二元一次方程组复习与总结

合集下载

中考数学复习《二元一次方程组》

中考数学复习《二元一次方程组》

中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.

二元一次方程组专题复习

二元一次方程组专题复习

附PPT常用图标,方便大家提高工作效 率
生活
图标元素
医疗
图标元素
(1). 从方程组中选一个系数比较简 单的方程,将此方程中的一个未知数,如y,用 含x的代数式表示;
(2).把这个含x的代数式代入另一个方程中, 消去y,得到一个关于x的一元一次方程;
(3).解一元一次方程,求出x的值;
(4).再把求出的x的值 代入变形后的方程,求 出y的值.
用加减法解二元一次方程组的步骤:
一.基本知识
二元一次方程
结构: 实际背景
二元一次方程及二元一次方程组
二元一次方程的一个解 二元一次方程组
求解
应用
二元一次方程组的解 解二元一次方程组 列二元一次方程组解应用题 二元一次方程与一次函数
思想 方法 解


消 元Leabharlann 代 入加 减题 图 象
消消法
员元
数与 的一 关次 系函
演讲结束,谢谢大家支持
6
(
x
y)
1
解得
x
1 3
y
1 6
答:甲、乙二人每分钟各跑 1 、1 圈,
36
例3、 A,B两地相距80千米。一艘船从A出 发,顺水航行4小时到B,而从B出发逆水航 行5时到A,已知船顺水航行、逆水航行的速 度分别为船在水中的速度与水流速度的和与 差,求船在静水中的速度和水流速度。
设:静水速度为X,水速为Y
2x
3
x
3y 5y
k k
2
解这个方程组,得k=14 x y 1 2
四.列二元一次方程组解应用题 专题训练:
1.行程问题:
1.相遇问题:甲的路程+乙的路程=总的路程 (环形跑道):甲的路程+乙的路程=一圈长

二元一次方程组复习(带解析)

二元一次方程组复习(带解析)

二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

二元一次方程组解法复习

二元一次方程组解法复习
解:设甲、乙每人每天可各制作X,Y件。
x +y=12
3.A、B两地相距36千米,甲从A地步 行到B地,乙从B地步行到A地,两人 同时相向出发,4小时后两人相遇,6 小时后,甲剩余的路程是乙剩余路程 的2倍,求二人的速度?
解:设甲的速度为X 千米/小时, 乙的速度为X 千米/小时
4X+4Y=36 36-6X=2(36-6Y)
x y 90 C、 30x 24 y
y 90 x D、 2(15 x) 24y
例1. 某蔬菜公司收购到某种蔬菜140吨,准备加工后上 市销售,该公司的加工能力是:每天可以精加工6吨或者 粗加工 16 吨 ,现计划用 15天完成加工任务 ,该公司应安 排几天粗加工,几天精加工,才能按期完成任务?如果每 吨蔬菜粗加工后的利润为1000元,精加工后2000元,那 么照此安排,该公司出售这些加工后的蔬菜共可获利多 少元? 解:设粗加工x天,精加工y天.
则:
3a-1=b 解得: 3-b=a
a=1
b=2
用适当的方法解下列方程组 ( 1)
2x+1=5(y+2)
5(3x+2)-2(y+7x)=16
( 2)
x y 4 4 2 3x-2y=16
(3)已知(3m+2n-16)2与|3m-n-1|互为相反数 求:m+n的值 解:根据题意:得 3m+2n-16=0 3m-n-1=0 m=2 解得: n=5 即:m+n=7
待定系数法 果品批发市场,苹果每千克k元,每位来采 购的批发商需要另交市场管理费b元.若某批发 商买苹果x千克,怎样计算买苹果的总价? y=kx+b 已知x=80,y=200,能否确定k?需确定k,还需要知道 什么? 若把x=80,y=200代入y=kx+b,得200=80k+b 有多少个未知数? 知道b,则可知k,若题目中不准给出b的值,则需 多给一对x、y的值. 要知道什么可求出k? 要求两个未知数,就要知两个相等关系.

初中二元一次方程知识归纳

初中二元一次方程知识归纳

初中⼆元⼀次⽅程知识归纳 ⼆元⼀次⽅程是初中解⽅程的重要知识点,求解⼆元⼀次⽅程⾸先要明⽩其基础内容。

以下是店铺分享给⼤家的初中⼆元⼀次⽅程知识,希望可以帮到你! 初中⼆元⼀次⽅程知识 ⼀.⼆元⼀次⽅程(组)的相关概念 1.⼆元⼀次⽅程:含有两个未知数并且未知项的次数是1的⽅程叫做⼆元⼀次⽅程。

2.⼆元⼀次⽅程组:⼆元⼀次⽅程组两个⼆元—次⽅程合在⼀起就组成了⼀个⼆元⼀次⽅程组。

3.⼆元⼀次⽅程的解集: (1)⼆元⼀次⽅程的解 适合⼀个⼆元⼀次⽅程的每⼀对未知数的值.叫做这个⼆元⼀次⽅程的⼀个解。

(2)⼆元⼀次⽅程的解集 对于任何⼀个⼆元⼀次⽅程,令其中⼀个未知数取任意⼆个值,都能求出与它对应的另⼀个未知数的值.因此,任何⼀个⼆元⼀次⽅程都有⽆数多个解.由这些解组成的集合,叫做这个⼆元⼀次⽅程的解集。

4.⼆元⼀次⽅程组的解:⼆元⼀次⽅程组可化为 使⽅程组中的各个⽅程的左、右两边都相等的未知数的值,叫做⽅程组的解。

⼆.利⽤消元法解⼆元⼀次⽅程组 解⼆元(三元)⼀次⽅程组的⼀般⽅法是代⼊消元法和加减消元法。

1.解法: (1) 代⼊消元法是将⽅程组中的其中⼀个⽅程的未知数⽤含有另⼀个未知数的代数式表⽰,并代⼊到另⼀个⽅程中去,消去另⼀个未知数,得到⼀个解。

代⼊消元法简称代⼊法。

(2)加减消元法利⽤等式的性质使⽅程组中两个⽅程中的某⼀个未知数前的系数的绝对值相等,然后把两个⽅程相加或相减,以消去这个未知数,使⽅程只含有⼀个未知数⽽得以求解。

这种解⼆元⼀次⽅程组的⽅法叫做加减消元法,简称加减法。

⽤加减法消元的⼀般步骤为: ①在⼆元⼀次⽅程组中,若有同⼀个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去⼀个未知数; ②在⼆元⼀次⽅程组中,若不存在①中的情况,可选择⼀个适当的数去乘⽅程的两边,使其中⼀个未知数的系数相同(或互为相反数),再把⽅程两边分别相减(或相加),消去⼀个未知数,得到⼀元⼀次⽅程; ③解这个⼀元⼀次⽅程; ④将求出的⼀元⼀次⽅程的解代⼊原⽅程组系数⽐较简单的⽅程,求另⼀个未知数的值; ⑤把求得的两个未知数的值⽤⼤括号联⽴起来,这就是⼆元⼀次⽅程组的解。

“二元一次方程组”复习指导

“二元一次方程组”复习指导

“二元一次方程组”复习指导一、复习目标1.能说出什么是二元一次方程(组)及它的解,会检验某对数值是不是某个二元一次方程(组)的解;2.会灵活运用代入法和加减法解二元一次方程组;3.会根据给出的实际问题,列出二元一次方程组,从而求得问题的解,并能检验所列方程组的解是否正确、合理.二、重点难点重点:二元一次方程组的解法和列二元一次方程组解决实际问题.难点:列二元一次方程组解决实际问题.四、知识要点1.二元一次方程:含有两个未知数,并且未知项.的最高次数为1的整式方程叫做二元一次方程.2.二元一次方程的一个解:适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.3.二元一次方程的正整数解:适合二元一次方程的每对未知数的值都是正整数,一般是有限个.4.二元一次方程的一般式:c by ax =+ (a 、b 不为0)5.二元一次方程组:含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组.6.二元一次方程组的解:二元一次方程组中两个方程的公共解叫做二元一次方程组的解.7.二元一次方程组的解法:①代入消元法(简称代入法);②加减消元法(简称加减法)8.列方程组解应用题的一般步骤:(1)审题,找出题目中的相等关系;(2)设求知数;(3)根据题目中的相等关系列方程,并组成方程组;(4)解方程组;并检验解的正确性;(5)检验作答.9.列方程组解应用题要领:(1)善于将生活语言代数化;(2)掌握一定的设元技巧(直接设元,间接设元,辅助设元);(3)善于寻找数量间的等量关系.10.掌握化归思想在本章内容中,蕴涵着一个重要的数学思想——化归思想.化归思想的突出运用有:①化二元为一元;②化复杂为简单;③化实际问题为数学问题.把实际问题化为数学问题来处理,这是利用数学知识解决实际问题的基本途径.五、考点透视解二元一次方程组和用二元一次方程组解决实际问题是中考中的重要考点,题型多以选择、填空、计算和应用题出现,且近几年常与函数(将在八年级学习)等题结合起来,综合性强,能解决实际问题,符合社会发展的需要,需引起同学们的注意.例1 解方程组⎩⎨⎧=-=+.52,4y x y x 分析:此题可以用两种方法求解,若用代入法,则可将①变形,得到x y -=4③,把③代入②,消去y ;若用加减法,则可直接用①+②,消去y .解法一:由①得x y -=4,③将把③代入②,得5)4(2=--x x ,解得3=x .把3=x 代入③,得1=y .∴原方程组的解是⎩⎨⎧==13y x . 解法二:①+②,得93=x ,解得3=x .把3=x 代入②,得1=y .∴原方程组的解是⎩⎨⎧==13y x . 例2 今年第8号台风“莫拉克”给台湾同胞造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款500元,捐款情况如下表.表中捐款8元和10元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.① ②分析:本题中存在着两个等量关系:(1)学生人数共55人;(2)捐款钱数共500元.根据这两个等量关系,不难列出方程组求解.解:设捐款8元的有x 人,捐款10元的有y 人,根据题意,得⎩⎨⎧⨯-⨯-=+--=+.71265500108,7655y x y x 解得⎩⎨⎧==.25,17y x 答:捐款8元的同学有17人,捐款10元的同学有25人.点评:这既是一道残缺型试题,又是一道说理型试题.本题以向灾区捐款为背景,巧设墨水污染为悬念,使问题富有探索性.。

二元一次方程小结与复习教案34

二元一次方程小结与复习教案34
2.已知x=1 2xn-m=5
y=2是方程组mx-ny=5的
解,求m和n的值。
学生踊跃发言
小组讨论,寻求解决问题的方法
△让学生都参与到学习中来。
△让学生养成遇到难题敢于动脑思考,找到解决问题的最佳方案
教学流程
分课时
环节
与时间
教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
小结
5分钟
3.A、B两地相距150千米,甲、乙两车分别从A、B两地同时出发,同向而行,甲车3小时可追上乙车;相向而行,两车1.5小时相遇,求甲、乙两车的速度。
1.求二元一次方程3x+y=10的正整数解。
分析:求二元一次方程的解的方法是用一个未知数表示另一个未知数,如y=10-3x,给定x一个值,求出y的一个对应值,就可得到二元一次方程的一个解,而此题是对未知数x、y作了限制必须是正整数,也就是说对于给定的x可能是1、2、3、4…但是当x=4时,y=10-3×4=-2,y却不是正整数,因此x只能取正整数的一部分,即x= 1,x=2,x=3。
4.一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来的三位数大99,求这个三位数。
1.解一次方程组两种基本方法,是代入法和加减法,解题中常用加减法,在某个未知数的系数为一1、l时,可用代入法。解一次方程组时,应根据情况灵活运用两种方法。
分析:这里有两个未知数:甲、乙两车的速度;有两个相等关系:
(1)同向而行:甲3小时的行程=乙3小时行程十150千米
(2)相向而行:甲1.5小时行程+乙1.5小时行程=150千米
解设甲车的速度为x千米/时,乙车的速度为y千米/时。

第10章 二元一次方程组小结与复习

第10章   二元一次方程组小结与复习

第10章 二元一次方程组小结与复习学习目标:1. 进一步理解本章的有关内容,掌握二元一次方程组的解法;2. 能应用二元一次方程组解决实际问题.类型之一: 二元一次方程(组)及其解的概念问题例1. 方程是二元一次方程,则的取值为( )A 、≠0B 、≠-1C 、≠1D 、≠2变式:若2x |m|+(m+1)y=3m-1是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠-1B 、m=±1C 、m=1D 、m=0 例2.下列方程组中,属于二元一次方程组的是 ( )A 、B 、C 、D 、 变式: 写出一个以为解的二元一次方程组 例3.适合方程x+y=5且x 、y 绝对值都小于5的整数解有( )A.2B. 3C. 4D. 5变式1:若x+y=0,且|x|=2则y 的值为( )A . 0 B. 2 C .-2 D. ±2变式2:如果=3,=2是方程的解,则= .例4.已知二元一次方程组的解是( ) A. B. C. D. 变式: 在下列方程组中,只有一个解的是( ) (A ); (B ); (C );(D ) 类型之二: 二元一次方程组的解法1. 代入法:例5解方程组:变式: 解方程组 2.加减法: 例6.用加减法解方程组 设未知数,列方程组实际问题答案检验数学问题的解(二元一次方程组的解)代入法加减法(消元)解方程组数学问题(二元一次方程组)实际问题14-=-x y ax a a a a a ⎩⎨⎧==+725xy y x ⎪⎩⎪⎨⎧=-=+043112y x y x ⎪⎩⎪⎨⎧=+=3434532y x y x ⎩⎨⎧=+=-12382y x y x ⎩⎨⎧==70y x ,x y 326=+by x b 225x y x y +=⎧⎨-+=⎩16x y =⎧⎨=⎩14x y =-⎧⎨=⎩32x y =-⎧⎨=⎩32x y =⎧⎨=⎩⎩⎨⎧=+=+0331y x y x ⎩⎨⎧-=+=+2330y x y x ⎩⎨⎧=-=+4331y x y x ⎩⎨⎧=+=+3331y x y x 2328y x y x =⎧⎨+=⎩, ①.②2316412x y x y +=⎧⎨+=⎩①②20328x y x y -=⎧⎨+=⎩①②变式1:解方程组变式2: 已知:关于的方程组为的值为 ( ) A 、-1 B 、 C 、0 D 、1类型之三:二元一次方程组的综合应用1 .构造二元一次方程组解决问题例8. 已知|3x + y – 2 |+ (2x + 3y + 1)= 0 ,求x 、y 的值。

初三数学复习--二元一次方程组涉及的17个必考点梳理

初三数学复习--二元一次方程组涉及的17个必考点梳理


【分析】先根据二元一次方程组的概念得出
,据此求出 m、n 的值,代入计算可得.
【解析】根据题意知,

解得 m=﹣1,n=2, 则 mn=(﹣1)2=1, 故答案为:1. 【小结】本题考查的是一元二次方程组的定义,二元一次方程组也满足三个条件:
①方程组中的两个方程都是整式方程. ②方程组中共含有两个未知数. ③每个方程都是一次方程.
【解析】∵
是方程 nx+6y=4 的一个解,
∴代入得:﹣2n+6m=4,
∴3m﹣n=2,
∴3m﹣n+1=2+1=3,
故选:A.
【小结】本题考查了二元一次方程的解和求代数式的值,能求出 3m﹣n=2 是解此题的关键.
变式5 已知
是二元一次方程 4x﹣7y=8 的一个解,则代数式 17﹣8a+14b 的值是
∴ay=3,
∴a=1,y=3(舍)或 a=3,y=1,
③当 x=3 时,7﹣2x=1,
∴ay=1,
∴a=1,y=1(舍),
综上,满足条件的正整数 a 的值为 5 或 3,
故答案为:5 或 3.
【小结】本题主要考查的是二元一次方程的解,应用列举法求解是解题的关键.
第 7 页 共 56 页
考点4 二元一次方程组的定义 二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组;二元一 次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个 方程都是一次方程.
变式12 方程组
是关于 x,y 的二元一次方程组,则 ab 的值是

【分析】利用二元一次方程组的定义确定出 a 与 b 的值,代入原式计算即可得到结果.

二元一次方程的概念及二元一次方程组的解法复习

二元一次方程的概念及二元一次方程组的解法复习
9、如果关于x、y的方程组 的解与 的解相同,求a、b的值。
10、一个两位数,其十位上的数与个位上的数的和等于1,这个两位数是______.
11、求方程3x+7y=20的正整数解。
12、解方程组
课后作业:
1、下列方程中,是二元一次方程的有________(填序号)。
① ② ③ ④
⑤ ⑥ ⑦ ⑧
2、下列方程组中,是二元一次方来自组的有________(填序号)。
(6)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去未知数,得到一个一元一次方程.这种方法叫做______________法,简称________法.
(7)用二元一次方程组解应用题一般有五步:________、设未知数、__________、解方程组、答.
2.在 与 两组值中,是二元一次方程组 的解的是
3.完成下面的解题过程:4.用代入法解方程组
解:由①,得x=____________.③
把③代入②,得_______________.
解这个方程,得y=_____.
把y=_____代入③,得x=_____.
所以这个方程组的解是
5.完成下面的解题过程:6.用加减法解方程组
*9、方程组 的解 、 满足关系式 ,则 =______________。
*10、①若 ,则 =______。
②若 ,则 。
11、解下列方程组:(有要求的按要求解题,没要求的选择自己喜欢的方法解题。)
(1)用代入消元法解方程组
(2)
(3)用加减消元法解方程组
(4)
(5) (6)
12、若 是方程组 解, 求 的值。
②若 是关于 、 的二元一次方程,则 =____。

初二数学(二元一次方程组专题复习)

初二数学(二元一次方程组专题复习)

二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。

二元一次方程组复习资料

二元一次方程组复习资料
解:设 十位上的数字为x,个位上的数字为y ,根据题 意可列方程组:
{ y-x=5 10x+y+(10y+x)=143 { 解得: X=4 Y=9 答: 这个两位数是49
1、解一次方程组的两种基本方法是什么? 解题时要注意什么细节?
2、列一次方程组解应用题的关键是什么?
3、你对本章书的内容还有什么疑问吗?请 结合实际把问题提出来并和同学讨论。
(1)x2 y2 4 (2).x2 2x y x2 (3).xy y 6
(4)x y

(5).x2 y z 6
(6) 1 1 8

xy
2.下列是二元一次方程组的是 (B )
1 x
+
y
=3
(A)
2x+y =0
3x -1 =0
(B) 2y =5
x + y = 7
(c) 3y + z= 4
5x2 - y = -2
(D) 3y + x = 4
3、求二元一次方程 3x y 10 的正整数解。
分析:
此题对未知数作了限制,即必须是正 整数,因此,x、y 的取值必须都是
正整数。
解:当x=1时 y=7Fra bibliotek当x=2时 y=4
当 x=3时 y=1
即 3x+y=10的正整数解是 :
{x=1 y=7
{ { x=2

二元一次方程

二元一次方程组的解


方 程
二元一次方 代入消元法

程组的解法 加减消元法
根据方程未知数的系数特征确定 用哪一种解法.
实际问题
设未知数,列方程组

第五章二元一次方程组复习

第五章二元一次方程组复习
(1) ①- ②得x=1 (3)∴
LOGO
3x-5y=6①
具体解 2x-5y=7② 法如下
(2)把x=1代入①得y=-1.
x=1 其中出现错误的一步是( y=-1
A

A(1)
B(2) C(3)
LOGO
5、方程2x+3y=8的解 ( A、只有一个 C、只有三个
x y 1 3 5 x y 0
D)
B、只有两个 D、有无数个
6、下列属于二元一次方程组的是 ( A、 B
A

3 5 1 x y x y 0
C、
x+y=5
x2+y2=1
D
1 y x2 2 xy 1
课堂反馈练习:
LOGO
1.如果函数 y x 2 与 y -2 x 4 的图象的 交点坐标是(2,0),那么二元一次方程组
LOGO
解:设甲、乙两地间的距离为 S千米,规定 、 时间为t小时,根据题意得方程组
2 s t 50 5 s t2 5 75
LOGO
例2.甲、乙二人以不变的速度在环形路上 跑步,如果同时同地出发,相向而行,每隔2 分钟相遇一次;如果同向而行,每隔6分钟 相遇一次.已知甲比乙跑得快,甲、乙每分 钟各跑多少圈?
题型二:
1、已知5x+y=12, (1)用含x的式子来表示y: 用含y的式子表示x: (2)当x=1时,y= ; (3)写出该方程的两组正整数解
LOGO
; 。

LOGO
考点四:
1.若 ,则x= ,y= .
2.若点P(x-y,3x+y)与点Q(-1,-5)关于X轴对 称,则x+y=______.

人教版数学七年级下册第8章二元一次方程组复习

人教版数学七年级下册第8章二元一次方程组复习
2.A、B两地相距36千米,甲从A地步行到B地, 乙从B地步行到A地,两人同时相向出发,4小时 后两人相遇,6小时后,甲剩余的路程是乙剩余 路程的2倍,求二人的速度?
练一练:
1. 某市现有42万人口,计划一年后城镇人口增 加0.8%,农村人口增加1.1%,这样全市人口将增 加1%,求这个市一年后预计的城镇人口和农村人 口是多少?
关于定义
1%,这样全市人口将增加1%,求这个市一年后预计的城镇人口和农村人口是多少?
二元一次方程是整式方程.
二元一次方程组里一共含有两个 ⒈ 使相同未知数的系数相同或相反(若不同 a .
二元一次方程组里一共含有两个未知数,而不是每个方程一定要含有两个未知数. 9、方程组 的解是
未知数,而不是每个方程一定要含有 就不是二元一次方程,因为
3、阅读小故事,列出满足题意的二元一次方程组:(杨损 问题)唐朝时,有一位懂数学的尚书叫杨损,他曾主持一场 考试,其中有一道题是:"有一天,几个盗贼正在商议怎样分 配偷来的布匹,贼首说,每人分六匹布,还剩下五匹布;每人 分七匹布还少了八匹布.这些话被躲在暗处的衙役听到 了,他飞快地跑回官府,报告了知府,但知府不知道有多少 盗贼,不知派多少人去抓捕他们.请问:有盗贼几人,布匹多 少?列出二元一次方程组,并根据问题的实际意义找出 问题的解。
x + y = -5的一个解.
关于解法
1、解二元一次方程组你有几种方法? 两种:代入法和加减法
2、代入法和加减法解方程组,“代入”与“加 减”的目的是什么?
消元:把二元一次方程转化为一元一次方程
3、解二元一次方程组的步骤是什么?
代入消元法的步骤
⒈将其中一个方程化为用含一个未知数的代数式表示另一个未知数的形式,如:y=ax+b的形式

第八章二元一次方程组复习

第八章二元一次方程组复习

四、知识应用
1.下列方程是二元一次方程的是__D_
A.xy+8=0 B.
1 X
23
5 Y
C. x 2 2 x 6 10 2已知方程
x m1
D.
y 2 mn2
x 5
3y 7

5 是关于x、y
的二元一次方程,则 0 m ()
n 3 ()
3.已知x=2,y=1是方程kx-y=3的解,则 k=( 2 )
2.已知|2x+3y+5|+(3x+2Y-25)2=0, -30 则x-y=______. 3.若两个多边形的边数之比是2:3,两个多边形的 内角和是1980°,求这两个多边形的边数. 6和9
列二元一次方程组解应用题的一般步骤:
设 用两个字母表示问题中的两个未知数 列 列出方程组
分析题意,找出两个等量关系 根据等量关系列出方程组
三元一次方程组
消元
二元一次方程组
消元
一元一次方程
用代入法解二元一次方程组的步骤:
1.变形(求表达式):从方程组中选一个系数比 较简单的方程,将此方程中的一个未知数,如y, 用含x的代数式表示; 2.代入:把这个含x的代数式代入另一个方程 中,消去y,得到一个关于x的一元一次方程; 3.求解:解一元一次方程,求出x的值;
(1)×2 得6x+4y=8(3) (2)×3 得6x-12y=48(4) (3)-(4) 得16y=-40 y=-2.5 把y=-2.5代入(1)得 3x+2×(-2.5)=4 3x=9 x=3 x=3 y=-2.5是原方程的解
(3).
2( x y) x y 1 4 3 6( x y) 4(2 x y) 16

人教版七年级数学下册《二元一次方程组》全章复习与总结(专项练习含答案)

人教版七年级数学下册《二元一次方程组》全章复习与总结(专项练习含答案)

专题8.14 《二元一次方程组》全章复习与巩固(专项练习)一、单选题1.(2020·珠海市文园中学七年级期中)已知21x y =⎧⎨=⎩是方程kx+y =3的一个解,那么k 的值是( )A .2B .﹣2C .1D .﹣12.(2020·河北廊坊市·八年级开学考试)现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y +=⎧⎨⨯=⎩3.(2020·山西忻州市·七年级期末)以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2020·山东东营市·七年级期末)若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( )A .351x y x y +=⎧⎨+=⎩ B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩ D .325x y y x =-⎧⎨+=⎩5.(2020·贵州安顺市·七年级期末)若方程组01ax y x by +=+=⎧⎨⎩的解是11x y =⎧⎨=-⎩,那么a 、b 的值是( ).A .10a b ==,B .112a b ==, C .10a b =-=,D .00a b ==,6.(2020·湖南株洲市·七年级期末)如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 27.(2020·广东云浮市·七年级期末)用加减消元法解二元一次方程组237,532,x y x y -=⎧⎨-=-⎩①②由①-①可得的方程为( )A .3x =5B .-3x =9C .-3x -6y =9D .3x -6y =58.(2020·山东菏泽市·七年级期末)如图,点O 在直线AB 上,OC 为射线,①1比①2的3倍少10°,设①1,①2的度数分别为x,y,那么下列求出这两个角的度数的方程是( )A .18010x y x y +=⎧⎨=-⎩B .180310x y x y +=⎧⎨=-⎩C .180+10x y x y +=⎧⎨=⎩D .3180310y x y =⎧⎨=-⎩9.(2020·浙江湖州市·七年级期中)已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-10.(2020·河南洛阳市·七年级期中)如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A .280B .140C .70D .19611.(2020·苏州市吴江区同里中学七年级期末)在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( ) A .1B .-3C .3D .412.(2020·安徽淮南市·七年级期末)方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4二、填空题13.(2019·湖北省建始金太阳学校七年级月考)二元一次方程x +y =4有______组解,有_______组正整数解. 14.(2020·湖北随州市·八年级月考)若2,-1x y =⎧⎨=⎩是方程组-3,-6mx y x ny =⎧⎨=⎩的解,则m=____,n=____.15.(2018·内蒙古兴安盟·七年级期中)若2x 2a -5b +y a -3b =0是二元一次方程,则a=______,b=______.16.(2020·唐山市第十一中学七年级月考)若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.17.(2019·湖北省建始金太阳学校七年级月考)若11x y =⎧⎨=-⎩,22x y =⎧⎨=⎩和3x y c =⎧⎨=⎩都是方程ax +by +2=0的解,则c=______.18.(2020·四川省射洪县射洪中学外国语实验学校七年级期中)关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.19.(2020·长沙市中雅培粹学校七年级月考)对于任意有理数a 、b 、C 、d ,我们规定a b c d=ad ﹣bc .已知x ,y 同时满足14x y - =5,53yx- =1,则x=_____,y=_____. 20.(2018·山西九年级专题练习)已知32x y =⎧⎨=-⎩ 是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a -b)的值为_________21.(2020·内蒙古通辽市·七年级期末)已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___.22.(2020·内蒙古通辽市·七年级期末)某班有30名同学去看演出,购买甲、乙两种票共用去690元,其中甲种票每张25元,乙种票每张20元,设购买了甲种票x 张,乙种票y 张,由此可列出方程组________.23.(2019·山西九年级专题练习)对于实数a ,b ,定义运算“①”:a①b=a b ab a b ≥⎪⎩,<,例如4①3,因为4>3.所以.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x①y=_____________.24.(2020·湖北襄阳市·七年级期末)若()235230x y x y ,-++-+=则x y +的值为______.25.(2017·河北九年级其他模拟)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以用方程组形式表述为__________.三、解答题26.(2019·全国)(1)解方程组:{3x +4y =19x −y =4(2)解方程组:{3(x +y)−4(x −y)=4x+y 2+x−y 6=1 . 27.(2020·内蒙古兴安盟·七年级期末)在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值.28.(2019·全国七年级单元测试)杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米. (1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?29.(2018·辽宁大连市·七年级期末)某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)工厂补充10名新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置,则补充新工人后每天能配套生产多少产品?(3)为了在规定期限内完成总任务,请问至少需要补充多少名(2)中的新工人才能在规定期内完成总任务?参考答案1.C 【分析】将方程的解代入方程得到关于k 的一元一次方程,于是可求得k 的值. 【详解】解:将21x y =⎧⎨=⎩代入方程3kx y +=得:213k +=,解得1k =. 故选C . 【点拨】本题主要考查的是二元一次方程的解,将方程的解代入方程得到关于k 的方程是解题的关键. 2.A 【分析】此题中的等量关系有:①共有190张铁皮; ①做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案. 【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y . 列方程组为1902822x y x y+=⎧⎨⨯=⎩.故选:A . 【点拨】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键. 3.A 【分析】先求出方程组的解,然后即可判断点的位置. 【详解】 解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩,①点(1.5,0.5)在第一象限. 故选:A . 【点拨】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.4.B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A.x=2,y=﹣1不是方程x+3y=5的解,故该选项错误;B.x=2,y=﹣1适合方程组中的每一个方程,故该选项正确.C.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误;D.x=2,y=﹣1不是方程组中每一个方程的解,故该选项错误.故选B.【点拨】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.5.A【详解】由题意得,解得,故选A.6.A【解析】设一个小长方形的长为x cm,宽为y cm,根据等量关系:小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,可列方程组5042x yx y x+=⎧⎨+=⎩,解得4010xy=⎧⎨=⎩,则一个小长方形的面积=40cm×10cm=400cm2.故选A.7.B【分析】利用加减消元法进行计算即可.【详解】用加减消元法解二元一次方程组237532x yx y-=⎧⎨-=-⎩①②,由①-①可得的方程为:-3x=9.【点拨】本题考点:解二元一次方程组-加减消元法. 两个二元一次方程中同一未知数的系数相同或互为相反数时,将这两个方程分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称消元法. 8.B 【分析】设①1,①2的度数分别为x ,y ,根据题目中的等量关系:①①1和①2组成了平角,则和是180;①①1比①2的3倍少10度.列出方程组即可. 【详解】设①1,①2的度数分别为x ,y ,根据①1和①2组成了平角,得方程x+y=180;根据①1比①2的3倍少10°,得方程x=3y -10.可列方程组为180310x y x y +=⎧⎨=-⎩.故选B . 【点拨】本题考查了二元一次方程组的应用,题关键是能够结合图形进一步发现两个角之间的一种等量关系,即两个角组成了一个平角,和是180度. 9.C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点拨】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核. 10.C 【解析】解:设小长方形的长、宽分别为x 、y , 依题意得:,解得:,则矩形ABCD 的面积为7×2×5=70.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.11.C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣①,得:2x+3y=a﹣1.①2x+3y=2,①a﹣1=2,解得:a=3.故选C.点拨:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.12.C【分析】把x=2代入x+y=3求出y,再将x,y代入2x+y即可求解.【详解】根据{x2y==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点拨】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y值为解题关键.13.无数; 3.【分析】二元一次方程的解有无数组,将x看做已知数求出y,确定出方程的正整数解即可.【详解】解:方程x+y=4的解有无数组,方程变形得:y=4-x,①当x=1时,y=3;当x=2时,y=2; 当x=3时,y=1.则方程的正整数解有3组,【点拨】此题考查了解二元一次方程的解,解题的关键是将x看做已知数求出y.14.1 4【分析】首先将x,y的值代入方程组,然后解关于m,n的二元一次方程组即可求解.【详解】将2,-1xy=⎧⎨=⎩代入方程组-3,-6mx yx ny=⎧⎨=⎩得213 2+6 mn+=⎧⎨=⎩解得m=1,n=4.【点拨】此题主要考查二元一次方程组的解,解题的关键是熟知方程组解得含义. 15.-2 -1【解析】根据二元一次方程的定义可得x,y的指数都是1,由二元一次方程定义得:2512 311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得,故答案为:a=-2,b=-1.16.y=3x+5(x+4).【分析】载重3吨的卡车有x辆,则共运货3x吨, 载重5吨的卡车比它多4辆,则共运货5(x+4)吨,所以两种车的总运货量即为3x+5(x+4).【详解】解:依题意得: y=3x+5(x+4).故答案为y=3x+5(x+4).【点拨】本题考查了二元一次方程的应用,找到等量关系是解题的关键.17.5.【分析】将已知前两对解代入方程计算求出a与b的值,确定出方程,再将第三对解代入计算即可求出c的值.【详解】解:将11x y =⎧⎨=-⎩与22x y =⎧⎨=⎩代入ax+by+2=0得:2222a b a b --⎧⎨+-⎩==,解得:3212a b ⎧=-⎪⎪⎨⎪=⎪⎩,①方程为-32x+12y+2=0, 将x=3,y=c 代入方程得:-92+12c+2=0,即c=5. 故答案为5. 【点拨】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 18.2m <- 【分析】先解关于关于x ,y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可. 【详解】31 3,x y m x y +=+⎧⎨+=⎩①② 由①+①得4x +2y =4+m ,422mx y ++=, ①由21x y +<,得41,2m+<, 解得,2m <-. 故答案为2m <-. 【点拨】考查解一元一次不等式, 解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 19.2 ﹣3 【分析】先认真观察式子的特点,根据特点得出方程组,求出方程组的解即可.【详解】由题意得:45531x yx y+=⎧⎨+=⎩①②,①×3-①,得7x=14,x=2,①4×2+y=5,y=-3.故答案为2,-3.【点拨】本题考查了解二元一次方程组,解题的关键是熟练的掌握二元一次方程组的运算法则. 20.−8【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【详解】解:把32xy=⎧⎨=-⎩代入方程组得:323327a bb a-=⎧⎨-=-⎩①②,①×3+①×2得:5a=−5,即a=−1,把a=−1代入①得:b=−3,则(a+b)(a-b)=a2−b2=1−9=−8,故答案为−8.【点拨】此题考查了二元一次方程组的解和解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.21.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x-y或直接让两个方程相减求解.【详解】方法一:解方程组2524x yx y+=⎧⎨+=⎩,解得:21 xy=⎧⎨=⎩,方法二:两个方程相减,得.x-y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.22.30 2520690x yx y+=⎧⎨+=⎩【分析】设购买了甲种票x张,乙种票y张,根据等量关系“甲种票张数+乙种票张数=学生人数”和“甲种票花费的钱数+乙种票花费的钱数=购票共花去的费用”,列出二元一次方程组即可求解.【详解】设购买了甲种票x张,乙种票y张,根据等量关系“甲种票张数+乙种票张数=学生人数”和“甲种票花费的钱数+乙种票花费的钱数=购票共花去的费用”,列出二元一次方程组得30 2520690x yx y+=⎧⎨+=⎩.故答案是:30 2520690x yx y+=⎧⎨+=⎩.【点拨】考查了二元一次方程组的应用,解题的关键是:找出关于x、y的二元一次方程组.解决该种题型时,把握住不变的量,再根据数量关系列出方程(或方程组).23.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x yx y-=⎧⎨+=⎩,解得:512 xy=⎧⎨=⎩.①x<y,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】①(3x -y+5)2+|2x -y+3|=0,①3x -y+5=0,2x -y+3=0,①x= -2,y= -1.①x+y= -3.【点拨】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.25.{2x +y =114x +3y =27【解析】【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】解:第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为{2x +y =114x +3y =27, 故答案为{2x +y =114x +3y =27. 【点拨】本题考查了列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.26.(1){x =5y =1 ;(2){x =1715y =1115 . 【解析】【分析】(1)利用加减消元法即可求出解;(2)方程组整理后,利用加减消元法即可求出解;【详解】解:(1){3x +4y =19①x −y =4②, ①+①×4得:7x =35,即x =5,把x =5代入①得:y =1,则方程组的解为{x =5y =1; (2)方程组整理得:{−x +7y =4①2x +y =3②, ①×2+①得:15y =11,即y =1115,把y =1115代入①得:x =1715,则不等式组的解集为{x =1715y =1115. 【点拨】本题考查了解二元一次方程组,代入消元法与加减消元法,根据题目选用适当的方法是解题的关键.27.a =1,b =﹣1,c =1.【分析】根据题意列出三元一次方程组,解方程组即可.【详解】 由题意得,311a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得,a =1,b =﹣1,c =1.【点拨】本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.①然后解这个二元一次方程组,求出这两个未知数的值.①再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.①解这个一元一次方程,求出第三个未知数的值,得到方程组的解.28.(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.【解析】【分析】(1)设甲、乙班组平均每天掘进x 米,y 米,根据“甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米,”列出方程组解答即可;(2)设按原来的施工进度和改进施工技术后的进度分别还需a 天,b 填完成任务,根据题意列式计算得出答案,再进一步相减即可.【详解】解:(1)设甲、乙班组平均每天掘进x 米,y 米,由题意,得()2.4,5110,x y x y -=⎧⎨+=⎩解得12.2,9.8.x y =⎧⎨=⎩ 答:甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a 天,b 天完成任务,则a =(48 180-110)÷(12.2+9.8)=2 185(天),b =(48 180-110)÷(12.2+1.7+9.8+1.3)=1 922.8(天),因此a -b =2 185-1 922.8=262.2(天).答:少用262.2天完成任务.【点拨】考查二元一次方程组的实际运用,找出题目蕴含的数量关系,理清工程问题的计算方法是解决问题的关键. 29.(1)48套;(2)52套;(3)30名.【解析】【分析】(1)设安排x 名工人生产G 型装置,则安排(80−x )名工人生产H 型装置,根据生产的装置总数=每人每天生产的数量×人数结合每台GH 型产品由4个G 型装置和3个H 型装置配套组成,即可得出关于x 的一元一次方程,解之可得出x 的值,再将其代入64x 中即可求出结论; (2)设安排y 名工人生产H 型装置,则安排(80−y )名工人及10名新工人生产G 型装置,同(1)可得出关于y 的一元一次方程,解之可得出x 的值,再将其代入33y 中即可求出结论; (3)设至少需要补充m 名(2)中的新工人才能在规定期内完成总任务,安排n 名工人生产H 型装置,则安排(80−n )名工人及m 名新工人生产G 型装置,由每天需要生产1200÷20套设备,可得出关于m ,n 的二元一次方程组,解之即可得出结论.【详解】解:(1)设安排x 名工人生产G 型装置,则安排(80﹣x)名工人生产H 型装置, 根据题意得:()380643x x -=, 解得:x =32, ①66324844x ⨯==. 答:按照这样的生产方式,工厂每天能配套组成48套GH 型电子产品.(2)设安排y 名工人生产H 型装置,则安排(80﹣y)名工人及10名新工人生产G 型装置,根据题意得:()680410343y y-+⨯=,解得:y=52,①33y=y=52.答:补充新工人后每天能配套生产52套产品.(3)设至少需要补充m名(2)中的新工人才能在规定期内完成总任务,安排n名工人生产H型装置,则安排(80﹣n)名工人及m名新工人生产G型装置,根据题意得:()68041200420 31200320n mn⎧-+=⎪⎪⎨⎪=⎪⎩,解得:3060mn=⎧⎨=⎩.答:至少需要补充30名(2)中的新工人才能在规定期内完成总任务.【点拨】本题考查了一元一次方程的应用以及二元一次方程组的应用,解题的关键是:(1)(2)找准等量关系,正确列出一元一次方程;(3)找准等量关系,正确列出二元一次方程组.。

二元一次方程组解法复习

二元一次方程组解法复习

考点一: 什么是二元一次方程?
1. 判断下列哪一个方程是二元一次方程 x (1) +2y=1 3 (4)2x2-x+1=0 1 (2)x+ y = -7
(3)8ab=5
(5)2(x+y)-3(x-y)=1
2.若 x
m-3
-
8yn+2 =0是关于x,y的二元一次方程,
4 ,n=______ -1 . 则m=____
y=-2m
14m-6m=6
m=3/4
加减消元法:
1、当方程组的两个方程中某一个未知数的系数相 等或互为相反数时,可采用加减消元法。如: x-2y=9 3u+2t=7
3x-2y=-1 6u-2t=11 2、当方程组中任一未知数的系数都不是1或-1,既 不相等又不互为相反数时,可利用等式的基本性质 将两个方程转化为某一个未知数的系数相等或互为 相反数的情况,然后再利用加减消元法消去这个未 知数。如: 3x+4y=16 6x+15y=360 5x-6y=33 8x+10y=440
(1) ①-②得x=1 (2)把x=1代入①得y=-1. x=1 (3)∴ 其中出现错误的一步是( y=-1 A.(1) B.(2) C.(3)
A)
代入消元法:
1、 当方程组中的其中一个方程的某个未知数的系 数是1或-1时,可以采用代入消元法。如: x-2y=9 2x-5y=-3 -4x+y=-3
1、解下列方程组: 4f+g=15 2x+3y=6
(1)
(2) 3g-4f=-3 5x+2y=25
5x-3y=8
4(x-y-1)=3(1-y)-2
(4 )
x y + = 2 2 3

第八章二元一次方程组复习

第八章二元一次方程组复习

列方程(组)解应用题的一般流程:
分析、处理数据
实际问题
数学问题
设未知数,找等量 关系,列方程组
数学模型 (二元一次方程组)
解方程组
检验
实际问题的解
数学问题的解
实际问题 列二元一次方程组解应用题的一般步骤:
设 用两个字母表示问题中的两个未知数 列 列出方程组
分析题意,找出两个等量关系 根据等量关系列出方程组
{ 4x+3y=1 5.如果方程组{ 2x+y=3-m 值为?
4.如果方程组
2x+3y=8的解,求a的值.
4x+3y=1 (1) 得解x和y得值相等,m的值为? 2x+y=3-m (2)
(1)
(2)
得解x+y的值是负数,m的取 变式:x 〉y
x y 9a 6、如果方程组 的解也是二元一次方程n=10
例4 已知4x-3y-6z=0,x+2y-7z=0,且x,y,z均不 2 x 2+3 y 2+6 z 2 为零,求 2 2 2 的值 。 x +5 y +7 z
解:由题设条件得
4x-3y=6z,①
x+2y=7z。②
②×④-①得
11y=22z,即y=2z。将y=2z代入入②得x=3z。将
无数组解 2 组正 练1.二元一次方程 x+y=3有_______ 个解;有___ x2 x 1 { { y 2 或 y 1 整数解,他们是_____________
x y 2 练2.方程组 的解的个数是 无数组解 . 2 x 2 y 4
练3.小明手上有一张10元的人民币,当路过商店门口时,他 想把10元换成2元或1元的零钱,请你仔细考虑一下,售货员 可有几种兑换方法?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x+y=22, 2x+y=40.
(1) (2)
满足方程x+y=22且符合实际意义的x,y的值有哪些?
x 9 10 11 12 13 14 15 16 17 18 19
y 13 12 11 10 9
8
7
6
5
4
3
无数 从中你体会到二元一次方程有___个解 .
上表中哪对x,y的值是方程2x+y=40的解?
二元一次方程组 复习与小结
x+y=22 2x+y=40
含有两个未知数(x和y),并且含有未 知数的项的次数都是1,像这样的方程叫做 二元一次方程.
x+y=22, (1) 2x+y=40. (2) 把两个二元一次方程合在一起,就 组成了一个二元一次方程组. 要点:(1)方程组中只有两个未知数. (2)未知数的次数都是一次. (3)一共有两个方程.
分析 求解 问题 方程(组) 解答 抽象 检验
3.要注意的是,处理实际问题的方法往往是多种多样的, 应根据具体问题灵活选用.
审 清题意,找出等量关系; 设 未知数x和y; 列 出二元一次方程组;
解 方程组;
检 验; 答 题.
x+y+z=12 ① ② x=4y x+2y+5z=22 ③
都含有三个未知数,并且含有未知数
特点: 同一个未知数的系数相同或互为相反数.
基本思路: 加减消元:二元 主要步骤:加减 求解
消去一个元;
一元.
写解
写出原方程组的解.
分别求出两个未知数的值;
1.解二元一次方程组的基本思路是消元.
2.消元的方法有:代入消元和加减消元. 3.解二元一次方程组的一般步骤:消元、求 解、写解.
1.在很多实际问题中,都存在着一些等量关系,因此 我们往往可以借助列方程组的方法来处理这些问题. 2.这种处理问题的过程可以进一步概括为:
x 18, y 4.
一般地,二元一次方程组的 两个方程的公共解,叫做二元一
次方程组的解.
1.用代入法解二元一次方程组. 主要步骤:①变形——用含一个未知数的代数式 表另一 个未知数; ②代入——消去一个元; ③求解——分别求出两个未知数的值; ④写解——写出方程组的解. 2.体会解二元一次方程组的基本思想——“消元”. 3.体会化归思想(化未知为已知)的应用.
的项的次数都是1,像这样的方程叫做三
元一次方程.
这个问题的解必须同时满足上面三个条件,因此,我 们把这三个方, x=4y, x+2y+5z=22.
这个方程组含有三个未知数,每个方程中含未知数 的项的次数都是1,并且一共有三个方程,像这样的方 程组叫做三元一次方程组.
1.三元一次方程组的解法
三元一次 方程组
消元
二元一次 方程组
消元
一元一 次方程
2.三元一次方程组的应用
相关文档
最新文档