青岛大学随机过程试卷三

合集下载

随机过程第三、五章测验题答案(2010)

随机过程第三、五章测验题答案(2010)

随机过程测试题二答案1.以1T 表示泊松过程}0),({≥t t N 中事件首次发生的时刻,则对于t s ≤,求条件概率}1)(|{1=≤t N s T P解: ==≤}1)(|{1t N s T P ts .(细节请查书) (5分) 2.设{N (t ), t ≥0}是强度为λ的泊松过程,N (t )表示到时刻t 为止事件A 发生的次数,则对任意t s <≤0,求),(),(t DN t EN )).(),(cov(s N t N解:t t DN t EN λ==)()(; (5分) .))(),(cov())(),(-)(cov())(),(cov(s s N s N s N s N t N s N t N λ=+= (5分)3.设某公交车站从早晨5时至晚上21时有车发出.从5时至8时乘客的平均到达率呈现性增加,5时乘客的平均到达率为200人/小时,8时乘客的平均到达率为1400人/小时;8时至18时乘客的平均到达率不变;18时至21时乘客的平均到达率线性减少,到21时为200人/小时.假定在不相重叠的时间间隔内到达车站的乘客数相互独立.求(1)12时至14时恰有2000名乘客到车站的概率;(2)这两小时内到车站的乘客平均数.解:以N (t )表示0时到t 时到达的乘客数,则211818885),18(4001400,1400),5(400200)(≤≤<<≤≤⎪⎩⎪⎨⎧---+=t t t t t t λ,(1)).21400(~)12()14(⨯-P N N==-}2000)12()14({N N P !2000280020002800⋅-e ; (5分) (2)2800)]12()14([=-N N E . (5分)4.假定某天文台观测到的流星流是一个泊松过程,据以往资料统计为每小时平均观察到3颗流星. 试求(1)在上午8点到12点期间,该天文台没有观察到流星的概率.(2)下午(12点以后)该天文台观察到第一颗流星的时间的分布函数.解:(1)设早晨8时为0时刻,以N (t )表示0时到t 时观测到的流星数,则N (t )是强度为3(颗/小时)的泊松过程.).43(~)0()4(⨯-P N N==-}0)0()4({N N P 12-e ; (5分)(2)记下午(12点以后)该天文台观察到第一颗流星的时间为1T ,则其密度函数为.0,3)(3≥=-t e t f t相应的分布函数为⎩⎨⎧<≥-=-0,00,1)(3t t e t F t . (5分) 5.保险公司接到的索赔次数是一个泊松过程{N (t ),t ≥0}, 每次的赔付金额{Y n }是一族独立随机变量序列,且有相同分布F ,索赔数额与它发生的时刻无关.则在(0,t ]时间内保险公司赔付的总金额可表示为∑=)(1t N i i Y (5分);若保险公司以平均每月两次的速率接到索赔要求,每次赔付为均值是2000元的正态分布,则它的年平均赔付金额为48000元(5分).解:2000元×2×12=48000元6. 设到某电影院的观众服从强度为λ的泊松流,如果电影在时刻t 开演,求在(0,t ]时间内到达电影院的观众等待开演的时间总和的均值.解:假设以强度为λ的泊松过程{N (t ),t ≥0}来到某电影院,火车在时刻t 启程. 计算在(0,t ]时间内到达的乘客的等待时间的总和的期望值.解1:以T n 记第n 位观众的来到时刻,则所求为∑=-)(1)(t N i i T t E.22])(|[])(|)([)(1)(1nt nt nt n t N T E nt n t N T t E t N i i t N i i =-==-==-∑∑== (5分) ∑∑∑+∞=====-=-0)(1)(1})({])(|)([)(n t N i i t N i i n t N P n t N T t E T t E.2)!1()(2!)(221120t e n t t e n t nt n t n n t nλλλλλλ=-==∑∑+∞=--+∞=- (5分) 7.某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

随机过程习题及答案

随机过程习题及答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t et t t X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Utt Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

4030(30)((1)40)!kk P N ek -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程习题

随机过程习题

一.填空题〔每空2分,共20分〕2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t0≥对应的一个等待时间序列,则n W 服从Γ分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t2t,;e,e ⎫⎬⎭。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,假设ii f1<,称状态i 为非常返的。

9.非周期的正常返状态称为遍历态。

三.计算题〔每题10分,共50分〕1.抛掷一枚硬币的试验,定义一随机过程:cos t H X(t)=t Tπ⎧⎨⎩ ,t (-,+)∈∞∞,设1p(H)=p(T)=2,求〔1〕{}X(t),t (,)∈-∞+∞的样本函数集合;〔2〕一维分布函数F(x;0),F(x;1)。

解:〔1〕样本函数集合为{}cos t,t ,t (-,+)π∈∞∞; 〔2〕当t=0时,{}{}1P X(0)=0P X(0)=12==, 故0x<01F(x;0)=0x<12x 11⎧⎪⎪≤⎨⎪≥⎪⎩;同理0x<-11F(x;1)=1x<12x 11⎧⎪⎪-≤⎨⎪≥⎪⎩2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客不超过3人的概率。

3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。

随机过程考试试题及答案详解

随机过程考试试题及答案详解

随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。

(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。

【理论基础】 (1(2F ((3(F (4,(1)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。

令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。

【解答】此题解法同1题。

依题意,|)|,0(~)(2t N t W σ,)4,1(~N R ,因此R t W t X +=)()(服从于正态分布。

故:均值函数1)()(==t EX t m X ;相关函数5)]()([),(==t X s X E t s R X ;协方差函数4)]}()()][()({[),(=--=t m t X s m s X E t s B X X X (当t s =时为方差函数) 3、(10分)设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个顾客的消费额是服从参数为s 的指数分布。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。

答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。

2. 解释什么是泊松过程,并给出其主要特征。

答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。

其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。

三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。

计算在时间间隔[0, t]内恰好发生n次事件的概率。

答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。

答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。

最新-期末随机过程试题及答案资料

最新-期末随机过程试题及答案资料

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程2016quiz及答案3

随机过程2016quiz及答案3

• Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit. Do not write in the table to the right.
Stochastic Processes
Quizz 3: The Poisson Award - Page 4 of 9
14/12/16
3. (20 points) A coin with probability p of Heads is flipped repeatedly. For (a) and (b), suppose that p is a known constant, with 0 < p < 1. (a) (5 points) What is the expected number of flips until the pattern HT is observed? (b) (5 points) What is the expected number of flips until the pattern HH is observed? (c) (10 points) Now suppose that p is unknown, and that we use a Beta(a, b) prior to reflect our uncertainty about p (where a and b are known constants and are greater than 2). In terms of a and b, find the corresponding answers to (a) and (b) in this setting.

随机过程2016考试题与答案

随机过程2016考试题与答案

(u ) 1 u 0.24u 2 0 的两根 1.7, 2.5 均大于 1,故模型是可逆的;
xt t t 1 0.24 t 2 的逆转形式为:
t t
1 xt [3 0.6 j 2 0.4 j ]xt j (1 0.6 B)(1 0.4 B) j 0
ˆ kk } 满足:| ˆ kk | 2 / N (k p, p 1, , M ) 的个数在 95%以 ② 若偏相关函数 { ˆ kk } 在 p 步截尾,则可认为模型为 AR ( p ) 序列; 上,则可认为 { ˆ k } 与 偏 相 关 函 数 { ˆ kk } 都 拖 尾 , 则 可 考 虑 模 型 为 ③ 若 自 相 关 函 数 {
1 xt [3 0.6 j 2 0.4 j ] xt (1 0.6 B )(1 0.4 B) j 0
( 8 分)
2)此为 ARMA 序列,因为 (u ) 1 0.2u 0 的两根 5 的绝对值均大于 1, 故此模型是平稳的; 又由于 (u ) 1 0.4u 0 两根 2.5 的绝对值均大于 1, 故模型 还是可逆的。
AR ( p ) : xt 1 xt 1 2 xt 2 p xt p t MA(q ) : xt t 1 t 1 2 t 2 q t q ARMA( p, q ) : xt 1 xt 1 2 xt 2 p t p t 1 t 1 2 t 2 q t q
0.4 0 0.6 P 0.5 0.5 0 0.1 0.6 0.3
(1)计算概率 P X (0) 1, X (1) 1, X (2) 2 ; (2)二步转移矩阵; (3)绝对概率 P X ( 2) i, i 0, 1, 2 。 解: (1) P X (0) 1, X (1) 1, X (2) 2 0.2 0.5 0 0

随机过程习题和答案.doc

随机过程习题和答案.doc

一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。

设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。

以小时为单位。

则E(N(1))30。

40k(30) P(N(1)40)ek!k030。

在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。

设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。

随机过程习题及答案

随机过程习题及答案

第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。

1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。

可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。

2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。

ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ (t )的二维分布函数。

如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。

对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。

如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。

研究生《随机过程》考试题

研究生《随机过程》考试题

随机过程考试题(2009)一,(12分)已知12,X X 为独立同指数分布(1)EXP 的随机变量。

(1) 证明12X X +与112X X X +独立;(2) 令112212,Y X X Y X X =+=-,求12,Y Y 的联合概率密度. 二,(10分)设随机变量X 的分布律为{}11,0,1,2,.2x P X x x +=== 令 (){}min ,,0,1,2,.X n X n n ==求随机过程(){},0X X n n =≥的一维分布律及均值函数. 三,(12分)设(){},0N N t t =≥的强度为0λ>的Possion 过程, (1) 证明:若0,1s t n <<≥,则()(){}1kn kk n s s P N s k N t n C t t -⎛⎫⎛⎫===- ⎪⎪⎝⎭⎝⎭(2) 设随机变量T 与N 相互独立,且{},0.tP T t et μ->=>证明:(){},0,1,2,.kP N t k k μμλμλμ⎛⎫===⎪++⎝⎭四,(12分)设Markov 链的状态空间{}1,2,3S =,初始分布(){}014,12,14π=,一步转移概率矩阵为11124411022010⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P 求:(1) 二步转移概率矩阵()2P(2) ()(){}22,42;P X X == (3) ()()321.E X X ⎡⎤=⎣⎦设Markov 链的状态空间{}1,2,3,4,5S =,一步转移概率矩阵为113001312140140000100010000001⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P(1) 画出状态转移图;(2) 指出哪些是非常返态?哪些是常返态? (3) 求常返态的周期及平均回转时间; (4) 给出状态空间S 的分解。

六(12分)设(){},X t t -∞<<+∞是均方可导的平稳过程,其自相关函数为{}.X R τ令 ()(),dX t Y t t dt=-∞<<+∞(1) 求()Y t 的自相关函数(2) 问(){},Y t t -∞<<+∞是否为平稳过程?为什么? 七,(12分)已知下列平稳过程X 的相关函数为{}.X R τ(相应地,谱密度()X S ω),求X 的谱密度(相应地,相关函数): (1){}()()4cos 3X R ecos ττπττ-=+(2)()()651,15150,15X S ωδωωωω⎧⎛⎫+-≤⎪ ⎪=⎨⎝⎭⎪>⎩(已知:()()()()11000cos ;12;fff f ωτπδωωδωωπδω---++⎡⎤⎣⎦ ()()()()10222200cos 0.f a f aaea aaτωτωωωω--+>-+++ )八,(8分)设有二阶矩随机变量X 及普通实函数()()f t t -∞<<+∞,证明:若f 在0t t =点可导, 则()()00t t Xf t Xf t ='=⎡⎤⎣⎦设有如图所示的交通网络,流入的为图示强度的Possion 过程(假定各过程独立),而在交会处车辆按图示的概率选择行走方向(假定方向的选择也相互独立).描述三个出口处的交通的情况.随即过程试题(2006)1, 已知()()123123123,06,,,0x x x x x x e f x x x others -++⎧<<<⎪=⎨⎪⎩112213323,22,y x y x x y x x ==-=-求: (1)123,,y y y 的概率密度(2)1Ey ,1Dy2,设X 的均值函数为()X m t ,自相关函数为()12,X R t t ,用()X m t 和()12,X R t t 来表示()()(),,X X X D t C t t ϕ3,,X Y 两个随机变量均值函数和方差分别为,,,X Y X Y m m δδ,相关系数为ρ,设Z X t Y =+,求()(),Z Z m t R t4,一强度为λ的Passion 过程,求: (1)()(){}P x t m x j n ==(2)若(){}110P N e -==,求()()23E N N ⎡⎤⎣⎦(3或者5)5,设()h x 为平方可积函数。

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

随机过程试卷及答案

随机过程试卷及答案

随机过程 试 卷学期: 2010 至 2011 学年度 第 1 学期 课程: 随机过程 班级: YS201021/22/23/25/31/32 姓名(10分)设有正弦波随机过程()()()t B t A t X ωωsin 2cos 2+=,其中∞<≤t 0,ω为常数,A 和B 都是均匀分布于[]2,0之间的随机变量,并且它们之间相互统计独立。

确定随机变量⎪⎭⎫ ⎝⎛ωπ4X 的概率密度并画出概率密度函数波形。

解:B A B A X 224sin 24cos 24+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛ππωπ,而B A 2,2是均匀分布于[]2,0之间的随机变量,它们的概率密度都为()21=x f ,⎪⎭⎫⎝⎛ωπ4X 的概率密度为()21=x f 与()21=y f 的卷积。

即有()()()[]()()[]()()()()()()()()()()()4441222141224122141221221--+---=-*-+-*-*=--*--=x u x x u x x xu x u x u x u x u x u x u x u x u x u x u x f X二、(10分)设两状态时间离散马尔可夫链() ,2,1,0,=n n ξ,()n ξ可取 0 或 1,它的一步转移概率矩阵为⎪⎪⎭⎫ ⎝⎛=2211q pp q P 其中 1 ,12211=+=+q p q p , 且 (){}(){}⎪⎪⎩⎪⎪⎨⎧+==+==2122110010p p p P p p p P ξξ 已知 ()()()()⎪⎪⎭⎫⎝⎛--+--------++=n n nnnp p p p p p p p p p p p p p p p p p P 21212122211121122111111 试证明该过程为严平稳过程。

(5分)()()., 1 })({})({}1)({}0)({})(/)({})(/)({})({ })(/)({ )(/)({})({ })(,,)(,)({})(/)({})(/)({})({ })(,,)(,)({,)(1})(,,)(,)({})(,,)(,)({ )(1111111122111111221122111111221122112211221121即是严平稳过程始时刻无关阶联合概率与发生的起所以任意式成立,以所以上面二式相等,所无关,所以与发生时刻或因为刻无关所以它的转移概率与时是一齐次马尔可夫链由于,即要证明个时刻设任意是一严平稳随机过程,要说明k i m n P i n P n n P n P i n i n P i n i n P i m n P i m n i m n P i m n i m n P i m n P i m n i m n i m n P i n i n P i n i n P i n P i n i n i n P n i m n i m n i m n P i n i n i n P n n n k n k k k k k k k k k k k k k k k k k k k k k =+========⋅=+==+=+=+=+⋅=+==+=+=+====⋅======+=+=+====<<<------ξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξ(5分)利用抛掷硬币的试验定义一个随机过程()()⎩⎨⎧=出现反面出现正面tt t X 2cos π 设出现正反面的概率是相同的。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。

答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。

答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。

这种性质称为_________。

答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。

答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。

答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。

答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。

2017-2018期末随机过程试题及答案.docx

2017-2018期末随机过程试题及答案.docx

《随机过程期末考试卷》1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 _________ 。

2•设随机过程X(t)=Acos( t+G),rvt<::其中为正常数,A和门是相互独立的随机变量,且A和门服从在区间∣0,11上的均匀分布,则X(t)的数学期望为。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为_的同一指数分布。

4•设:W n)是与泊松过程fX(t),t 一0?对应的一个等待时间序列,则W n服从分布。

5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,Γ对每一个确定的t对应随机变量x(t)=」3,如果t时取得红球,则这个随机过(e t, 如果t时取得白球程的状态空间__________ 。

6 •设马氏链的一步转移概率矩阵P=(P i j),n步转移矩阵Pg=(P(;)),二者之间的关系为。

7•设CX n)n -0?为马氏链,状态空间I ,初始概率P i= P(X°=i),绝对概率P j(n) =P「X n =j?,n步转移概率P j n),三者之间的关系为________________ 。

8 .设{X(t),t 一0}是泊松过程,且对于任意t20则P{X ⑸= 6|X (3) = 4} = _______t9 •更新方程K t =H^O K^SdFS解的一般形式为___________________ C 10•记亠-EX n)对一切a—0,当t—:时,M t+a -M t > _____________3. 设]X n)n — 0为马尔科夫链,状态空间为I ,则对任意整数n — 0,仁I Vn和i,j I ,n步转移概率P j n)=V P fk)P k n-I),称此式为切普曼一科尔莫哥洛夫方程,底I证明并说明其意义、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB) C2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。

青岛大学随机过程试卷二

青岛大学随机过程试卷二

青岛大学经济学院
2006 -2007 学年秋季学期毕业补考考试
一、(共15分)
叙述泊松过程、维纳过程的定义,并解释过程在金融经济中的作用。

二、(共15分)
设随机过程()sin2
X t U t
=,其中U是随机变量,且5
)
(=
U
E,6
)
(=
U
D,
试求:(1)均值函数;(2)协方差函数;(3)方差函数。

三、(共15分)
若股票的收盘价格服从马氏链,设某种股票的今日收盘价格
下降、明日也下降的概率为α,今日上升、明日还下降的概
率为β。

若记“下降”=“0”,“上升”=“1”。

求(1)写出一步转移距阵
1
P;(2)试求
今日收盘价格下降且第4日仍下降的概率(设7.0
=
α,4.0
=
β)。

四、(共15分)
讨论随机过程2
()
X t At B
=+,(其中A,B独立同分布且
服从(0,1)
N)的均方连续性、均方可微性和均方可积性。

并求)
(t
X'的均值函数和相关
函数。



线














线
装订
线。

随机过程练习题

随机过程练习题

随机过程练习题1、设两相互独立的随机变量X 、Y 的特征函数分别为)1()(-=iteX e t g 、2)(t Y e t g -=试求32+-=Y X Z 的特征函数)(t g Z 。

解答:()()()()Yt i itX it it Y it itX Y X it itZ Z ee E e e e e E e E e E t g )2(332)32( )(--+-====由于X 与Y 相互独立,所以有()()()24)1(33)2(3)2(3 )2()( )(te it Y X it Y t i itX it Y t i itX it Z e e e t g t g e e E e E e e e E e t g it----====2、设随机变量X 服从均值为3的指数分布(0≥X ),随机变量Y 服从[0,X ]上的均匀分布,试求(1))0(),(2>=x x X Y E ,(2))(2Y E 解答:(1)2220()()13Y X x xE Y X x yf y dyxy dy x +∞=-∞====⎰⎰(2)2222330233033330()()()1 33323322266X x xx x x x x x E Y E Y X x f x dxx x e dx de x x eedx xdexee dxe+∞-∞∞∞--∞∞--∞∞∞---∞-===⋅=-⋅=-⋅+⋅=-=-+=-=⎰⎰⎰⎰⎰⎰3、设)},0[),({+∞∈t t X 是一均值函数为0,方差函数为221)(ttt X+=σ的实正交增量过程,且0)0(=X 计算[((20)(10))((15)(10))]E X X X X --。

解答:[]222222[((4)(2))((3)(2))][((4)(3)(3)(2))((3)(2))][((4)(3))((3)(2))][((3)(2))((3)(2))][(3)2(3)(2)(2)](3)(2)2((3)(2)(2))((2)(0))(3)(2)2X X X X X E X X X X E X X X X X X E X X X X E X X X X E X X X X E X X X X X σσσσσ--=-+--=--+--=-+=+--+-=+-22222(2)(3)(2)321131210X X σσ=-=-=-++4、设随机变量Y 服从均值为1的指数分布,令0,0,)(>>=-Y t e t X Yt求(1)随机过程X (t )的一维概率密度函数,(2)X (t )的相关函数),(t s R X 。

随机过程试题

随机过程试题

第一单元1. 下列常见的分布中属于离散型随机变量的分布有():(2.0分)A.二项式分布B.均匀分布C.泊松分布D.正态分布E.(0-1)分布2. 下列常见的分布中属于连续型随机变量的分布有():(2.0分)A.二项式分布B.均匀分布C.泊松分布D.正态分布E.(0-2)分布3. 下列关于随机变量分布函数性质的描述,正确的是():(2.0分)A.分布函数是一个不减函数B.分布函数能够完整地描述随机变量的统计规律性C.分布函数的最大值为无穷大D.分布函数是右连续函数E.离散型随机变量的分布函数是一系列冲激函数的线性组合4. 下列关于随机变量概率密度性质的描述,正确的是():(2.0分)A.概率密度是一个不减函数B.概率密度能够完整地描述随机变量的统计规律性C.只有连续型随机变量才存在概率密度D.概率密度是非负的函数E.随机变量的概率密度一定存在5. 随机试验有什么特点?(2.0分)6. 基本事件是随机试验中最简单的随机事件。

(2.0分)7. 两个事件乘积的概率等于其中一个事件的概率乘以另一事件在此事件发生的条件下的条件概率。

(2.0分)8. 全概率公式用于在许多情况(B1,B2,…,Bn)下都可能发生事件A,求发生A 的全概率;贝叶斯公式则用于当A已经发生的情况下,求发生事件A的各种可能原因的条件概率。

(2.0分)9. 随机变量是样本空间上的单值实函数。

(2.0分)10. 两个随机变量如果相互独立,则它们的联合分布函数等于这两个随机变量的一维分布函数的乘积。

(2.0分)11. 如果要使两个随机变量之和的数学期望等于这两个随机变量的数学期望之和,则要求这两个随机变量是相互独立的。

(2.0分)12. 如果要使两个随机变量之和的方差等于这两个随机变量的方差之和,则要求这两个随机变量是相互独立的。

(2.0分)13. 两个随机变量如果是不相关的,则它们必定是相互独立的。

(2.0分)14. 当一个随机变量的数学期望为零时,它的方差和均方值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档