角相等可求出∠EAD的度数;;(3)过点O作OF∥AD,则OF∥BC,根据平行线的性质可得∠AOF=∠DAC,∠FOB=∠CBD,然后等量代换可得结论.详解:⑴证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°.∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;⑵∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC,∴∠DAC=∠ACB=45°,∴∠EAD=180°-∠DAC-∠BAC=180°-45°-60°=75°;⑶过点O作OF∥AD,∵AD∥BC,∴OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.点睛:本题考查了角平分线的定义,平行线的判定与性质,三角形内角和等于180°,熟练掌握平行线的判定与性质是解答本题的关键.28.1【解析】分析:首先根据符号的法则将原式进行化简,然后利用整体代入的思想求出代数式的值. 详解:解:x 13x x 2x 1+-- =(x+1)(x -1)-3x (x -2)=x 2-1-3x 2+6x =-2x 2+6x -1, ∵x 2-3x+1=0, ∴x 2-3x=-1. ∴原式=-2(x 2-3x )-1=2-1=1.故x 13x x 2x 1+--的值为1.点睛:本题主要考查的是利用整体思想求代数式的值以及新定义的运算法则的理解,属于中等难度的题型.明确新定义的运算法则是解决这个问题的关键.29.x=﹣2是方程的根【解析】试题分析:方程两边同时乘以x ﹣2,然后解一元一次方程,求出x 的值,最后进行验根即可.试题解析:去分母得,6+x ﹣2=﹣x ,移项,得x+x=2﹣6合并,得2x=﹣4,系数华为1,x=﹣2,经检验,x=﹣2是方程的根.考点:分式方程.30.112【解析】【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义计算即可求出值.【详解】原式=12+3﹣﹣+1=112. 【点睛】本题考查零指数幂、负整数指数幂法则、绝对值的代数意义,解题的关键是掌握零指数幂的计算、负整数指数幂法则、绝对值的代数意义.。
北京市清华大学附属中学永丰学校七年级暑假作业第04套答案
则 x=±5,(少一个扣 1 分) ……………………………………4 分
21.
解:
x + y = 1,(1) 3x + y = 5 (2)
②﹣①得:2x=4,
x=2,
………………………………………2 分
把 x=2 代入①,得:2+ y=1
y=-1, ………………………………………4 分
∴
x=2
y
=
-1
.
22.解:解不等式(1 分 …………………………………………1 分
解不等式(2),得 x>-1. …………………………………………3 分
∴原不等式组的解集为-1<x≤2.……………………………………4 分
∴整数解为 0,1 ,2.
…………………………………5 分
18 同位角相等,两直线平行
三、解答题((第 19、20、24、27 题每题 4 分,其他题每题 5 分,共 46 分)
19 . 解:原式=3﹣2+ ﹣1…………………………………………………3 分
=.
……………………………………………4 分
20. 解:x2=25,
……………………………………………2 分
∴ x + y = 2m + 2 …………………2 分 3
又∵x+y≤2
∴ 2m + 2 ≤2 3
∴ m≤2
…………………3 分 …………………4 分
28.解: (1)22.5°;
……………1 分
(2)30°;
……………3 分
(3)∠FND=2∠AME;∠FND+2∠AME=360°. ……………5 分
七年级暑假综合练习 4 参考答案
七年级期末试卷(提升篇)(Word版 含解析)
七年级期末试卷(提升篇)(Word 版 含解析)一、选择题1.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线2.单项式24x y 3-的次数是( ) A .43-B .1C .2D .33.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 4.下列四个数中,最小的数是() A .5 B .0C .1-D .4-5.12-的倒数是( ) A .B .C .12-D .126.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b7.﹣3的相反数为( ) A .﹣3 B .﹣13C .13D .38.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个9.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a10.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变D .商品的销售量不变11.下列各数中,比-4小的数是( ) A . 2.5-B .5-C .0D .212.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+ B .若32a b =,则3525a b -=- C .若32a b =,则23a b= D .若32a b =,则94a b = 13.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018 B .2019C .2020D .202114.单项式24x y 3-的次数是( ) A .43-B .1C .2D .315.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=二、填空题16.如图,AOB ∠的度数是___________︒17.在0,1,π,227-这些数中,无理数是___________ .18.在数轴上到-3的距离为4个单位长度的点表示的数是___.19.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.20. 当m = __时,方程21x m x +=+的解为4x =-. 21.单项式312xy -的次数是___. 22.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______.23.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm . 24.如图,已知3654AOB '∠=︒,射线OC 在AOB ∠的内部且12AOC BOC ∠=∠,则AOC ∠=___.25.计算:3-|-5|=____________.三、解答题26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由. 27.先化简,再求值:2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 28.如图,点O 是直线AB 上一点, OC ⊥OE ,OF 平分∠AOE ,∠COF =25°,求∠BOE 的度数.29.定义:点C 在线段AB 上,若BC =π⋅AC ,则称点C 是线段AB 的一个圆周率点. 如图,已知点C 是线段AB 的一个靠近点A 的圆周率点,AC =3. (1)AB = ;(结果用含π的代数式表示)(2)若点D 是线段AB 的另一个圆周率点(不同于点C ),则CD = ;(3)若点E 在线段AB 的延长线上,且点B 是线段CE 的一个圆周率点.求出BE 的长.30.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时. (1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远? (3)经过几小时,两车相距50千米?31.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图. 32.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.33.解方程:(1)2(2)6x-=(2)11123 x x +--=四、压轴题34.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.35.点A、B在数轴上分别表示数,a b,A、B两点之间的距离记为AB.我们可以得到AB a b=-:(1)数轴上表示2和5的两点之间的距离是;数轴上表示-2和-5两点之间的距离是;数轴上表示1和a的两点之间的距离是.(2)若点A、B在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C对应的数为c.①求电子蚂蚁在点A的左侧运动时AC BC+的值,请用含c的代数式表示;②求电子蚂蚁在运动的过程中恰好使得1511c c,c表示的数是多少?③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?37.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?38.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 39.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?40.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.43.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据各项定义性质判断即可. 【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D. 【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.2.D解析:D 【解析】 【分析】直接利用单项式的次数的定义得出答案. 【详解】 单项式43-x 2y 的次数是2+1=3. 故选D . 【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.3.D解析:D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.4.D解析:D 【解析】 【分析】按照正数大于0,0大于负数,两个负数比大小,绝对值大的反而小的法则进行数的大小比较,从而求解. 【详解】解:由题意可得:-4<-1<0<5故选:D【点睛】本题考查有理数的大小比较,掌握正数大于0,0大于负数,两个负数比大小,绝对值大的反而小是本题的解题关键.5.A解析:A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A6.A解析:A【解析】试题分析:根据有理数a、b在数轴上的位置,可得,a<0,b>0,所以∣a∣<∣b∣,所以可得,a+b>0,a-b<0则=(a+b)+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值7.D解析:D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D.【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.8.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A .【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.9.C解析:C【解析】【分析】根据数轴得出-3<a <-2,再逐个判断即可.【详解】A 、∵从数轴可知:-3<a <-2,∴2<-a<3,故本选项不符合题意;B 、∵从数轴可知:-3<a <-2,∴2<a <3,故本选项不符合题意;C 、∵从数轴可知:-3<a <-2,∴2<a <3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.10.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.12.D解析:D【解析】【分析】根据等式的性质,逐项判断即可.【详解】解:32a b =,等式两边同时加2得:3222a b +=+,∴选项A 不符合题意;32a b =,等式两边同时减5得:3525a b -=-,∴选项B 不符合题意;32a b =,等式两边同时除以6得:23a b =,∴选项C 不符合题意; 32a b =,等式两边同时乘以3得;96a b =,∴选项D 符合题意.故选:D .【点睛】 此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.13.C解析:C【解析】【分析】由已知条件得到x 2﹣2x +y 2﹣2y =0,2xy =1,化简x 2+2xy +y 2﹣2(x +y )+2019为x 2﹣2x +y 2﹣2y +2xy +2019,然后整体代入即可得到结论.【详解】解:∵x 2﹣2x =2y ﹣y 2,xy =12, ∴x 2﹣2x +y 2﹣2y =0,2xy =1,∴x 2+2xy +y 2﹣2(x+y )+2019=x 2﹣2x +y 2﹣2y +2xy +2019=0+1+2019=2020,故选:C .本题考查代数式求值,掌握整体代入法是解题的关键.14.D解析:D【解析】【分析】直接利用单项式的次数的定义得出答案.【详解】 单项式43-x 2y 的次数是2+1=3. 故选D .【点睛】本题考查了单项式的次数,正确把握定义是解题的关键.15.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.二、填空题16.【解析】【分析】由图形可直接得出.【详解】由题意,可得∠AOB=∠AOC -∠BOC=90°-30°= 60°,故填:60.【点睛】本题主要考查了角的度量,量角器的使用方法,正确使用量解析:60【分析】由图形可直接得出.【详解】由题意,可得∠AOB=∠AOC-∠BOC=90°-30°= 60°,故填:60.【点睛】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.17.【解析】【分析】根据无理数的定义,可得答案.【详解】是无理数,故答案为:.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,0.80解析:π【解析】【分析】根据无理数的定义,可得答案.【详解】π是无理数,故答案为:π.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.18.1或【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或7-【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.19.【解析】【分析】根据题意列出关于a的方程,利用平方根定义求出a的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4,故答案为:±4.【点睛解析:4【解析】【分析】根据题意列出关于a的方程,利用平方根定义求出a的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4,故答案为:±4.【点睛】此题考查了开平方运算,熟练掌握运算法则是解本题的关键.20.5【解析】【分析】将代入方程,然后解一元一次方程即可.【详解】解:由题意,将代入方程解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.解析:5【解析】【分析】将4x =-代入方程,然后解一元一次方程即可.【详解】解:由题意,将4x =-代入方程2(4)41m ⨯-+=-+解得:m=5故答案为:5【点睛】本题考查方程的解和解一元一次方程,正确计算是本题的解题关键.21.【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】的次数是4,故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中 解析:【解析】【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【详解】312xy -的次数是4, 故答案为:4.【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中,所以字母的指数和叫做这个单项式的次数.22.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1 【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 23.5或11.【解析】试题分析:分为两种情况:①如图1,AC =AB +BC =8+3=11;②如图2,AC =AB ﹣BC =8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意解析:5或11.【解析】试题分析:分为两种情况:①如图1,AC =AB +BC =8+3=11;②如图2,AC =AB ﹣BC =8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.24.【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设∵∴∴∵∴∴∴故答案为:【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.解析:1218'︒【解析】【分析】根据角的和差倍分进行计算即可.【详解】解:设AOC x ∠= ∵12AOC BOC ∠=∠ ∴=2BOC x ∠∴=23AOB AOC BOC x x x ∠=∠+∠+=∵3654AOB '∠=︒∴33654x '=︒∴1218x '=︒∴1218AOC '∠=︒故答案为:1218'︒ 【点睛】本题考查了角的和差倍分,根据题意列出方程是解题的关键.25.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.三、解答题26.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】【分析】(1)根据题意列出代数式即可.(2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况.【详解】(1)点B 表示的数是-6+6t ;点C 表示的数是10+2t.(2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=-∴5t = 或 3t =(3)设未运动前P 点表示的数是x,则运动t 秒后,A 点表示的数是86t -+B 点表示的数是-6+6tC 点表示的数是10+2tD 点表示的数是14+2tP 点表示的数是x+6t则BD=14+2t-(-6+6t)=20-4tAP=x+6t-(-8+6t)=x+8 PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧)PD=14+2t-(x+6t)=14-(4t+x)∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525 或 4t+x=283∴PD=14+2t-(x+6t)=14-(4t+x)=185或143. 【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.27.-3x+y²,-6【解析】【分析】先去括号,合并同类项进行化简,然后把x 、y 的值代入计算,即可得到答案.【详解】 解:2211312()()2323x x y x y --+-+ =22123122323x x y x y -+-+ =23x y -+;当5x =,3y =-时,原式=235(3)1596-⨯+-=-+=-.【点睛】本题考查了整式的化简求值,以及整式的加减混合运算,解题的关键是正确的进行化简,掌握整式加减混合运算的运算法则进行解题.28.50°【解析】【分析】由O C ⊥OE ,可得∠COE =90°,从而求得,∠EOF 的度数,然后利用角平分线的定义得到∠AOE =2∠EOF =130°,从而使问题得解.【详解】解:因为O C ⊥OE所以∠COE =90°因为∠COF =25°所以∠EOF =∠COE -∠COF =65°因为OF 平分∠AOE所以∠AOE =2∠EOF =130°因为∠AOB =180°所以∠BOE =∠AOB -∠AOE =50°【点睛】本题考查了角平分线的定义及角的和差,数形结合思想解题是本题的解题关键.29.(1)33π+;(2)3-3;(3)3或3π.【解析】【分析】(1)根据AB=AC+BC 计算即可;(2)根据点D 是线段AB 的另一个圆周率点得到AD= BD ,由此求出BD=3,再用AB-AC-BD 求出CD ;【详解】(1)AB=AC+BC=3+3π;(2) ∵点D 是线段AB 的另一个圆周率点(不同于点C ),且AB=AD+BD ,∴AD= BD ∴BD BD AB ,∴(1)33BD , ∴BD=3∴CD=AB-AC-BD=3+3π-3-3=3π-3;(3)∵点B 是线段CE 的一个圆周率点,∴BC BE =或BE BC =, 当BC BE =时,BE= 33BC , 当BE BC =时,BE=233.∴BE 的长是3或23π.【点睛】此题考查代数式的计算,正确理解线段的圆周率点列式计算,注意当点B 是线段CE 的一个圆周率点时应分为两种情况讨论,不要忽略掉某一种.30.(1)经过3小时两车相遇;(2)当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米;(3)经过83小时或103小时两车相距50千米. 【解析】【分析】(1)根据“轿车行驶的路程+客车行驶的路程=450”列方程求解可得;(2)用轿车和客车与加油站的距离分别减去各自行驶的路程可得;(3)分相遇前和相遇后两种情况分别求解可得.【详解】(1)根据题意,得:90t +60t =450,解得:t =3.答:经过3小时两车相遇.(2)270﹣90×2=90(千米),180﹣60×2=60(千米).答:当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米.(3)两车相遇前:90t +50+60t =450,解得:t =83; 两车相遇后:90t ﹣50+60t =450,解得:t =103. 答:经过83小时或103小时两车相距50千米. 【点睛】本题考查了一元一次方程的应用,解题的关键是掌握行程问题中相遇时在路程上的相等关系.31.(1)3a =,1b =,1c =;(2)最多由11个小立方体搭成;最少由9个小立方体搭成;(3)见解析.【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【详解】(1)3a =,1b =,1c =;(2)62311++=(个),4239++=(个).这个几何体最多由11个小立方体搭成;最少由9个小立方体搭成.(3)如图所示.【点睛】本题考查由三视图判断几何体及作三视图,解题关键在于熟练掌握几何体的三视图的相关知识.32.(1)见解析;(2)直线m ⊥n .【解析】【分析】(1)如图,取格点E 、F ,作直线CF 和直线EC 即可;(2)根据所画图形直接解答即可.【详解】解:(1)如图,直线m ,直线n 即为所求;(2)直线m ⊥n .【点睛】本题考查了利用格点作已知直线的平行线和垂线,属于基本作图题型,熟练掌握网格中作平行线和垂线的方法是解题关键.33.(1)5x =;(2)1x =【解析】【分析】(1)先去括号,然后移项合并,即可得到答案;(2)先去分母,然后去括号,移项合并,即可得到答案.【详解】解:(1)2(2)6x -=,∴246x -=,∴210x =,∴5x =;(2)11123x x +--=, ∴3(1)62(1)x x +-=-,∴33622x x +-=-,∴55=x ,∴1x =.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法进行解题.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩, 解得:1264x y =⎧⎨=⎩, 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=;数轴上表示1和a 的两点之间的距离是1a -;故答案为:3,3,1a -;(2)①∵电子蚂蚁在点A 的左侧, ∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=, 即代数式15c c 的最小值是6.故答案为:6.【点睛】 本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.36.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,。
2023年人教版七年级下册期末复习检测卷(四)(考试版A4)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2023年人教版七年级下册复习检测卷(四)英语(时间:120分钟满分:120分)注意事项:1.本试卷共四部分,十大题,满分120 分。
考试时间为120分钟。
2全卷包括“试题卷”和“答题卡”两部分。
3.请务必在“答题卡”上答题,在“试题卷”上答题无效。
4考试结束后,请将“试题卷”和“答题卡”一并交回。
第一部分听力(共四大题,满分20分)Ⅰ.短对话理解(共5小题;每小题1分,满分5分)你将听到五段对话,每段对话后有一个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
1. What animals does Mike's friend like?A. B. C.2. Where does the woman want to go?A. B. C.3. What did Sam do last Sunday?A. He drove to the town.B. He visited his dad.C. He cleaned the yard.4. What are the two speakers talking about?A. The weather.B. The radio.C. The time.5. What does the man usually do on Sunday afternoon?A. He goes to the park.B. He works in the garden.C. He reads newspapers.Ⅱ.长对话理解(共5小题;每小题1分,满分5分)你将听到两段对话,每段对话后几个小题。
2023-2024学年七年级下学期人教版数学期末提升训练(含简单答案)
2023-2024学年七年级下学期人教版数学期末提升训练一、单选题(共10题;共30分)1.(3分)某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是( )A .90B .144C .200D .802.(3分)湿地公园位于学校北偏西方向处,下列选项中表示正确的是( )A .B .C .D .3.(3分)已知,要使,则( )A .B .C .D .为任意数4.(3分)把不等式组{−x <13≥3x 的解集表示在数轴上,下列选项正确的是( )A .B .C .D .5.(3分)已知,则下列各式中一定成立的是( )A .B.C .D .30︒2km b a <am bm <0m <0m =0m >m a b >0a b -<33a b >22ac bc >2121a b -<-6.(3分)如图,∠AOB 的一边OA 为平面镜,∠AOB =37°,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,∠ODE =∠ADC ,若反射光线DC 恰好与OB 平行,则∠DEB 的度数是( )A .74°B .63°C .64°D .73°7.(3分)能说明命题“对于任意实数,”是假命题的一个反例可以是( )A .B .C .D .8.(3分)已知a ,b 为实数,则解集可以为-2<x<2的不等式组是( )A .B .C .D .9.(3分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A .16B .24C .30D .4010.(3分)将一副三角板如图放置,则下列结论中,正确的是( )①;②如果,则有;③如果,则有;④如果,则有.x 20x>x =1x =0x =1x =-11ax bx >⎧⎨>⎩11ax bx >⎧⎨<⎩11ax bx <⎧⎨>⎩11ax bx <⎧⎨<⎩1223180∠+∠+∠=︒BC DA 245∠=︒360∠=︒AC DE 1+3=90∠∠︒445∠=︒A .①②③④B .③④C .①②④D .①②③二、填空题(共6题;共21分)11.(3分)中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若一个正数的平方根分别是2a -1和-a+2,则这个正数是 .12.(3分)将实数﹣ , ,π,﹣按从小到大的顺序排列,并用“<”连接: .13.(3分)设a ,b 是两个连续的整数,已知 是一个无理数,若 ,是,则 = .14.(3分)已知不等式的正整数解恰好是1、2、3,则的取值范围是 .15.(3分)若关于x 的不等式{x 2+x +13>03x +5a +4>4(x +1)+3a 恰有三个整数解,则,实数a 的取值范围是 .16.(6分)在平面直角坐标系 中,我们把横 、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m=3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m= (用含n 的代数式表示.) 三、解答题(共7题;共49分)17.(6分)计算:|π﹣3|+( )2+( ﹣1)0.a b <<a b 30x a -≤axOy18.(6分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.19.(7分)解不等式组:{4x+5>x−12x+1≥3x,并写出所有整数解.20.(7分)如图,在三角形ABC中,CD平分∠ACB,DE//AC交BC于E,EF//CD交AB于F,求证∶EF平分∠DEB.21.(7分)阅读以下例题:解不等式:(x +4)(x−1)>0解:①当,则即可以写成:{x +4>0x−1>0,解不等式组得:{x >−4x >1②当若,则即可以写成:{x +4<0x−1<0解不等式组得:{x <−4x <1综合以上两种情况:不等式解集:或.以上解法的依据为:当,则,或,(1)(3分)若,则,b______0或,b______0(2)(4分)请你模仿例题的解法,解不等式:①(x +2)(x−3)>0;②(x +1)(x−2)<0.22.(8分)如图,在折线中,已知,延长、交于点,猜想与的关系,并说明理由.40x +>10x ->40x +<10x -<1x >4x <-0ab >0a >0b >0a <0b <0ab <0a >0a <ABCDEFG 12345∠=∠=∠=∠=∠AB GF M AMG ∠4∠23.(8分)对于平面直角坐标系中的图形G 和点P ,给出如下定义:将图形G 沿上、下、左、右四个方向中的任意一个方向平移一次,平移距离小于或者等于1个单位长度,平移后的图形记为,若点P 在图形上,则称点P 为图形G 的稳定点,例如,当图形G 为点时,点都是图形G 的稳定点.(1)(4分)已知点.①在点P 1(−2,0),P 2(4,0),P 3(1,12),P 4(32,−32)中,线段的稳定点是___________.②若将线段向上平移t 个单位长度,使得点或者点为线段的稳定点,写出t 的取值范围___________.(2)(4分)边长为a 的正方形,一个顶点是原点O ,相邻两边分别在x 轴、y 轴的正半轴上,这个正方形及其内部记为图形G .若以为端点的线段上的所有点都是这个图形G 的稳定点,直接写出a 的最小值___________.xOy G 'G '(2,3)-(1,3),(2,3.5)M N --(1,0),(2,0)A B -AB AB (0,1)E (0,5)F AB (0,2),(4,0)答案解析部分1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】A7.【答案】C8.【答案】D9.【答案】D10.【答案】D11.【答案】912.【答案】﹣<﹣ <<π13.【答案】914.【答案】9≤a <1215.【答案】或16.【答案】3或4;6n -317.【答案】解:原式 .18.【答案】40°19.【答案】;不等式组的所有整数解是:,0,120.【答案】证明:CD 平分∠ACB ,∴∠ACD=∠DCB ,∵DE//AC ,EF//CD ,∴∠ACD=∠EDC ,∠FED=∠EDC ,∠BEF=∠DCB ∴∠ACD=∠FED=∠DCB=∠BEF ,∴EF 平分∠DEB.21.【答案】(1)<;>(2)①或;②22.【答案】解:.理由如下:延长交于点,312a <≤312a ≥>321ππ=-++=21x -<≤1-2x <-3x >12x -<<4AMG ∠=∠CD MG H因为,所以,所以,又,所以,所以,所以..23.【答案】(1)①,;②0≤t≤2或4≤t≤6;(2)345∠=∠//DE MG 36∠=∠12∠=∠//AM CH 6AMG ∠=∠34AMG ∠=∠=∠4AMG ∴∠=∠1P 3P。
2024年最新人教版初一数学提高练习
2024年最新人教版初一数学提高练习
2024年最新人教版初一数学提高练习
一、代数基础
1.数的认识:掌握整数、小数、分数、百分数的概念及相互间转化,如:
2.5%
如何转化为小数等。
2.加减乘除:掌握基本运算规则,如:括号法则、乘法分配律等。
3.代数式:掌握代数式的基本概念及简单运算,如:合并同类项、去括号等。
4.方程:了解方程的概念及一元一次方程的解法,如:移项、去分母等。
5.不等式:了解不等式的概念及简单运算,如:不等式的性质、一元一次不
等式的解法等。
6.函数及其图像:初步了解函数的概念及简单图像绘制,如:一次函数的图
像绘制等。
7.数学建模与问题解决:能够运用代数知识解决实际问题,如:用方程解决
实际问题等。
二、几何初步
1.角:掌握角的概念及度量单位,如:什么是锐角、钝角、直角等。
2.三角形:掌握三角形的概念及基本性质,如:三角形两边之和大于第三边
等。
3.四边形:了解四边形的概念及基本性质,如:平行四边形的对边相等等。
4.面积与周长:掌握常见图形的面积与周长计算方法,如:正方形、长方形、
三角形的面积与周长计算等。
5.图形变换:初步了解图形的平移、旋转、对称等变换方法。
6.实际问题解决:能够运用几何知识解决实际问题,如:用三角形解决实际
问题等。
三、概率与统计
1.概率:了解概率的基本概念及简单计算方法,如:什么是概率、事件的概
率计算等。
2.统计图表:掌握统计图表的概念及制作方法,如:柱状图、折线图等。
3.平均数中位数:掌握平均数和中位数的概念及计算方法。
2023-2024学年人教版数学七年级下册暑假综合练习题四(含解析)
四、2023-2024学年人教版数学七年级下册暑假综合练习题1.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,则张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均每天听课时长为x 分钟,以下所列不等式正确的是( )A.9032480x ⨯+≥B.9032480x ⨯+≤C.9032480x ⨯+<D.9032480x ⨯+>2.判断命题“如果1n <,那么210n −<”是假命题,只需举出一个反例,反例中的n 可以为( )A.2−B.12−C.0D.123.已知点(,)A m n ,且有0mn ≤,则点A 一定不在( )A.第一象限B.第二象限C.第四象限D.坐标轴上4.下列式子不正确的是( )=a =C.3a =D.3(a =5.如图,下列条件不能判定直线12//l l 的是( )A.13∠=∠B.14∠=∠C.23180∠+∠=︒D.35∠=∠6.不等式组2(2)2,2323x x x x −≤−⎧⎪++⎨>⎪⎩的解集是( ) A.02x <≤ B.06x <≤ C.0x > D.2x ≤7.某旅行团到森林游乐区参观,下表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4 100元,则此旅行团的人数为( )8.某班将一次知识竞赛的成绩 整理后绘制成如图所示的频数分布直方图(每 组包含后一个边界值,不包含 前一个边界值),图中从左至 右前四组的百分比分别是4%12%40%28%,,,,第五组的频数是8,下列结论错误( )A.80分以上的学生有14名B.该班有50名同学参赛C.成绩在70~80分的人数最多D.第五组所占的百分比为16%9.用反证法证明“直线,,a b c 在同一平面内,且a c b c ⊥⊥,,则//a b ”时,应假设__________.10.已知不等式组2961,1x x x k +>−+⎧⎨−>⎩的解集是1x >−,则k 的取值范围是________. 11.已知点()3,2M 与点(),N x y 在同一条垂直于x 轴的直线上,且点N 到x 轴的距离为5,那么点N 的坐标是_________.12.如果关于,x y 的二元一次方程组2,41x y k x y k −=⎧⎨+=+⎩的解,x y 满足3x y +=,则k 的值是___________. 13.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?答案以及解析1.答案:A解析:根据题意,得3902480x ⨯+≥,故选A2.答案:A解析:当2n =−时,满足1n <,但2130n −=>,所以判断命题“如果1n <,那么210n −<”是假命题,可令2n =−.故选A.3.答案:A解析:根据点(,)A m n ,且有0mn ≤,可知0m ≥,0n ≤或0m ≤,0n ≥,所以点A 一定不在第一象限,故选A.4.答案:D解析:由立方根的性质知3(a =−,故选项D 中式子不正确.5.答案:A解析:A 项,13∠=∠,不能判定直线12//l l ,故此选项符合题意;B 项,14∠=∠,根据内错角相等,两直线平行,可判定直线12//l l ,故此选项不合题意;C 项,23180∠+∠=︒,根据同旁内角互补,两直线平行,可判定直线12//l l ,故此选项不合题意;D 项,35∠=∠,根据同位角相等,两直线平行,可判定直线12//l l ,故此选项不合题意.故选A.6.答案:A 解析:2(2)2,23.23x x x x −≤−⎧⎪⎨++>⎪⎩①②解不等式①,得2x ≤;解不等式②,得0x >,则不等式组的解集为02x <≤. 7.答案:A解析:设此旅行团单程搭乘缆车、单程步行的有x 人,去程及回程均搭乘缆车的有y 人,根据题意得2003004100,(15)(10),x y y y x +=⎧⎨−+−=⎩解得7,9,x y =⎧⎨=⎩则总人数为7916+=,故选A.8.答案:A解析:该班参赛的学生有8(14%12%40%28%)50÷−−−−=(名),故选项B 中的结论正确; 80分以上的学生有5028%822⨯+=(名),故选项A 中的结论错误;成绩在70~80分的人数最多,故选项C 中的结论正确;第五组所占的百分比为850100%16%÷⨯=,故选项D 中的结论正确.故选A.9.答案:a 与b 不平行解析:反证法的步骤中,第一步是假设结论不成立,因此用反证法证明“//a b ”时,应先假设a 与b 不平行.10.答案:2k ≤−解析:解不等式2961x x +>−+,得1x >−;解不等式1x k −>,得 1.x k >+Q 不等式组的解集为1,11x k >−∴+≤−,解得2k ≤−.11.答案:(3,5)或()3,5−解析:由题意知,M N 的横坐标相同,3,x ∴=Q 点N 到x 轴的距离为5,则5y =±,所以()3,5N 或()3,5N −.12.答案:4解析:本题考查二元一次方程组的解法.241x y k x y k −=⎧⎨+=+⎩①,②,①+②得3321x y k +=+,即3()2 1.3,219x y k x y k +=++=∴+=Q ,解得4k =.13.答案:(1)6,218(2)3,5解析:(1)设计划调配36座新能源客车x 辆,该大学共有y 名志愿者,则需调配22座新能源客车(4)x +辆.由题意,得362,22(4)2,x y x y +=⎧⎨+−=⎩解得6,218.x y =⎧⎨=⎩ ∴计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m 辆,22座客车n 辆.由题意,得3622218m n +=,1091811m n −∴=. ,m n Q 均为正整数,3,5.m n =⎧∴⎨=⎩∴需调配36座客车3辆,22座客车5辆.结束。
初中数学七年级数学下学期期末复习(提高)综合题考试卷含答案解析.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:小题1.此次抽样调查的样本容量是____.小题2.补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.小题3.如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?试题2:-+-.试题3:-32+|-3|+.试题4:评卷人得分甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元,超出部分按原价的8折优惠;在乙超市累计购买商品超出200元,超出部分按原价的8.5折优惠.设顾客预计累计购物元.1小题1.请用含的式子分别表示顾客在两家超市购物所付的费用.2小题2.试比较顾客到哪家超市购物更优惠?说明你的理由.试题5:解不等式组,并把它的解集在数轴上表示出来.试题6:威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.1小题1.求每件A种商品和每件B种商品售出后所得利润分别为多少元.2小题2.由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?试题7:.试题8:.试题9:.试题10:5(x-1)+2=x.试题1答案:1.1002.解:用水15~20吨的户数:100-10-36-24-8=22(户)∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=79.2°答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°.3.解:6×=4.08(万户)答:该地区6万用户中约有4.08万户的用水全部享受基本价格.试题2答案:解:原式=8-9-1+=-.试题3答案:解:原式=-9+3-+6=-.试题4答案:1.解:在甲超市购物所付的费用是:300+0.8(x-300)=0.8x+60(元),在乙超市购物所付的费用是:200+0.85(x-200)=(0.85x+30)(元).2.解:①当0.8x+60=0.85x+30时,解得x=600.∴当顾客购物600元时,到两家超市购物所付费用相同;②当0.8x+60>0.85x+30时,解得x<600,而x>300,∴300<x<600.即顾客购物超过300元且不满600元时,到乙超市更优惠;③当0.8x+60<0.85x+30时,解得x>600,即当顾客购物超过600元时,到甲超市更优惠.试题5答案:解:解不等式2x≥-9-x,得:x≥-3,解不等式5x-1>3(x+1),得:x>2,则不等式组的解集为x>2.将解集表示在数轴上如下:试题6答案:1.解:设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:,答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.2.解:设购进A种商品a件,则购进B种商品(34-a)件.由题意,得200a+100(34-a)≥4000,解得:a≥6.答:威丽商场至少需购进6件A种商品.试题7答案:解:,整理得,①-②×2得x=0,把x=0代入①得0+4y=6,解得.故原方程组的解.试题8答案:解:,①+②得3x=15,解得x=5,把x=5代入①得5-3y=3,解得y=.故原方程组的解.4试题9答案:解:,5(x-3)-2(4x+3)=10,5x-15-8x-6=10,-3x=31,x=.试题10答案: 解:5(x-1)+2=x,5x-5+2=x,5x-x=5-2,4x=3,.。
华师大版七年级数学下册暑假提高练习5-期末考综合题
1.(13分)纸箱厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的有底无盖....纸盒(给定的长方形和正方形纸板都不用裁剪). (1)现有正方形纸板172张,长方形纸板330张.若要做两种纸盒共l00个,设做竖式纸盒x 个.①根据题意,完成以下表格:②按两种纸盒的数量分,有哪几种生产方案?(2)若有正方形纸板112张,长方形纸板a 张,做成上述两种纸盒,纸板恰好用完.已知200<a <210,求a 的值.纸盒 纸板竖式纸盒(个) 横式纸盒(个)x100 -x正方形纸板(张)2(100 -x ) 长方形纸板(张)4x图1长方形 正方形竖式 横式形图22. (13分)如图,在△ABC中,AB=AC,点E为BC边上一动点(不与点B、C重合),过点E作射线EF交AC于点F, 使∠AEF=∠B.(1)判断∠BAE与∠CEF的大小关系,并说明理由;(2)请你探索:当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.3.(13分)某商场新购进一批A 、B 两种品牌的饮料共320箱,其中A 品牌比B 品牌多.80箱.此两种饮料每箱的进价和售价如下表所示:(1)问销售一箱A 品牌的饮料获得的利润是多少元?(注:利润=售价-进价) (2)问该商场新购进A 、B 两种品牌的饮料各多少箱?(3)受国际金融危机的影响,该商场调整销售策略,A 品牌的饮料每箱按原售价销售,B 品牌的饮料每箱打折出售.为使新购进的A 、B 两种品牌的饮料全部售出且利润 不少于...1960元,问B 种品牌的饮料每箱最低打几折出售? 品牌 A B 进价(元/箱) 55 35 售价(元/箱) 6340DCBA图⑶CBA图⑴4.(13分)如图⑴,在△ABC 中,AB =AC ,∠A=36°. (1)直接写出∠ABC 的度数;(2)如图⑵,BD 是△ABC 中∠ABC 的平分线.①找出图中所有等腰三角形(等腰三角形ABC 除外),并选其中一个....写出推理过程; ②在直线..BC 上是否存在点P ,使△CDP 是以CD ..为一腰...的等腰三角形?如果存在,请在图⑶中画出满足条件的所有的点P ,并直接写出相应的∠CPD 的度数;如果不存在,请说明理由.初中数学试卷金戈铁骑 制作DC BA图⑵。
七年级数学期末复习提高训练四 试题
卜人入州八九几市潮王学校七年级数学期末复习培优进步训练〔四〕1、以下说法错误的选项是〔〕A.0是绝对值最小的有理数B.假设x 的相反数是-5,那么x=5C.假设|x|=|-4|,那么x=-4D.任何非零有理数的平方都大于02、如图,点C 在线段AB 上,E 是AC 中点,D 是BC 中点,假设ED=6,那么线段AB 的长为〔〕A.6B.8C.12D.163、我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.假设每天用水时间是按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水__________(用科学计数法表示).〔〕A.237600毫升B.76×105毫升C.2×104毫升D.23×103毫升 4、甲从A 出发向北偏东45度走到点B ,乙从点A 出发向北偏西30度走到点C ,那么∠BAC 等于〔〕A、15度B、75度C、105度D、135度5、规定a○b=,,那么〔6○4〕○3等于〔〕A、4B、13C、15D、30 6、(1)|5|)2()213(4322-+---+-= (2)|3||312|75.0)431()3(2-÷-⨯⨯-÷-= 7、(a -3〕2+|b+6|=0,那么方程ax=b 的解为_________________. 8、小明想在两种灯中选购一种,其中一种是10瓦〔即0.01千瓦〕的节能灯,售价50元,另一种是100瓦〔即0.1千瓦〕的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也一样〔3000小时内〕节能灯售价高,但较电,白炽灯售价低,但用电多,电费0.5元/千瓦·时a b a b+-〔1〕照明时间是500小时选哪一种灯钱?〔2〕照明时间是1500小时选哪一种灯钱?〔3〕照明多少时间是用两种灯费用相等?〔本大题10分〕9、某音乐厅五月初决定在暑假期间举办学生音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,假设提早购票,那么给予不同程度的优惠,在五月份内,团体票每张12元,一共售出团体票数的53,零售票每张16元,一共售出零售票数的一半;假设在六月份内,团体票按每张16元出售,并方案在六月份内售出全部余票,那么零售票应按每张多少元才能使这两个月的票价收入持平参考答案1、C ;2、C ;3、B ;4、B ;5、A ;6、(1)437(2)-3;7、x=-2;8、〔1〕白炽灯〔2〕节能灯〔3〕1000小时;9、解:设总票数为a 张,六月份零售票应按每张x 元定价.五月份:团体票售出票数为:a 52a 3253=⨯;票款收入为:a 524a 5212=⨯(元);零售票售出票数为:a 61a 3121=⨯;票款收入为:a 38a 6116=⨯(元) 六月份:团体票所剩票数为:a 154a 3252=⨯;可收入:a 1564a 15416=⨯(元);零售票所剩票数为:a 61a 3121=⨯;可收入:ax 61x a 61=•(元) 由题意,得ax 61a 1564a 38a 524+=+ 答:零售票应按每张1元定价,才符合要求。
七年级期末试卷(提升篇)(Word版 含解析)
七年级期末试卷(提升篇)(Word 版 含解析) 一、选择题 1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >0 2.3-的倒数是( )A .3B .13C .13- D .3-3.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-=D .60101213x x +-= 4.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 5.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒6.如图是我市十二月份某一天的天气预报,该天的温差是( )A .3℃B .7℃C .2℃D .5℃ 7.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .38.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m 9.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ). A . B . C . D .10.画如图所示物体的主视图,正确的是( )A .B .C .D .11.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤12.下列各图是正方体展开图的是( )A .B .C .D .13.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点14.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -15.2-的相反数是( )A .2-B .2C .12D .12- 二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.18.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为_________________________(用含a ,b 的式子表示).19.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.20.请你写出一个解为2的一元一次方程:_____________21.如图,直线//,1125∠=︒a b ,则2∠=_____________度22.若232a b -=,则2622020b a -+=_______.23.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.24.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.25.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.三、解答题26.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.27.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.28.解方程(1)528x +=-(2)4352x x -=+(3)()4232x x -=--(4)2151136x x +--= 29.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成。
七年级期末试卷(提升篇)(Word版 含解析)
七年级期末试卷(提升篇)(Word版含解析)一、选择题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A.180元B.202.5元C.180元或202.5元D.180元或200元2.如果a+b+c=0,且|a|>|b|>|c|,则下列式子可能成立的是()A.c>0,a<0 B.c<0,b>0 C.c>0,b<0 D.b=03.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有()A.1个B.2个C.3个D.4个4.下列各图是正方体展开图的是()A.B.C.D.5.下列四个数中,最小的数是()A.5 B.0 C.1-D.4-6.下列图形中,能够折叠成一个正方体的是()A.B.C.D.7.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A .13B .12C .23D .18.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( )A .0.740020%400x -=⨯B .0.740020%0.7x x -=⨯C .()120%0.7400x -⨯=D .()0.7120%400x =-⨯9.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy += 10.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是A .3mnB .23m nC .3m nD .32m n11.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .5 12.下列各题中,运算结果正确的是( ) A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=13.下列说法正确的是( ) A .如果ab ac =,那么b c = B .如果22x a b =-,那么x a b =-C .如果a b = 那么23a b +=+D .如果b c a a=,那么b c = 14.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+ 15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.已知2x =是关于x 的不等式310x m -+≥的解,则m 的取值范围为_______.17.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.18.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是______. 19.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.20.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.21.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .22.如果一个角的余角等于它本身,那么这个角的补角等于__________度.23.216x -的系数是________ 24.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 27.如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC =135°,将一个含45°角的直角三角板的一个顶点放在点O 处,斜边OM 与直线AB 重合,另外两条直角边都在直线AB 的下方.(1)将图1中的三角板绕着点O 逆时针旋转90°,如图2所示,此时∠BOM = ;在图2中,OM 是否平分∠CON ?请说明理由;(2)接着将图2中的三角板绕点O 逆时针继续旋转到图3的位置所示,使得ON 在∠AOC 的内部,请探究:∠AOM 与∠CON 之间的数量关系,并说明理由;(3)将图1中的三角板绕点O 按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第 秒时,∠COM 与∠CON 互补.28.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++=29.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.30.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问:(1)学校印制多少份节目单时两个印刷厂费用是相同的?(2)学校要印制1500份节目单,选哪个印刷厂所付费用少?31.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.32.计算:(1) 351(24)()8124-⨯-+ (2)22020113(1)()334---⨯-+- 33.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。
七年级数学提高训练四试题
智才艺州攀枝花市创界学校七年级数学进步训练四一.填空题〔每一小题4分,一共28分〕8.以下方程:①22x x-=;②0.31x =;③512x x =+;④243x x -=;⑤6x =; ⑥20x y+=.其中一元一次方程的个数是【】. A .2B .3C .4D .5 9.3-=x 是方程52)4(=--+x k x k 的解,那么k 的值是【】A.2-B.2C.310.假设代数式31x x +-的值是2,那么x 的值是【】 A.0.75B.1.75C.D. 11.方程062=-x 的解是【】A.3B.3-C.3± D.31 12.一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为【】A .17B .18C .19D .2013.甲数比乙数的41还多1,设甲数为x ,那么乙数可表示为【】A.141+x B.14-x C.)1(4-x D.)1(4+x 14.初一〔1〕班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班一共展出邮票的张数是【】A.164B.178C.16815.方程2-67342--=-x x 去分母得【】 A .)7()42(22--=--x x B.7)42(212--=--x x C.)7()42(212--=--x x16.一件商品提价25%后发现销路不是很好,欲恢复原价,那么应降价【】A.40%B.20%C.25%D.15%17.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件赔25%,那么这两件衣服售出后商店是【】.A.不赚不赔B.赚8元C.亏8元D.赚15元三.解答题〔本大题一一共42分〕18.解以下方程〔每一小题6分,一共24分〕①x x 524-=-②436521x x -=-- ③)20(75)20(34x x x x --=--④2.0)52(313.0)3(x x -=--- 19.〔6分〕2-=x 是方程612-=--k x 的解,求k 的值。
暑期七年级数学《综合四》辅导试卷
暑期七年级数学《综合四》辅导试卷一、耐心填一填!(每空2分,共24分)1.若2x+5=7,则2x= 2 。
2.已知x=-3是方程(2m+1)x-3=0的解,则m=负二分之一 。
3.一个三角形的内角中,至少有 1 个锐角。
4.一个多边形的每一个外角为300,那么这个多边形的边数为 12 。
5.只用一种正多边形可以铺满地板,这样的正多边形有 5个 。
6.已知等腰三角形的一个内角为700,则它的顶角为 40 度。
7.如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,则ΔABD 的周长为 。
8.如图,∠A=200,∠C=400,∠ADB=800,则∠ABD= 80 ,∠DBC= 100 ,图中共有等腰三角形 1 个。
二、精心选一选!(每题4分,共32分)9.已知4322=-x ,则x 的值是 ( A )A. –3B. 9C.-3或9D.以上结论都不对10.若ΔABC 的三边分别为m 、n 、p ,且0)(2=-+-p n n m ,则这个三角形为( B )A. A. 等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形11.我国民间流传着许多诗歌形式的数学题,令人耳目一新,你能解决“鸡兔同笼”问题吗?鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( D )A ⎩⎨⎧=+=+1002236y x y xB ⎩⎨⎧=+=+1002218y x y xC ⎩⎨⎧=+=+1002436y x y xD ⎩⎨⎧=+=+1004236y x y xA E DC B (第7题) A B DC 第8题12.正五边形的对称轴共有( A )A. A. 2条B. 4条C. 5条D.无数条14.一名射击运动员连续射靶10次,命中的环数如下:9.1,8.7,8.8,10,9.7,8.8,9,9.6,9.9,9.8 那么,这名运动员这10次射击命中环数的平均数为( B )A. 93.4B.9.34C. 9.26D. 9.42三、细心算一算!(每题6分,共24分)13.解方程或方程组:(1)2.034.13223.02x x -=+(2)2x-y=3x+2y=7四、用心想一想,你一定是生活中的智者!14.如图所示,要在街道旁修建一个牛奶站,向居民区A 、B 提供牛奶,牛奶站应建在什么地方,才能使A 、B 到它的距离之和最短?(本题6分)15.请你在下图的方格内,设计一个轴对称图形,要求有2条对称轴(本题6分)街道居民区B · 居民区A ·五、会用你学过的方程知识解决问题吗?16.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高练习4-期末考综合题
1.(13分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满,但不能超载)).请你计算本次社会实践活动所需车辆的实际租金;
(3)在(2)的条件下,能不能安排部分带队老师与学生一起乘车? 若能,请求出最多可以安排几个老师与学生一起乘车;若不能,请说明理由.
2.(13分)如图1,已知△ABC 中,∠B =90°,AB =BC =4cm ,长方形DEFG 中,DE =6cm ,DG =2cm ,点B 、C 、
D 、
E 在同一条直线上,开始时点C 与点D 重合,然后△ABC 沿直线BE 以每秒1cm 的速度向点E 运动,运动时间为t 秒,当点B 运动到点E 时运动停止.(友情提示:长方形的对边平行,四个内角都是直角.)
(1)直接填空: BAC ∠= 度,
(2)当t 为何值时,AB 与DG 重合(如图2所示),并求出此时△ABC 与长方形DEFG 重合部分的
面积.
(3)探索:当68t ≤≤时,△ABC 与长方形DEFG 重合部分的图形的内角和的度数(直接写出结论及
相应的t 值,不必说明理由).
D
C G
F
E
A
B
图1
H
(B )
D G
F
E
C
A
图2
D
G F
E
备用图
3. (13分)某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下
停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元,且地上的停车位要求不少于
...30个,问共有几种建造方案?
(3)对(2)中的几种建造方案中,哪一个方案的投资最少?并求出最少投资金额.
4.(13分)如图,ABC ∆中,AC BC =,120ACB ∠=︒,点D 在AB 边上运动(D 不与A 、B 重合),
连结CD .作30CDE ∠=︒,DE 交AC 于点E .
(1)当DE ∥BC 时,ACD ∆的形状按角分类是 三角形;
(2)在点D 的运动过程中,ECD ∆的形状可以是等腰三角形吗?若可以,请求出AED ∠的度数;若不
可以,请说明理由.
A
B
C D
E。