热导式气体分析仪
气体分析仪分类原理
气体分析仪分类原理1.热导法热导法是通过测量气体导热性质来分析气体成分。
该方法利用气体的导热系数与成分之间的关系进行测量。
常见的热导法气体分析仪有热导率仪和热检波器。
热导率仪通过测量气体热导率的变化来确定气体成分的含量。
热检波器则是利用气体通过感热元件时产生的电压变化来分析气体成分。
2.光谱分析光谱分析是利用物质对光的吸收、散射、发射等特性来分析气体成分的方法。
常见的光谱分析方法包括紫外可见吸收光谱、红外吸收光谱和拉曼散射光谱。
紫外可见吸收光谱通过测量气体对紫外可见光的吸收来判断气体成分。
红外吸收光谱是利用气体对红外光的吸收特性来分析气体成分。
拉曼散射光谱则是通过测量气体散射出的特定频率的光来分析气体成分。
3.色谱分析色谱分析是一种通过气体在固体或液体的吸附和解吸作用下在色谱柱中分离和分析的方法。
常见的色谱分析技术包括气相色谱和液相色谱。
气相色谱是利用气体在其中一种固体填充剂上吸附和解吸的特性来分离和分析气体成分。
液相色谱则是通过气体在液体流动相中溶解、扩散和沉淀的特性来分离和分析气体成分。
4.电化学法电化学法是利用气体在电极上与电子或离子发生氧化还原反应而进行分析的方法。
常见的电化学法气体分析仪有电化学气体传感器和燃气检测仪。
电化学气体传感器通过测量气体与电极发生的氧化还原反应产生的电流或电压变化来分析气体成分。
燃气检测仪则是利用气体与电极上催化剂发生氧化还原反应来检测气体浓度。
以上是常见的气体分析仪分类原理,不同的原理和方法适用于不同的气体和应用领域。
随着科技的发展,气体分析仪的原理和技术也在不断更新和改进,以提高分析的精度和灵敏度。
西门子 热导气体分析仪 说明书
■ 应用
• • • • •
• • • • •
•
纯气体监测 (Ar 中 0~1% 的 H2) 保护气监测 (N2 中 0~2% 的 He) 氢气监测 (Ar 中 0~25% 的 H2) 合成气体检测 (N2 中 0~25% 的 H2) 气体生产 - N2 中 0~2% 的 He - O2 中 0~10% 的 Ar 化工应用: - NH3 中 0~2% H2 - N2 中 50~70% H2 木材气化 (CO/CO2/CH4 中 0~30% H2) 高炉气体 (CO/CO2/CH4/N2 中 0~5% H2) 酸性转炉气 (CO/CO2 中含有 0~20% H2) 氢气制冷发电机的监测设备: - 空气中 0~100% CO2/Ar - CO2/Ar 中 0~100% H2 - 空气中 80~100% H2 有可用于潜在爆炸危险区域中 (1 区和 2 区)分析可燃和不可 燃气体水蒸汽的防爆机型
CALOMAT 6
概述 General
■ 介绍
CALOMAT 6 型热导率气体分析仪主要用于二元气体或准二元气 体混合物中氢气或氦气的定量分析。 如果其它气体的热导率同体系中残余气体 (如 Ar, CO2, CH4, NH3)的热导率差别显著的话,CALOMAT 6 型热导气体分析仪也 可用于测定样品中这些气体的浓度。
干扰气体的影响
了解样气组成对确定残余气体中存在的干扰气体对测量的影响是 非常必要的。 下表给出了 10% 残余气体 (干扰气体)对测量零点的影响 (以 % H2 计)
部件 Ar 图 5 CALOMAT 6,工作原理图 CH4 C2H6 (非线性响应) C3H8 CO CO2 He NH3 (非线性响应) O2 SF6 SO2 Air (干) 零点校正 -1.28% +1.59% -0.06% -0.80% -0.11% -1.07% +6.51% +0.71% -0.18% -2.47% -1.34% +0.25%
热导式分析仪原理及典型故障处理分析
气体 分析仪 , 用 于 分 析气 体 混合 物 中的某 个 组 分
的含量 。由于其结 构简 单 、 工 作稳定 、 体积 小 等优 点, 在 生产 中得 以广泛应 用 , 主要用 于分析 混合 气 体 中的 H: 、 C O : 、 S O : 、 A r 、 N H , 等气 体 的含量 , 应用
气 导热性 能产 生 不 同程 度 的影 响 , 造 成 分 析结 果
导热 系数相 差甚 大 的二 元混合 物 中某一组 分 。如 果 测量 多种气 体 混 合 物 中某 一 组 分 时 , 则 希 望 其
的误差 增大 。热 导式分 析仪 的测量误 差 由基本 误
差 和附加误 差两 部分组 成 。基 本误 差是 由其测 量 原理、 结 构特点 、 各环 节的信 号转换 精度及 显 示仪 表精 度等 条件 决定 的 , 即分 析 仪在 规 定条 件 下 工 作 时产生 的误差 ; 附加误 差是 由于 对仪器 的调 整 、 使用 不 当或外界 条件变 化带来 的误 差 。能够 引起
仪器 , 即使 在设 计 制造 中采 取 了种 种 措施 又规 定
了使 用条 件 , 在 一 定 程度 上 抑 制 或削 弱 了某 些 干
扰 因素 的影 响 , 但 其基 本误差 都在 ± 2 %左 右 。究
般情 况下 , 热 导式 气 体 分 析仪 最 适 宜 分 析
其原 因 , 主要是 由于 背景 气 复 杂 多元 的组 分 对 样
而 R 2 、 1 t 4作 为测量 臂流 过样 品气 , 通 常 情况 下 为
保证 测量 灵敏 及 精 度 , 热导 池 较 多 采用 对 流 扩 散
收 稿 日期 : 2 0 1 2 . 1 0 4 ) 4
热导检测器(TCD)原理及操作注意事项
【资料】-热导检测器(TCD)原理及操作注意事项热导检测器热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。
一、工作原理TCD由热导池及其检测电路组成。
图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。
载气流经参考池腔、进样器、色谱柱,从测量池腔排出。
R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。
当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。
从电源E 流出之电流I 在A 点分成二路i1、i2 至B 点汇合,而后回到电源。
这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。
一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。
当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1•R3=R2•R4, 或写成R1/R4=R2/R3。
M、N二点电位相等,电位差为零,无信号输出。
当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。
M、N二点电位不等,即有电位差,输出信号。
二、热导池由热敏元件和池体组成1 热敏元件热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。
(1)热敏电阻....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。
热敏电阻有三个优点..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。
热导原理氢气分析仪
热导原理氢气分析仪
一、氢气分析仪概述
氢气分析仪本仪表利用待分析组分和背景组分导热系数的差异,且混合气体导热系数随待分析组分变化而变化这一特性进行工作,由热导式气体传感器与智能信号转换器构成的在线分析仪表具有测量范围宽、稳定性好、响应时间短的特点,用于非防爆场合氢含量的自动分析。
该仪表适用于化肥厂生产流程、发电机冷却机组、裂解制气等行业的氢含量在线分析。
5、样气温度:0~45℃
6、工作环境温度:-5℃~45℃
7、样气流量:300ml/min
8、线性输出:4—20 m A(最大负载750Ω)
9、校准周期:12个月
10、功耗:≤20W
11、外壳保护:金属外壳喷漆
12、电源电压:220VAC±10%
13、外形尺寸:144×144×300(宽×高×深)
14、开孔尺寸:138×138(宽×高)
15、4-20MA输出档位选择:Ⅰ:0~5%、Ⅱ:0~10%、Ⅲ:0~30%、Ⅳ:30~80%、Ⅴ:0~100%H2
四、产品特点
1、测量数据自动储存,具有无纸记录仪功能
2、大屏幕液晶点阵显示,中文菜单式功能选择
3、带有新型微处理器的信号变送器,操作十分方便
4、测量浓度上下限报警任意设定
5、通讯4-20MA输出
6、在线分析,实时监控。
气体分析仪不同原理优缺点
一、质谱仪基本原理质谱计,是分离和检测不同同位素的仪器。
它根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。
具体工作过程为:质谱仪以离子源、质量分析器和离子检测器为核心。
离子源是使试样分子在高真空条件下离子化的装置。
电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。
它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。
质量分析器是将同时进入其中的不同质量的离子,按荷质比q/m(q为电荷,m为质量)大小分离的装置。
分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。
优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性也较高。
缺点:是价格偏高,仪器机构复杂,需要专业人员维护;要求环境高。
二、气相色谱仪的基本原理检测混合物由载气(载气特性为惰性气体,不应与样品和溶剂反应。
一般可选用且常用的载气有氢气,氮气,氦气。
氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应)带入,检测混合物通过色谱柱(通常为填充柱和毛细管柱)与色谱柱内固定相(我们把色谱柱内不移动,起分离作用的填料称为固定相)相互作用,这种相互作用大小的差异使各混合物各组分按先后次序从流出,并且依次导入检测器,从而得到各组分的检测信号。
按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
主要特点气相色谱仪因为检测器的不同而具有不同的优缺点。
2.1氢火焰检测器气相色谱仪氢火焰检测器(FID, flame ionization detector)是利用氢火焰作电离源,使被测物质电离,产生微电流的检测器。
它是破坏性的、典型的质量型检测器。
优点:对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对H2O、CO2和CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。
热导式氢气分析仪的原理如何?
热导式氢气分析仪的原理如何?
热导式氢气分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。
可用在气体浓度的在线测量上,被广泛地用于石油化工生产中;
但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大;
如何合理设计采样预处理系统是用好热导式分析仪器的关键。
测量元法的选择
热导式分析仪器的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。
当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化;
运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。
氢气浓度的测量一般采用热导式气体分析仪器、气相色谱分析仪器等;
由于氢气的热导系数较高,一般测量氢气浓度的分析仪器都采用热导原理。
混合氢中各组成分浓度及热导系数λ0×10-5cal/(cm.s.℃)。
采样预处理系统一般要考虑如下环节:
a.对样气降压、稳压措施。
b.对样气的除尘、分液、除湿。
c.系统的流量调节。
d.减少测量纯滞后的样气旁路措施。
e.校验回路的设置。
热导式气体分析器测量线路原理图
对于彼此之间无相互作用的多组分气体, 其导热系数可近似地认为是各组分导i C i
i 1
n
λ---混合气体的导热系数; λi---混合气体中第i组分的导热系数; Ci---混合气体中第i组分的体积分数。
设待测组分为i=1,并且 λ2≈λ3≈λ4≈…≈λn 由于 C1+C2+C3+…+Cn=1
热导式气体分析器
• 热导式气体分析仪是使用最早的一种物理式气体 分析仪,它是利用不同气体导热特性不同的原理 进行分析的。常用于分析混合气体中的H2 、 CO2、 SO2 等组分的百分含量。
1 基本知识 2 热导式气体分析器的测量原理 3 RD-004型热导式H2分析器
1 基本知识
在热传导过程中,不同物体的热传导率 不同。热力学中,用导热系数的大小来表 示这一性质,导热系数大的物质传热快。
t 0 (1 t )
λt---t℃时气体的导热系数; λ0---0℃时气体的导热系数; β---导热系数的温度系数。
热导式分析器的发送器都备有恒温装置,以减小 温度变化的影响。 利用导热系数随待测组分含量变化这一特性来分析 该组分含量时,必须满足下列三个条件: 待测组分的导热系数与其余组分的导热系数相比, 要有显著的差别,差别越大,测量越灵敏; 非待测组分的导热系数要尽可能相同或十分接近; 测量时,温度恒定或在一定的允许范围内。
热导式气体分析器测量线路原理图
R:加热电流调整电阻; R0:电桥零点调整电阻; RS:量程调整电阻。
双桥测量线路
所以
C
i 1 i
n
i
简化为
λ=λ1C1+λ2( C1+C2+C3+…+Cn)=λ1C1+λ2(1-C1)
气相色谱仪热导检测器(TCD)工作原理
热导检测器是目前气相色谱仪上应用的较为广泛的一种通用型检测器,对有机、无机样品均有响应,而且不破坏样品,可用于常量和微量分析。
气相色谱仪热导检测器是用热电阻式传感器组成的一种检测装置,是基于气体热传导原理和热电阻效应。
本检测器的热电阻是采用铼钨丝材料制成的热导元件。
并装在金属(不锈钢或黄铜)热导池池体的气室中,在电路上联接成典型惠斯顿电桥电路。
当热导池气室中流经的载气成份和流量稳定,热导池池体温度恒定,流经钨铼丝热电阻的电流恒定时,热电阻上产生的热能与通过载气热传导到池体等因素所失散的热能相平衡,由钨铼丝热电阻组成的电桥电路就处于平衡状态。
当被测气体组份被载气带入气室时,就发生了一系列的变化:气室中的气体组成变化®混合气体导热系数变化®热电阻温度变化®热电阻阻值变化®电桥平衡被破坏,就输出了相应的电讯号,这个讯号与被测气体浓度成一定的线性函数关系,并由二次讯号记录仪表记录下来,这就是气体分析用热导检测的工作原理。
影响气相色谱仪热导检测器的灵敏度因素很多,其中热导元件的阻值、池体气室的孔径、热导池测量电路等参数都是生产厂家定型设计好的,与用户操作使用直接有关的影响因素有:a.桥电流,桥电流大,灵敏度高,但受稳定性限制,具体设置还要看使用的载气种类和热导池工作温度,应参考热导池给定曲线图。
在满足分析灵敏度条件下,桥电流适当小些,可增加稳定性和延长热导池寿命。
当应用H2气作载气时,桥电流一般使用在80~160mA,当应用Ar作载气时,桥电流一般使用在70~80mA。
b.热导池作温度,温度越高,灵敏度越低,降低工作温度将受到被测样品的沸点和温度控制的限制。
c.载气纯度,载气纯度提高,可提高检测灵敏度。
d.载气流量,载气流量越小,灵敏度越高,这个影响因素在H2、He作载气时不甚明显,而在应用Arn2作载气时影响较明显。
例如Ar 载气流量为7~8ml/min时,比流量为30ml/min时的检测灵敏度有成倍的提高。
热导原理氢气分析仪
热导原理氢气分析仪引言:氢气广泛应用于工业生产中,如化工、电子、石化等领域。
然而,氢气是一种易燃易爆气体,长期处于高浓度环境下可能会导致安全隐患。
因此,为了监测和控制氢气的浓度,开发了热导原理氢气分析仪。
本文将详细介绍热导原理氢气分析仪的工作原理、结构组成以及应用。
一、工作原理1.传感器:热导氢气分析仪的核心组件是传感器。
该传感器由两个热电偶组成,一个做参比温度测量,另一个用于测量混合气体的温度。
传感器中的参比温度保持恒定,传感器的温度差与氢气的热导率成正比关系。
2.热导率测量:当测试气体中存在氢气时,传感器中的热电偶受到氢气的热导率影响,导致测量温度的不同。
通过测量两个热电偶之间的温差,可以计算出氢气浓度。
3.数据处理:通过将测量到的温差与已知氢气浓度的标准曲线进行比对,可以得到准确的氢气浓度。
根据需要,可以通过仪器上的显示屏或计算机软件等方式来显示和记录氢气浓度数据。
二、结构组成1.传感器:传感器是热导原理氢气分析仪的核心组件,用于测量混合气体的温度差。
通常采用高精度的热电偶传感器,能够快速响应氢气浓度变化。
2.控制电路:控制电路是热导原理氢气分析仪的控制中心,用于对传感器进行电流供应和测量温差。
控制电路还负责处理传感器测量数据,通过内置算法计算出氢气浓度并进行校准。
3.显示装置:显示装置用于显示氢气浓度和其他相关信息,通常采用数码显示屏或液晶显示屏。
有些氢气分析仪还可以通过通讯接口与计算机进行连接,实现数据记录和遥控操作。
三、应用领域1.工业生产:在石化、化工、电子等领域,热导原理氢气分析仪可以用于监测和控制氢气浓度,避免氢气泄漏导致的安全事故。
2.能源领域:在燃料电池等能源领域,热导原理氢气分析仪可以用于测试氢气纯度,保证燃料电池的正常运行。
3.实验研究:在化学实验室中,热导原理氢气分析仪可以用于测量氢气的浓度,帮助研究人员探索氢气的性质和化学反应等。
4.环境监测:热导原理氢气分析仪可以用于检测氢气在环境中的浓度,以及判断是否存在氢气泄漏。
几种在线分析仪表的特点及其在我国石化工业中的应用
Value Engineering1研究背景当前全球石化产业进入了调整期,逐步向低碳环保的方向迈进,一些发达国家在石化产业方面关于环保的要求越来越高,一些超过排放指标、对环境有风险的产品被限制使用,我国石化产业若是想要参与国际竞争就必须克服这一难题,所以,企业需要发展,就必须要遵守可持续发展的规则,需要开拓新方向,其中,过程分析技术对于石化产业的发展来说必不可少,下文主要基于几种在线分析仪表进行分析,分析其工作原理以及特点,并且简述了其应用。
2在线分析仪2.1在线分析仪表基础知识在生产过程中,尤其是存在许多化学反应的产品生产过程中,只依靠简单的温度、压力等数据是无法保证最佳的生产合成率的,必须要对其化学成分进行分析,控制氢气与氮气的比例。
许多仪表收到外界环境因素的影响,长期观察效果不理想,但是在生产过程中,对于数据的监测是必不可少的,所以有了在线分析仪的诞生,在线分析仪是在线仪器逐渐进化而来,分析仪表是对物质的成分及性质进行分析和测量的仪表。
首先,在线分析仪的作用和地位毋庸置疑,在生产过程中,在线分析仪可以分析出产品种某些特定材料的成分,控制各种成分的比例,同时控制排放指标。
因为现在工业生产发展坚持可持续发展、绿色环保的理念,所以不仅要控制排放化学废品的指标,还需要想办法在节能环保、降低能耗的同时保证产品的质量,从而坚持与环境友好共处的理念。
2.2分析仪的分类分析仪器的原理不一,有很多种类,一般是按照测定的原理进行分类,有根据电化学式为原理进行分析的,电导仪就是其中的典型,也有利用物理原有根据热学式进行分析的还有根据氧气对光波的吸收波段的不同为原理进行分析的,也有射线式分析仪,例如X 射线分析仪器;还有色谱仪、物性分析仪器等等,种类繁多。
但是以上分类方法并不是绝对的,例如电容式微量水分仪,虽然还可以处理液体中的微量水分,但还是将其归类为气体分析仪。
2.3分析仪的基本构造在线分析仪一般由5个单元构成:自动取样和样品预处理系统、分析检测单元、信号处理系统、显示单元和征集自动控制系统,现在在线分析仪表的功能越来越完善,多种联用仪技术日趋完善和成熟,应用范围给也更加广泛了。
不同气体分析仪测定气体成分的优缺点
不同气体分析仪测定气体成分的优缺点1.质谱仪优点:测量气体种类多,测试速度快,灵敏度高,结果精确,稳定性和重复性也较高。
缺点:是价格偏高;仪器机构复杂,需要专业人员维护;要求环境高。
2.气相色谱仪(1)氢火焰检测器气相色谱仪优点:对几乎所有的有机物均有响应,特别是对烃类化合物灵敏度高,而且响应值与碳原子数成正比;对H2O、CO2和CS2等无机物不敏感;对气体流速、压力和温度变化不敏感。
它的线性范围宽,结构简单、操作方便,死体积几乎为零。
因此,作为实验室仪器,FID得到普遍的应用,是最常用的气相色谱检测器。
缺点:需要可燃气体(氢气) 、助燃气体和载气三种气源钢瓶及其流速控制系统。
因此,制作成一体化的便携式仪器非常困难,特别是应对突发性环境污染事件的分析与检测就更加困难,因为它需要点“一把火”,增加了引燃、引爆的潜在危险性(2)热导检测器气相色谱仪优点:它对所有的物质都有响应,结构简单、性能可靠、定量准确、价格低廉、经久耐用,又是非破坏性检测器,因此,TCD始终充满着旺盛的生命力。
近十几年来,配置于商品化气相色谱仪的产量仅次于FID,应用范围较广泛。
缺点:与其他检测器相比,TCD的灵敏度低,这是影响其应用于环境分析与检测的主要因素。
以氦气作载气,进气量为2 mL时,检出限可达106量级。
因此,使用这种检测器的便携式气相色谱仪,不适于室内外一般环境污染物分析与检测,大多用于污染源和突发性环境污染事故的分析与检测。
3.红外线气体分析仪优点:1)测量范围宽:可分析气体上限达100%,下限达几个(ppm)的浓度。
进行精细化处理后,还可以进行痕量(ppb)分析(物质中含量在百万分之一以下组合的分析方法)2)灵敏度高:具有很高的监测灵敏度,气体浓度有微小变化都能分辨出来;3)测量精度高:一般都在FS(满量程),不少产品达到FS。
与其他分析手段相比,它的精度较高且稳定性好;反应速度快:响应时间一般在10S以内(达到T90的时间);缺点:不能分析对称结构无极性双原子分子(如Ν2、Ο2、 2 )及单原子分子气体(He、Ne、Ar),或者需要和其他检测器使用。
热导式气体分析仪的原理是怎样的
热导式气体分析仪的原理是怎样的热导式气体分析仪是一种用于分析气体成分的仪器。
它的原理是基于热导率和热容量不同的气体对热流的影响不同,从而实现气体成分的分析。
仪器结构热导式气体分析仪一般由以下部分组成:•热电偶:用于测量样品气体的温度。
•热源:通过热传导方式将热量输入到样品气体中。
•冷源:通过热传导方式将热量从样品气体中抽取。
•测量电路:用于测量热电偶测量到的温度变化,并计算出样品气体的热导率。
工作原理热导式气体分析仪的工作原理是基于热传导定律,即在稳态状态下,两个接触热量的物体间传导的热量与这两个物体温差成正比。
利用这个原理,热导式气体分析仪可以通过测量样品气体的热导率来分析气体成分。
热导式气体分析仪的工作过程如下:1.将样品气体引入热导式气体分析仪,并通过热导率变化的方式分析气体成分。
2.热导式气体分析仪中的热源会向样品气体中输入一定的热量,使样品气体的温度升高。
3.同时,热导式气体分析仪中的热电偶测量样品气体的温度变化,从而得到样品气体的热导率。
4.根据已知的气体热导率与样品气体的热导率的差异,可以计算出气体成分的含量。
应用范围热导式气体分析仪可以用于分析多种气体的成分,包括常见的二氧化碳、氧气、甲烷等。
它广泛应用于环境监测、燃气分析、气体纯度检测等领域。
在医药制造领域,热导式气体分析仪也用于检测氧气和氮气等气体成分的纯度。
总结热导式气体分析仪利用热传导定律,通过测量样品气体的热导率来分析气体成分。
它具有响应速度快、精度高、可靠性好等特点,在环境监测、燃气分析、气体纯度检测等领域得到了广泛应用。
EN-610氢分析仪说明书
EN-610氢分析仪使用说明书上海英盛仪器有限公司Shanghai ENCEL Instrument敬告用户:感谢您使用英盛公司的热导式氢气分析仪(型号:EN-610)·在使用仪器前,请仔细阅读本说明书,对仪器的安装、运行、维护的具体要求有了充分的理解,才能进行实际操作。
如使用不当,可能导致事故和人员伤害。
·本台仪器的量程规格已标注在铭牌上。
·仪器的量程规格会因产品改进而变更,恕不事先通知,敬请谅解。
·严禁擅自改装本仪器。
若因擅自改装而引发的事故,本公司概不负责。
·请务必确保将本使用说明书交付给终端用户。
目录1. 概述 (4)2. 部件名称及功能说明 (4)3. 工作原理 (5)4. 安装 (6)安装场所的选择 (6)仪器安装 (6)管路安装 (7)采样 (8)被测样气条件 (8)样气压力 (8)样气流量 (8)标准气体的准备 (8)采样系统构成示例 (9)接线 (9)5. 显示面板和操作键盘说明 (11)操作键盘的名称和功能说明 (11)显示功能概要 (12)显示画面的概要 (12)6. 运行与操作 (13)开机前准备 (14)开机 (14)预热状态 (14)测量状态 (15)显示曲线 (15)当前曲线 (15)历史曲线 (15)用户模式 (16)显示对比度设置 (16)时间校正 (16)报警设置 (17)设置校正 (17)7. 仪器校正与参数设置 (17)仪器校止 (17)进入仪器校准菜单 (17)零点、量程校正 (18)参数设置 (18)进入参数设置菜单 (18)参数设置 (19)8.日常维护与常见故障 (20)日常检查 (20)零点校正及量程校正 (20)流量检查 (20)样气检查 (20)日常检查维护要点 (20)常见故障 (21)9.贮存与保修 (21)10.技术参数 (21)通用参数 (21)性能指标 (22)被测样气条件 (22)安装场所 (22)外形图 (23)1.概述热导式气体分析仪是一种常规的气体分析仪器,因其结构简单、性能可靠、测量稳定,在过程控制、现场分析等领域一直得到广泛应用。
燃气锅炉的烟气成分分析及其方法
燃气锅炉的烟气成分分析及其方法燃气锅炉是一种常见的供热设备,它利用燃气燃烧产生的热量来加热水,从而提供热水或蒸汽供应。
然而,在燃气锅炉的燃烧过程中,会产生大量的烟气,其中包括二氧化碳、氧气、氮气、水蒸汽、一氧化碳、氧化氮、二氧化硫等成分。
为了保证燃气燃烧的效率和安全性,需要对燃气锅炉的烟气成分进行分析。
一、常见烟气成分及其含义1. 二氧化碳二氧化碳是燃气燃烧产生的主要成分之一,其含量通常在3%~15%之间。
二氧化碳的含量越高,说明燃气燃烧的效率越低。
2. 氧气氧气是燃气的中的一个重要成分,其含量通常在2%~5%之间。
燃气燃烧需要氧气的参与,氧气的含量过高或过低都会影响燃气的燃烧效率和安全性。
3. 氮气氮气是空气的主要成分之一,也是燃气的成分之一,通常含量为大约70%。
由于氮气稳定性较高,燃气燃烧时不会参与化学反应,因此对燃气燃烧的效率和安全性没有影响。
4. 水蒸汽水蒸汽是燃气燃烧后产生的常见组分之一,其含量与燃气温度和湿度有关。
水蒸汽的含量过高会导致燃气燃烧的不稳定,影响燃气燃烧的效果。
5. 一氧化碳一氧化碳是一种无色、无味、有毒的气体,是不完全燃烧时产生的。
燃气燃烧不充分或管路破裂等情况下,一氧化碳的含量可能会超标,对人体健康造成危害。
6. 氧化氮氧化氮是燃气烟气中的一种常见氮气化合物,主要有一氧化氮和二氧化氮。
在高温燃烧状态下,氮气和氧气会反应形成氧化氮,其含量过高会造成氮氧化物的污染。
7. 二氧化硫二氧化硫是一种无色、有毒、刺激性气体,常见于燃油燃烧过程中,和化学工业等领域。
由于二氧化硫有毒,对人体和环境都有危害,因此燃气锅炉烟气中二氧化硫含量需要控制。
二、燃气锅炉烟气成分分析方法为了对燃气锅炉的烟气成分进行分析,需要使用相应的仪器和方法。
常用的烟能分析方法包括如下几种:1. 干湿法烟气分析仪干湿法烟气分析仪是一种常见的烟气分析仪器,其主要原理是通过干湿法分析烟气中的水分含量、二氧化碳含量、氧气含量和一氧化碳含量等指标。
TCD热导检测器的原理和应用
TCD热导检测器的原理和应用1. 简介热导检测器(Thermal Conductivity Detector,TCD)是一种常用的气体检测方法,主要用于分析气体样品中的成分和浓度。
本文将介绍TCD的原理和应用。
2. 原理TCD基于热传导原理进行气体检测。
其主要原理如下:•当气体进入TCD检测单元时,检测单元中的加热电阻加热,产生一个恒定的温度差。
•气体样品通过检测单元时,会带走热量,使检测单元的温度下降。
•温度的下降程度与气体样品的热导率成正比关系。
•TCD通过测量检测单元温度的变化来间接测量气体样品的成分和浓度。
3. 应用TCD在各个领域都有广泛的应用,以下是一些主要的应用场景:3.1 环境监测TCD可用于监测空气中的污染物,如二氧化硫、氮氧化物等。
通过测量TCD 的输出信号变化,可以分析空气中不同污染物的浓度水平,为环境保护提供数据支持。
3.2 石油化工行业TCD在石油化工行业中广泛用于气体分析和过程监测。
例如,可以使用TCD 检测炼油过程中的杂质气体,优化生产工艺并保证产品质量。
3.3 医药领域TCD在医药领域中也有一定的应用,例如气体分析、呼气分析等。
通过TCD 的测量,可以监测患者呼出气体中的成分,进行疾病诊断和治疗监测。
3.4 科研实验TCD也被广泛应用于科研实验中,用于分析和检测实验中产生的气体。
例如,在化学实验中,TCD可用于监测反应过程中产生的气体,评估反应的进行程度和产物的质量。
4. 优点和限制TCD具有以下一些优点和限制:4.1 优点•灵敏度高:TCD对许多气体具有很高的检测灵敏度。
•可检测性广:TCD可用于检测很多不同种类的气体。
•稳定性好:TCD的检测结果稳定可靠。
4.2 限制•不能检测惰性气体:TCD在检测惰性气体时灵敏度较低。
•温度影响:TCD的温度需要精密控制,否则可能影响检测结果。
•不能区分混合气体成分:TCD无法准确确定混合气体中各个组分的比例和浓度。
5. 结论TCD作为一种常用的气体检测方法,在环境监测、石油化工、医药领域以及科研实验中都有广泛的应用。
热导式氢分析仪的设计与应用
Ke r s y r g na ay e ;t em a o d c ii a n lz r a a l a di gs se ; y wo d :h d o e n lz r h r l n u tvt g sa ay e ;g ss mp eh n l y t m c y n fs y p s o p a tb - a slo
( 敞开式 ) 头 , 图 1 探 如 所示 。为 了避免 浮尘 或颗 粒
由以上 推论 可 知 , 当背 景气 稳 定 时 , 足 背 景 满 气 各组 分 的导热 系数 十分相 近或 近似相 等 , 且与氢
气 的导 热 系数有 明显差 异这 两个 条件 , 宜选 用热导
式气体分析仪。当氢气组分体积分数低 , 而背景气 体积分数变化大时 , 不宜选用热导式气体分析仪 。 热导式气体分析仪是基于气体成分的变化导致混
( 中国石化工程建设公 司 , 北京 10 0 ) 0 1 1
摘要 : 氢气纯 度测量在 高压加氢装置 中有所应用 , 需要根据工艺数据 分析选定测 量方法 , 以氢气及其 背景气导 热系数特 征确
定采用热导式分析仪测量氢气纯度。混合氢纯度降低 , 就会增加 反应 器结焦 的趋势 , 降低反 应器 中的催化 剂活性 , 而影 响装 从 置产品的质量 。充分考虑人员安全 、 高压装置特征 , 降低环境污染 , 对样气 的提取 、 传输 、 处理 、 分析 、 排放 等过程 中的设计 与应 用 问题进行 了探讨 , 体现氢气纯度测量在高压加氢装置中具有重要意义。
成分
4 L 文
6 1 4 8 1
8.4 9 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热导式气体分析仪
气体工业名词术语。
它是利用混合气体的总导热系数随被测组分的含量而变化的原理制成的自动连续气体分析仪。
所用热导检测器是由两个测量池组成桥路,检测色谱柱出口端气体热导率的变化。
该检测器对任一种与载气热导率不同的物质都很灵敏,最小检出限在0。
5×1026~100×1026。
线性动态范围为103。
适用于被测组分与其它组分导热系数差异较大的场合。
一种物理类的气体分析仪表。
它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。
这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。
但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。
热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。
半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。
在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。
这两种元件作为两臂构成电桥电路,即是测量回路。
半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。
元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。
热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。