数学必修三回归分析经典题型(带答案)资料讲解

合集下载

数学必修三回归分析经典题型带答案

数学必修三回归分析经典题型带答案

1 / 3数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145。

83cm B .身高在145.83cm 以上C .身高在145。

83cm 以下D 。

身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3—9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准.选D 2.对有线性相关关系的两个变量建立的线性回归方程y =a +b x,关于回归系数b ,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b 和r的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0。

3。

对具有线性相关关系的变量x 、y 有观测数据(x i ,y i)(i =1,2,…,10),它们之间的线性回归方程是y =3x+20,若101i i x =∑=18,则101ii y=∑=________.【答案】254 【解析】由101i i x =∑=18,得x =1.8。

因为点(x ,y )在直线y =3x+20上,则y =25.4. 所以101i i y =∑=25.4×10=254.4。

下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y =-0。

7x +a,则a 等于________. 【答案】5.25【解析】x =2。

5,y =3。

5, ∵回归直线方程过定点(x ,y ), ∴3.5=-0.7×2.5+a. ∴a=5。

25.5.由一组样本数据(x1,y 1),(x 2,y2),…,(xn ,yn )得到线性回归方程y =b x+a ,那么下列说法正确的是________. ①直线y =b x+a 必经过点(x ,y );②直线y =b x+a 至少经过点(x 1,y1),(x 2,y2),…,(x n ,yn )中的一个点;③直线y =b x +a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线y =b x +a 和各点(x 1,y1),(x 2,y2),…,(x n ,y n )的偏差21()ni i i b a y x =⎡⎤⎣⎦∑-+是该坐标平面上的直线与这些点的最小偏差。

(完整版)数学必修三回归分析经典题型(带答案)

(完整版)数学必修三回归分析经典题型(带答案)

数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。

数学必修3自主练习 :2.4线性回归方程 含解析 精品

数学必修3自主练习 :2.4线性回归方程 含解析 精品

自主广场我夯基 我达标1.相关关系与函数关系的区别是_________.思路解析:考查函数关系和相关关系的含义.答案:函数关系是两个变量之间有完全确定的关系,而相关关系是两个变量之间并没有严格的确定关系,当一个变量变化时,另一变量的取值有一定的随机性 2.线性回归方程y=bx+a 过定点__________.思路解析:考查线性回归方程的意义,及点与直线的位置关系的判断.由线性回归直线方程的推导过程不难发现直线恒过定点(x ,y ).答案:(x ,y )3.工人工资(元)依劳动生产率(千元)变化的回归方程为y ˆ=50+80x ,下列判断正确的是( ) A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资大约提高80元C .劳动生产率提高1 000元时,工资提高大约130元D .当月工资250元时,劳动生产率为2 000元思路解析:考查了直线斜率的实际意义,即k=.x x y y xy1212∆∆==--横坐标的增量纵坐标的增量答案: B4.设有一个直线回归方程为yˆ=2-1.5x ,则变量x 增加一个单位( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位C .y 平均减少1.5个单位D .y 平均减少2个单位思路解析:考查了直线斜率的实际意义,即k=.x x y y xy1212∆∆==--横坐标的增量纵坐标的增量答案: C5.下列两个变量之间的关系不是函数关系的是( )A .角度和它的余弦值B .正方形边长和面积C .正n 边形的边数和它的内角和D .人的年龄和身高思路解析:本题主要考查相关关系的概念.由函数的定义可知A 、B 、C 三项中的两个变量间的关系均为函数关系,故答案为D.答案: D 6.已知样本容量为11,计算得∑=111i ix=510,∑=111i iy=214,∑=1112i ix=36 750,∑=1112i iy=5422,∑=111i ii yx =13 910,则y 对x 的回归方程为__________.思路解析:考查线性回归方程的求法.在回归方程中b=. x b ,x x n y x y x n ni i n i i ni i n i i n i i i -=--∑∑∑∑∑=====y a )())((2112111答案:y=5.34+0.3x7.部分国家13岁学生数学测验平均分数见下表.试作出该数据的散点图,并由图判断是否存在回归直线.若有,试求出直线方程.思路解析:考查了用回归直线方程进行拟合的一般步骤.用回归直线方程进行拟合的一般步骤为:作出散点图;判断散点是不是在一条直线的附近;若散点在一条直线的附近,利用公式求出回归直线方程.答案:(图略)存在回归直线方程,回归直线方程是y=0.313 3x+0.900 1.我综合 我发展8.一个工厂在某年每月产品的总成本y(万元)与该月产量x(万件)之间的一组数据如下:试作出该数据的散点图,并求总成本y 与月产量x 之间的回归直线方程. 思路解析:考查了回归直线方程的求法. 答案:(图略)回归直线方程是y ˆ=1.215x +0.974.9.对于线性相关系数r ,叙述正确的是( )A .|r|∈(0,+∞),|r|越大,相关程度越大;反之,相关程度越小B .r ∈(-∞,+∞),r 越大,相关程度越大;反之,相关程度越小C .|r|≤1,且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小D .以上说法都不对思路解析:考查了线性相关程度的判断方法.|r|≤1,且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小.答案: C我创新 我超越10.改革开放以来,我国高等教育事业有了迅速发展.这里我们得到了某省从1990~2000年18~24岁的青年人每年考入大学的百分比,我们把农村、乡镇和城市分开统计.为了便于计算,把1990年编号为0,1991年编号为1,…,2000年编号为10.如果把每年考入大学的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:城市yˆ=9.50+2.84x,乡镇yˆ=6.76+2.32x,农村yˆ=1.80+0.42x.(1)在同一坐标系内作出三条回归直线.(2)对于农村青年来讲,系数等于0.42意味着什么?(3)在这一阶段,三个组哪一个的大学入学率年增长最快?(4)请查阅我国人口分布的有关资料,选择一个在高等教育发展上有代表性的省,以这个省的大学入学率作为样本,说明我国在1991~2000年10年间大学入学率的总体发展情况.思路解析:考查了直线方程的画法,直线斜率的实际意义及解决问题和分析问题的能力.答案:(1)图略.(2)对于农村青年来讲,系数等于0.42意味着考入大学的百分比增长较慢.(3)城市组.(4)略.。

数学必修3知识导引 2.4线性回归方程 含解析 精品

数学必修3知识导引 2.4线性回归方程 含解析 精品

6.4线性回归方程案例探究在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?分析:凭我们的学习经验可知,物理成绩确实与数学成绩有一定的关系,但除此以外,还存在其他影响物理成绩的因素.例如,是否喜欢物理,用在物理学习上的时间等等.在实际问题中,变量之间的常见关系有如下两类:一类是确定性函数关系,变量之间的关系可以用函数表示.例如,圆的面积S与半径r 之间就是确定性函数关系,可以用函数S=πr2表示.一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达.例如,人的体重与身高有关.一般来说,身高越高,体重越重,但不能用一个函数来严格地表示身高与体重之间的关系.自学导引1.在实际问题中,变量之间的常见关系有两类:一类是确定性关系,另一类是相关关系.2.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系.3.请你说出确定性关系与相关关系的相同点和不同点.答案:相同点:均是指两个变量的关系.不同点:相关关系是一种非确定的关系.确定性关系是自变量与函数值之间的关系,可以用一个函数表示.这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.这种关系不能用一个确定的函数来表示.4.你是否还能举出一些现实生活中存在的相关关系的问题?答案:例如,商品销售收入与广告支出经费之间的关系;粮食产量与施肥量之间的关系;人体的脂肪含量与年龄之间的关系,等等.5.将n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中,以表示具有相关关系的两个变量的一组数据的图形叫做散点图.6.(1)当两个变量成正相关时,散点图有什么特点?(2)当两个变量成负相关时,散点图又有什么特点?答案:(1)散点图中的点散布在从左下角到右上角的区域.(2)散点图中的点散布在从左上角到右下角的区域.7.对于散点图可以作出如下判断:(1)当所有的样本点都落在某一函数曲线上,变量之间具有函数关系;(2)当所有的样本点都落在某一函数曲线附近,变量之间具有相关关系;(3)当所有的样本点都落在某一直线附近,变量之间具有线性相关关系.8.回归直线是怎样定义的?答案:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.疑难剖析【例1】 下表是某地年降雨量与年平均气温的统计数据,判断两变量有相关关系吗?求回归直线方程有意义吗?思路分析:用回归直线进行拟合两变量关系的一般步骤为: (1)作出散点图,判断散点是否在一条直线附近;(2)如果散点在一条直线附近,以公式求出a, b ,并写出线性回归方程.解:以x 轴为年平均气温,y 轴为年降雨量可得相应的散点图:因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没有必要用回归直线进行拟合,用公式求得的回归方程也是没有意义的.思维启示:要判断两个变量是否具有线性相关关系,可先作出散点图,再观察散点是否在一条直线附近,如果是,则二者具有线性相关关系;否则,二者不具有线性相关关系. 思维陷阱:解此题的第(2)小问时不要盲目地去求回归方程.观察两相关变量得如下数据:求两变量间的回归方程.错解:求线性回归直线方程的步骤: 第一步:列表x i ,y i ,x i y i ; 第二步:计算x ,y,∑=ni ix12,∑=ni iy12,∑=ni ii yx 1;第三步:代入公式计算b, a 的值; 第四步:写出回归直线方程.列表:计算得:x =0, y =0∑=1012i ix=110,∑=1012i iy=310,∑=101i ii yx =110∴b=1010110010110)(101021012101=*-*-=--∑∑==x x yx yx i i i iia=y -b x =0-1*0=0故所求回归直线方程为yˆ=x. 正解:作两个变量的散点图(图略),从散点图中看出,点不在某条直线附近,分散得很开.因此,变量x 和y 不具有线性相关关系,也就不存在线性回归方程.【例2】 某班学生每周用于数学学习的时间x (单位:h )与数学成绩y (单位:分)之间有如下数据:某同学每周用于数学学习的时间为18小时,试预测该生数学成绩. 思路分析:首先应该利用表中数据通过计算去判断数学学习的时间x 与数学成绩y 是否具有线性相关关系.若有,则可求出回归方程;然后在方程中令x=18,可求出该生数学成绩.解:因为学习时间与学习成绩之间具有线性相关关系.利用科学计算器计算到如下表所示的数据:于是可得b=53.34.1544.545)(101021012101≈=--∑∑==x xyx yx i ii iia=y -b x =74.9-3.53×17.4≈13.5 故所求回归直线方程为y=3.53x+13.5当x=18时,yˆ=3.53×18+13.5=77.04≈77 故该同学预计可得77分左右.思维启示:两个有线性相关关系的变量间的关系可以用线性回归方程来表示,而对总体的预测可依据回归直线方程进行.【例3】 一般说,一个人的身高越高,他的手就越大.为了调查这一问题,对10名高三男生的身高与右手一揸长测量得如下数据:(单位:cm )(1)依据上述数据制作散点图,发现两者有何相关关系吗? (2)如果近似成线性关系,求线性回归方程.(3)如果一个学生身高185 cm ,估计他的右手一揸长.思路分析:首先作出散点图;利用散点图去判断两变量是否具有线性关系;若具有线性关系,再利用公式求出方程;最后利用方程去解答第三小问.解:(1)散点图如下:可见,身高与右手一揸长之间的总体趋势成一条直线,即他们线性相关.(2)设线性回归方程为yˆ=bx+a 由上述数据计算可得x =174.8, y =21.7∑=1012i ix=305 730,∑=101i ii yx =37 986∴b=21012101)(1010x xyx yx i ii ii--∑∑===303.08.174107303057.218.17410986372≈⨯-⨯⨯- a=y -b x =-31.264∴方程为yˆ=0.303x-31.264. (3)当x=185时, yˆ=24.79. 思维启示:先作出散点图,若两变量具有线性关系,再利用公式求出方程.拓展迁移【拓展点1】 如果你想作一个反对抽烟的电视公益广告的播放次数与看电视的中学生戒烟率的数据散点图,作为x 轴的变量为__________. 答案:播放次数【拓展点2】 有时候,一些东西吃起来口味越好,对我们的身体越有害,下表给出了不同类型的某种食品的数据.第一列表示此种食品所含热量的百分比,第二列数据表示由一些美食家以百分制给出的对此种食品口味的评价.(1)求出回归直线方程;(2)关于两个变量之间的关系,得出的结论是什么?答案:(1) yˆ=1.565x+37.827 (2)由回归方程知道,食品所含热量越大,口味记录越好,反之亦然.【拓展点3】 某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:(1)作出散点图;(2)如果y与x之间具有线性相关关系,求回归方程;(3)估计尿汞含量为9毫克/升时消光系数.答案:(1)散点图略.(2)由散点图可知y与x线性相关.设回归方程为yˆ=bx+A.计算可得回归方程为yˆ=36.95x-11.3.(3)当x=9时,yˆ=36.95×9-11.3=321.25≈321。

高中数学回归分析精选题

高中数学回归分析精选题

回归分析精选题20道一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-3.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R 依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R 为( )A .0.95B .0.81C .0.74D .0.365.已知四个命题:①在回归分析中,2R 可以用来刻画回归效果,2R 的值越大,模型的拟合效果越好; ②在独立性检验中,随机变量2K 的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212yx =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1; 其中真命题是( )A .①④B .②④C .①②D .②③6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+ D .210xy=7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好 D .若12a a <,则12b b >,B 的拟合效果更好8.下列结论正确的是( )①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32yx =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A .总偏差平方和B .残差平方和C .回归平方和D .相关指数二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A .运用最小二乘法求得的回归直线一定经过样本点的中心(x ,)yB .若相关系数r 的绝对值越接近于1,则相关性越强C .若相关指数2R 的值越接近于0,表示回归模型的拟合效果越好D .在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高 三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是 .15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 .17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 . 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y对x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380 i iix y==∑,521145)iix==∑回归分析精选题20道参考答案与试题解析一.选择题(共12小题)1.设某大学的女生体重y (单位:)k g 与身高x (单位:)cm 具有线性相关关系,根据一组样本数据(i x ,)(1i y i=,2,⋯,)n ,用最小二乘法建立的回归方程为ˆ0.8585.71y x =-,则下列结论中不正确的是()A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,)yC .若该大学某女生身高增加1c m ,则其体重约增加0.85k gD .若该大学某女生身高为170c m ,则可断定其体重必为58.79k g【分析】根据回归方程为ˆ0.8585.71yx =-,0.85>,可知A ,B ,C 均正确,对于D 回归方程只能进行预测,但不可断定. 【解答】解:对于A ,0.85>,所以y 与x 具有正的线性相关关系,故正确;对于B ,回归直线过样本点的中心(x ,)y ,故正确;对于C ,回归方程为ˆ0.8585.71yx =-,∴该大学某女生身高增加1c m ,则其体重约增加0.85k g,故正确;对于D ,170xc m=时,ˆ0.8517085.7158.79y =⨯-=,但这是预测值,不可断定其体重为58.79k g,故不正确故选:D .【点评】本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题. 2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是()A .ˆ10200yx =-+ B .ˆ10200yx =+ C .ˆ10200yx =-- D .ˆ10200yx =-【分析】本题考查的知识点是回归分析的基本概念,根据某商品销售量y (件)与销售价格x(元/件)负相关,故回归系数应为负,再结合实际进行分析,即可得到答案.【解答】解:由x 与y 负相关, 可排除B 、D 两项,而C 项中的ˆ102000yx =--<不符合题意.故选:A .【点评】两个相关变量之间的关系为正相关关系,则他们的回归直线方程中回归系数为正;两个相关变量之间的关系为负相关关系,则他们的回归直线方程中回归系数为负.3.有一散点图如图所示,在5个(,)D后,下列说法正确的是()x y数据中去掉(3,10)A.残差平方和变小B.相关系数r变小C.相关指数2R变小D.解释变量x与预报变量y的相关性变弱【分析】利用散点图分析数据,判断相关系数,相关指数,残差的平方和,的变化情况.【解答】解:从散点图可分析得出:只有D点偏离直线远,去掉D点,变量x与变量y的线性相关性变强,相关系数变大,相关指数变大,残差的平方和变小,故选:A.【点评】本题考查了利用散点图分析数据,判断变量的相关性问题,属于运用图形解决问题的能力,属于容易出错的题目.4.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数2R依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数2R为()A.0.95B.0.81C.0.74D.0.36【分析】根据两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,由此选出选项中的答案.【解答】解:两个变量y与x的回归模型中,它们的相关指数2R越接近于1,这个模型的拟合效果就越好,在所给的四个选项中0.95是相关指数最大的值,∴其拟合效果也最好.故选:A.【点评】本题考查了相关指数,这里不用求相关指数,而是根据所给的相关指数判断模型的拟合效果,解题的关键是理解相关指数越大拟合效果越好.5.已知四个命题:①在回归分析中,2R可以用来刻画回归效果,2R的值越大,模型的拟合效果越好;②在独立性检验中,随机变量2K的值越大,说明两个分类变量有关系的可能性越大;③在回归方程ˆ0.212y x=+中,当解释变量x每增加1个单位时,预报变量ˆy平均增加1个单位;④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;其中真命题是()A.①④B.②④C.①②D.②③【分析】对4个选项分别进行判断,即可得出结论.【解答】解:①相关指数2R是用来刻画回归效果的,2R表示解释变量对预报变量的贡献率,2R越接近于1,表示解释变量和预报变量的线性相关关系越强,越趋近0,关系越弱,故2R的值越大,说明回归模型的拟合效果越好,故①正确.②由2K的计算公式可知,对分类变量X与Y的随机变量2K的观测值k来说,k越小,判断“X与Y有关系”的把握越小,随机变量2K的值越大,说明两个分类变量有关系的可能性越大,故②正确;③在回归直线方程ˆ0.212=+中,当解释变量x每增加一个单位时,预报变量ˆy平均增加y x0.2个单位,故③错误.④两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故④不正确.故选:C.【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.6.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠面积增加值分别为0.2万公顷、0.39万公顷和0.78万公顷,则沙漠面积增加数y (万公顷)关于年数x (年)的函数关系较为接近的是( )A .0.2yx= B .20.10.1y x x=+ C .40.2lo g yx=+D .210xy=【分析】将(1,0.2),(2,0.39),(3,0.78)分别代入0.2y x=,20.10.1yx x=+,40.2lo g yx=+和210xy=中,验证即可.【解答】解:将(1,0.2),(2,0.39),(3,0.78)代入0.2y x=,当3x=时,0.6y=,和0.78相差较大;将(1,0.2),(2,0.39),(3,0.78)代入20.10.1y x x=+,当2x=时,0.6y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入40.2lo g y x=+,当2x=时,0.7y=,和0.39相差较大;将(1,0.2),(2,0.39),(3,0.78)代入210xy =,当1x =时,0.2y =,当2x =时,0.4y =,与0.39相差0.01, 当3x=时,0.8y=,和0.78相差0.02;综合以上分析,选用函数关系210xy =较为近似.故选:D .【点评】本题考查了函数模型的应用问题,也考查了运算求解能力,是基础题.7.对于给定的样本点所建立的模型A 和模型B ,它们的残差平方和分别是212,,a a R 的值分别为1b ,2b ,下列说法正确的是( )A .若12a a <,则12b b <,A 的拟合效果更好 B .若12a a <,则12b b <,B 的拟合效果更好 C .若12a a <,则12b b >,A 的拟合效果更好D .若12a a <,则12b b >,B 的拟合效果更好【分析】比较两个模型的拟合效果时,如果模型残差平方和越小,则相应的相关指数2R 越大,该模型拟合的效果越好,即可得出结论.【解答】解:比较两个模型的拟合效果时,如果模型残差平方和越小, 则相应的相关指数2R 越大,该模型拟合的效果越好. 故选:C .【点评】本题是基础题.考查残差平方和、相关指数. 8.下列结论正确的是()①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①②B .①②③C .①②④D .①②③④【分析】本题是一个对概念进行考查的内容,根据相关关系的定义与回归分析的统计意义进行判断.【解答】解:①函数关系是一种确定性关系,这是一个正确的结论. ②相关关系是一种非确定性关系,是一个正确的结论.③回归分析是对具有相关关系的两个变量进行统计分析的一种方法,所以③不对. 与③对比,依据定义知④是正确的, 故选:C .【点评】本题的考点是相关关系,对本题的正确判断需要对相关概念的熟练掌握. 9.某车间加工零件的数量x 与加工时间y 的统计数据如表:现已求得上表数据的回归方程ˆˆˆy bx a =+中的ˆb 值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A .84分钟B .94分钟C .102分钟D .112分钟【分析】根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a 的值,写出线性回归方程.将100x=代入回归直线方程,得y ,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数. 【解答】解:由表中数据得:20x =,30y=,又ˆb 值为0.9,故300.92012a=-⨯=,0.912y x ∴=+.将100x=代入回归直线方程,得0.910012102y =⨯+=(分钟).∴预测加工100个零件需要102分钟.故选:C .【点评】本题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a 的值,是一个中档题目. 10.两个变量y与x的回归模型中,分别选择了4个不同模型,它们对应的22121()1()ni i i ni i y y Ry y ==-=--∑∑的值如下,其中拟合效果最好的模型是()A .模型1对应的20.48R =B .模型3对应的20.15R =C .模型2对应的20.96R =D .模型4对应的20.30R =【分析】根据回归分析中相关指数2R 越接近于1,拟合效果越好,即可得出答案. 【解答】解:回归分析中,相关指数2R 越接近于1,拟合效果越好; 越接近0,拟合效果越差,由模型2对应的2R 最大,其拟合效果最好. 故选:C .【点评】本题考查了利用相关指数判断模型拟合效果的应用问题,是基础题. 11.对于回归分析,下列说法错误的是( )A .在残差图中,纵坐标表示残差B .若散点图中的一组点全部位于直线ˆ32y x =-+的图象上,则相关系数1r =C .若残差平方和越小,则相关指数2R 越大D .在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 【分析】根据题意,对选项种的命题分析判断正误即可.【解答】解:对于A ,在残差图中,纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重的估计值等,所以A 正确;对于B,散点图中的一组点全部位于直线ˆ32=-+的图象上,则x,y成负相关,且相关y x关系最强,此时相关系数1r=-,所以B错误;对于C,若残差平方和越小,则残差点分布的带状区域的宽度越窄,其相关性越强,相关指数2R越大,所以C正确;对于D,回归分析中,变量间的关系若是非确定关系,即变量间的关系不是函数关系,因变量不能由自变量唯一确定,所以D正确.故选:B.【点评】本题考查了统计知识的概念与应用问题,掌握相关概念的含义是解题的关键,是基础题.12.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是() A.总偏差平方和B.残差平方和C.回归平方和D.相关指数【分析】本题考查的回归分析的基本概念,根据拟合效果好坏的判断方法我们可得,数据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.【解答】解:拟合效果好坏的是由残差的平方和来体现的,而拟合效果即数据点和它在回归直线上相应位置的差异故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.故选:B.【点评】拟合效果好坏的是由残差的平方和来体现的,也可以理解为拟合效果即数据点和它在回归直线上相应位置的差异,故据点和它在回归直线上相应位置的差异是通过残差的平方和来体现的.二.多选题(共1小题)13.下列有关回归分析的结论中,正确的有()A.运用最小二乘法求得的回归直线一定经过样本点的中心(x,)yB.若相关系数r的绝对值越接近于1,则相关性越强C.若相关指数2R的值越接近于0,表示回归模型的拟合效果越好D.在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高【分析】利用回归分析中的相关知识对四个选项逐一分析判断即可.【解答】解:对于A,回归方程必定经过样本中心(x,)y,故选项A正确;对于B,由相关系数的意义可知,相关系数r的绝对值越接近于1,则相关性越强,故选项B正确;对于C ,若相关指数2R 的值越接近于1,表示回归模型的拟合效果越好,故选项C 错误; 对于D ,在残差图中,残差点分布的带状区域的宽度越窄,说明模型拟合的精度越高,故选项D 正确. 故选:A B D .【点评】本题考查了回归分析的理解,主要考查了回归方程的性质,相关系数的意义等,属于基础题.三.填空题(共4小题)14.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如表:假设得到的关于x 和y 之间的回归直线方程是ˆˆˆy bx a =+,那么该直线必过的定点是13(2,8).【分析】根据回归方程必过点(,)x y ,计算出,x y 即可求得答案. 【解答】解:35289121362x+++++==,4639121486y+++++==,回归方程必过点(,)x y ,∴该直线必过的定点是13(2,8).故答案为:13(2,8).【点评】本题考查了回归方程,线性回归方程必过样本中心点(,)x y ,这是线性回归中最常考的知识点,希望大家熟练掌握.属于基础题.15.对具有线性相关关系的变量x ,y ,测得一组数据如表:根据上表,利用最小二乘法得它们的回归直线方程为ˆˆ10.5y x a=+,据此模型预测,当10x=时,y 的估计值是 106.5【分析】根据表中数据计算x 、y ,代入回归直线方程求得ˆa的值, 写出回归直线方程,利用方程求出10x =时ˆy的值即可. 【解答】解:根据表中数据,计算1(24568)55x=⨯++++=,1(2040607080)545y =⨯++++=,代入回归直线方程ˆˆ10.5y x a=+中,求得ˆ5410.55 1.5a =-⨯=,∴回归直线方程为ˆ10.5 1.5yx =+,据此模型预测,10x=时,ˆ10.510 1.5106.5y=⨯+=,即y 的估计值是106.5. 故答案为:106.5.【点评】本题考查了线性回归方程的应用问题,是基础题. 16.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程ˆ 2.10.85y x =+,则m 的值为 0.5 .【分析】首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出m 的值. 【解答】解:0123342x +++==,3 5.5715.544m m y++++==,∴这组数据的样本中心点是3(2,15.5)4m +, 关于y 与x 的线性回归方程ˆ 2.10.85y x =+,∴15.532.10.8542m +=⨯+,解得0.5m =,m∴的值为0.5.故答案为:0.5.【点评】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目,并且题目所用的原理不复杂,是一个好题.17.对某城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,若该城市居民人均消费水平为7.5(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为 75%.【分析】根据y 与x 具有线性相关关系,且满足回归方程,和该城市居民人均消费水平为,把消费水平的值代入线性回归方程,可以估计该市的职工均工资水平,做出人均消费额占人均工资收入的百分比. 【解答】解:y与x 具有线性相关关系,满足回归方程0.6 1.5yx =+,该城市居民人均消费水平为7.5y=,∴可以估计该市的职工均工资水平7.50.6 1.5x =+,10x ∴=,∴可以估计该城市人均消费额占人均工资收入的百分比约为7.5100%75%10⨯=,故答案为:75%【点评】本题考查线性回归方程的应用,考查用线性回归方程估计方程中的一个变量,利用线性回归的知识点解决实际问题. 四.解答题(共3小题)18.某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25的概率.(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(参考公式:1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-【分析】(1)用数组(,)m n 表示选出2天的发芽情况,用列举法可得m ,n 的所有取值情况,分析可得m ,n 均不小于25的情况数目,由古典概型公式,计算可得答案;(2)根据所给的数据,先做出x ,y 的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)用数组(,)m n 表示选出2天的发芽情况,m,n 的所有取值情况有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(30,26),共有10个设“m ,n 均不小于25”为事件A ,则包含的基本事件有(25,30),(25,26),(30,26) 所以3()10P A =,故事件A 的概率为310(2)由数据得12,27xy ==,3972x y=,31977i i i x y ==∑,321434i i x ==∑,23432x =由公式,得9779725ˆ4344322b -==-,5ˆ271232a=-⨯=-所以y 关于x 的线性回归方程为5ˆ32yx =-(3)当10x =时,ˆ22y=,|2223|2-<,当8x=时,ˆ17y=,|1716|2-<所以得到的线性回归方程是可靠的.【点评】本题考查回归直线方程的计算与应用,涉及古典概型的计算,是基础题,在计算线性回归方程时计算量较大,注意正确计算.19.随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限x 与所支出的总费用y(万元)有如下的数据资料:(1)在给出的坐标系中做出散点图;(2)求线性回归方程ˆˆˆybx a =+中的ˆa、ˆb ; (3)估计使用年限为10年时,车的使用总费用是多少?(最小二乘法求线性回归方程系数公式1221ˆni i i ni i x y n x yb x n x==-=-∑∑,ˆˆ)ay bx =-.【分析】(1)利用描点法作出散点图;(2)把数据代入公式,利用最小二乘法求回归方程的系数,可得回归直线方程; (3)把10x=代入回归方程得y 值,即为预报变量.【解答】解:(1)散点图如图,由图知y 与x 间有线性相关关系.(2)4x=,5y=,52190i i x ==∑,51112.3i i i x y ==∑,∴112.354512.3ˆ 1.239054210a-⨯⨯===-⨯;ˆˆ5 1.2340.08a y b x =-=-⨯=.(3)线性回归直线方程是ˆ 1.230.08y x =+,当10x=(年)时,ˆ 1.23100.0812.38y=⨯+=(万元),即估计使用10年时,支出总费用是12.38万元.【点评】本题考查了线性回归直线方程的求法及利用回归方程估计预报变量,解答此类问题的关键是利用公式求回归方程的系数,计算要细心.20.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:(1)画散点图;(2)如果y 对x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:511380i i i x y ==∑,521145)i i x ==∑【分析】(1)根据表格数据,可得散点图;(2)先求出横标和纵标的平均数,代入求系数b 的公式,利用最小二乘法得到系数,再根据公式求出a 的值,写出线性回归方程,得到结果.(3)允许每小时的产品中有缺点的零件最多为89个,即线性回归方程的预报值不大于89,写出不等式,解关于x 的一次不等式,得到要求的机器允许的转数. 【解答】解:(1)散点图如图;(2)5x =,50y=,511380i i i x y ==∑,521145i i x ==∑∴13805550ˆ 6.5145555b-⨯⨯==-⨯⨯,ˆˆ17.5ay b x =-=∴回归直线方程为:ˆ 6.517.5yx =+;(3)由89y …得6.517.589x+…,解得11x …∴机器的运转速度应控制11转/秒内【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.。

高中数学选择性必修三 精讲精炼 8 一元线性回归模型及其应用(精练)(含答案)

高中数学选择性必修三 精讲精炼 8  一元线性回归模型及其应用(精练)(含答案)

8.2 一元线性回归模型及其应用(精练)【题组一 样本中心求参数】1.(2021·全国·高二单元测试)某公司生产某种婴幼儿纸尿裤的产量x 与相应的生产能耗y 有如下样本数据:已知这组样本数据具有线性相关关系,由表中数据,求得回归直线的斜率为0.72,则这组样本数据的回归直线方程是( )A .ˆ0.72 2.05yx =+ B .ˆ0.720.35yx =+ C .ˆ0.720.26yx =+ D .ˆ0.350.72yx =+ 【答案】C【解析】设回归直线方程为ˆˆ0.72yx a =+,由样本数据,可得 4.5x =, 3.5y =, 因为回归直线经过点(),x y ,所以ˆ3.50.72 4.5a=⨯+,解得ˆ0.26a =, 所以回归直线方程为ˆ0.720.26yx =+. 故选:C .2.(2021·江西·吉安一中高二开学考试 )已知x 与y 之间的一组数据:()()()()13253749,,,,,,,,则y 与x 的线性回归方程为y bx a =+必过( )A .()26,B .()38,C .()2.56,D .()3.58,【答案】C【解析】由题意可知:1234 2.54x +++==,357964y +++==, ∴y 与x 的线性回归方程必过点()2.5,6.故选:C.3(2021·河南·孟津县第一高级中学 )为了庆祝建党100周年,某网站从7月1日开始推出党史类书籍免费下载活动,已知活动推出时间x (单位:天)与累计下载量y (单位:万次)的统计数据如表所示:根据上表,利用最小二乘法得到回归直线方程 1.4ˆˆyx a =+,据此模型预测,活动推出11天的累计下载量约A .13.8万次B .14.6万次C .16万次D .18万次【答案】C【解析】由表格数据知4567868910126,955x y ++++++++====,由回归直线方程的性质,得ˆ1.469a⨯+=,所以ˆ0.6a =,故ˆ 1.40.6y x =+, 所以当11x =时, 1.4110.616y =⨯+=(万次), 故选:C.4.(2021·河北·藁城新冀明中学高二月考)(多选)随着养生观念的深入,国民对餐饮卫生条件和健康营养的要求逐渐提高.据了解,烧烤食品含有强致癌物,因此吃烧烤的人数日益减少,烧烤店也随之减少.某市对2014年至2018年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的回归直线方程为273y bt =+,则下列说法正确的是( ) A .该市2014年至2018年全市烧烤店盈利店铺个数的平均数219y = B .y 关于t 的回归直线方程为18273y t =-+ C .估计该市2020年烧烤店盈利店铺的个数为147D .预测从2025年起,该市烧烤店盈利店铺的个数将不超过100 【答案】ABC【解析】由已知数据得3t =,219y =,故A 正确;因为y 关于t 的回归直线过点()3,219,所以2193273b =+,所以18b =-, 所以y 关于t 的回归直线方程为18273y t =-+.故B 正确;2020年的年份代码为7,故2020年该市烧烤店盈利店铺的个数约为187273147y =-⨯+=.故C 正确; 令18273100t -+≤,由*t N ∈,得10t ≥,故从2023年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选:ABC.5.(2021·广东惠州 )(多选)某种产品的价格x (单位:元/kg )与需求量y (单位:kg )之间的对应数据如根据表中的数据可得回归直线方程为14.4y bx =+,则以下结论正确的是( ) A .y 与x 正相关 B .y 与x 负相关C .样本中心为()20,8D .该产品价格为35元/kg 时,日需求量大约为3.4kg【答案】BC【解析】由表格数据,随着价格x 的增加,需求量y 随之减少,所以y 与x 负相关. 因为1015202530205x ++++==,111086585y ++++==,故样本中心为()20,8由回归直线14.4y bx =+必过样本点的中心()20,8, 所以有82014.4b =⨯+,解得0.32b =-,所以当35x =时,0.323514.4 3.2y =-⨯+=,日需求量不为最大 故选:BC6.(2021·重庆市秀山高级中学校 )(多选)已知变量x ,y 之间的线性回归方程为0.710.3y x =-+,且变量x ,y 之间的一组相关数据如表所示,则下列说法正确的是( )A .变量x ,y 之间呈负相关关系B .可以预测,当20x 时, 3.7y =-C .4m =D .该回归直线必过点()9,4 【答案】ABD【解析】对于A :由线性回归方程为0.710.3y x =-+可知:0.70-<,所以变量x ,y 之间呈负相关关系,故对于B :当20x 时,0.72010.3 3.7y =-⨯+=-,故选项B 正确;对于C :68101294x +++==,6321144m m y ++++==,因为回归直线过样本中心点,所以110.7910.34m+=-⨯+,解得:5m =,故选项C 不正确; 对于D :由C 可知5m =,所以11544y +==,所以该回归直线必过样本中心点()9,4,故选项D 正确; 故选:ABD.7.(2021·贵州·贵阳一中 )某产品的广告费用x 与销售额y 的统计数据如下表:根据上表已得回归方程为8.6.8ˆ5yx =-,表中一数据模糊不清,请推算该数据的值为___________. 【答案】12【解析】由题中数据可得3,8.63 5.820x y ==⨯-=,故空白数据为12. 故答案为:128.(2021·全国·高二课时练习)已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且回归直线方程为ˆ0.95 2.6yx =+,那么表格中的数据m 的值为______.【答案】6.7 【解析】013424x +++==, 2.2 4.3 4.811.344m m y ++++==, 把(),x y 的坐标代入回归直线方程得11.30.952 2.64m+=⨯+, 解得 6.7m =. 故答案为:6.79.(2021·全国·高二课时练习)蟋蟀鸣叫的频率P (每分钟鸣叫的次数)与气温T (单位:℃)有着很大的关系.某观测人员根据下表中的观测数据计算出P 关于T 的线性回归方程ˆ 5.2168PT =-,则下表中k 的值为______.【答案】51【解析】计算()138414239404T =⨯+++=,()110929443644k P k +=⨯+++=, 将点10940,4k +⎛⎫ ⎪⎝⎭的坐标代入P 与T 的线性回归方程ˆ 5.2168P T =-中,得109 5.2401684k +=⨯-, 解得51k =. 故答案为:51.10.(2021·福建宁德·高三期中)某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本,进行5次试验,收集到的数据如表:由最小二乘法得到回归方程ˆ0.6754.9yx =+,则a =___________. 【答案】75 【解析】1020304050305x ++++==,62688189600.25a y a ++++==+,因为线性回归方程过样本中心点,所以600.20.673054.975a a +=⨯+⇒=,故答案为:75 【题组二 线性回归方程】1.(2021·河北·藁城新冀明中学高二月考)假定产品产量x (千件)与单位成本y (元/件)之间存在相关关系.数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归直线方程,对于单位成本70元/件时,预报产量为多少; (3)计算各组残差,并计算残差平方和;【答案】(1)散点图见解析;(2)ˆ 1.8277.37yx =-+,4.050千件;(3)各组残差见解析,残差平方和为3.8182. 【解析】(1)解:散点图如下:(2)解:因为2343453.56x +++++==,737271736968716y +++++==,61279ii x==∑,611481i ii x y==∑,所以6162221614816 3.571ˆ 1.82796 3.56i i i i ix yx ybx x==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ71 1.82 3.577.37ay bx =-=+⨯=, 所以回归直线方程为ˆ 1.8277.37yx =-+,令70y =,则70 1.8277.37x =-+,解得 4.050x ≈, 所以单位成本70元/件时,预报产量约为4.050千件. (3)解:各组残差分别为:()11173 1.822ˆ77.370.73ˆey y =--⨯+=-=-, ()22272 1.82377.370.0ˆˆ9ey y =--⨯+==-, ()33371 1.82477.370.9ˆˆ1ey y =--⨯+==-, ()44473 1.82377.37 1.0ˆˆ9ey y =--⨯+==-, ()55569 1.824ˆ77.37 1.09ˆey y =--⨯+=-=-, ()66668 1.825ˆ77.370.27ˆey y =--⨯+=-=-, 残差的平方和为()()()2222621220.730.090.91 1.09 1.090.27 3.2ˆ818i i i y y=--+++--==++∑. 2.(2021·甘肃张掖)某家庭2015~2019年的年收入和年支出情况统计如表:(1)已知y 与x 具有线性相关关系,求y 关于x 的线性回归方程(系数精确到0.01);(2)假设受新冠肺炎疫情影响,该家庭2021年的年收入为9.5万元,请根据(1)中的线性回归方程预测该家庭2021年的年支出金额.附:回归方程ˆˆˆybx a =+中的斜率的最小二乘估计公式为()()()1122211ˆnni iiii i nniii i x ynx y xxy y b xnxxx====---==--∑∑∑∑.【答案】(1)ˆ0.780.24yx =+;(2)7.65万元. 【解析】(1)依题意,1(99.61010.411)105x =++++=,1(7.37.588.58.7)85y =++++=,则()5212.32i i x x=-=∑,()()511.8i ii x xy y =--=∑,则有()()()125151.8ˆ0.782.32iii ii x x y y bx x ==--==≈-∑∑,则ˆˆ0.24a y bx =-≈, 所以y 关于x 的线性回归方程为ˆ0.780.24yx =+; (2)当2021年的年收入为9.5万元时,即9.5x =,ˆ0.789.50.247.65y=⨯+=, 所以预测该家庭2021年的年支出金额为7.65万元.3.(2021·云南师大附中)大气污染物PM 2.5的浓度超过一定的限度会影响人的健康.为了研究PM 2.5的浓度是否受到汽车流量的影响,研究人员选择了24个社会经济发展水平相近的城市,在每个城市选择一个交通点统计24小时内过往的汽车流量x (单位:千辆),同时在低空相同的高度测定该时间段空气中的PM 2.5的平均浓度y(单位:μg/m 3),制作了如图所示的散点图:(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.01); (2)建立y 关于x 的回归方程;(3)我国规定空气中的PM 2.5浓度的安全标准为24小时平均依度75μg/m 3,某城市为使24小时的PM 2.5浓度的平均值在60~130μg/m 3,根据上述回归方程预测汽车的24小时流量应该控制在什么范围内?附:参考数据: 1.4x =,95y =,2421() 2.1i i x x =-=∑,2421()60343i i y y =-=∑,241()()294i i i x x y y =--=∑,357.参考公式:相关系数()()nii xx y y r --∑,回归方程ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)答案见解析;(2)140101y x =-;(3)24小时的车流量应该控制在1150~1650辆. 【解析】1)由题得2940.82357r =≈, 因为y 与x 的相关系数近似为0.82,说明y 与x 具有很强的相关性, 从而可以用线性回归模型拟合y 与x 的关系.(2)由95y =得2412421()()ˆ()iii ii x x y y bx x ==--=-∑∑2941402.1==,95140 1.4101a y bx =-=-⨯=-, 所以y 关于x 的回归方程为140101y x =-. (3)当60y =时,由14010160x -=得 1.15x =; 当130y =时,由140101130x -=得 1.65x =. 所以24小时的车流量应该控制在1150~1650辆.4.(2021·全国·高三专题练习)实施新规后,某商场2020年1月份至10月份的收入情况如表.并计算得101890i i i x y ==∑,1021385i i x ==∑,101150i i y ==∑75.99.(1)是否可用线性回归模型拟合y 与x 的关系?请用相关系数r 加以说明;(当0.751r ≤≤时,那么变量x ,y 有较强的线性相关关系)(2)建立y 关于x 的回归方程ˆˆˆybx a =+(结果保留1位小数),并预测该商场12月份的收入情况.(结果保留整数)附:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)y 与x 有较强的线性相关关系,可用线性回归模型拟合,说明答案见解析;(2)ˆ0.810.7yx =+,预测该商场12月份的收入为20万元.【解析】(1)由题中数据得1011155 5.51010i i x x ===⨯=∑,10111150151010i i y y ===⨯=∑,1010 5.515825x y =⨯⨯=,于是得1010111()()1089082565i i i i i x x y y x y y x ==--=-=-=∑∑,75.99,从而10()()650.8675.99iix x y y r --==≈∑,0.75||1r ≤≤, 所以y 与x 有较强的线性相关关系,可用线性回归模型拟合;(2)由(1)知1011065i i i x y x y =-=∑,而1021385i i x ==∑,221010 5.5302.5x =⨯=,从而得10122110106565ˆ0.8385302.582.510i ii i i x y ybx xx ==-===≈--∑∑,65ˆˆ15 5.510.782.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ0.810.7yx =+,当12x =时,ˆ0.81210.720y =⨯+≈, 从而预测该商场12月份的收入为20万元.5(2021·河南许昌 )某新型外贸出口公司对2021年过去9个月的出口销售数据进行整理,得到了今年第x 个月份与截止该月底的销售额y (单位:万元)之间的关系,如下表:(1)若y 与x 满足线性关系,求出y 关于x 的回归方程;(ˆa,ˆb 精确到整数位) (2)预测该公司10月份的销售额附:参考数据:913087i i y ==∑;9117524i i i x y ==∑;921285i i x ==∑;参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ35169yx =+;(2)答案见解析. 【解析】(1)5x =,343y =,919175249534317524154352089i i i x y xy =∴-=-⨯⨯=-=∑92221952859560ii x=-⨯=-⨯=∑,2089ˆ3560b ∴=≈, 2089ˆ343516960a=-⨯≈, ˆ35169yx ∴=+ (2)当10x =时,ˆ3510169519y=⨯+=, 所以预测该公司10月份销售额为519万元.6.(2021·福建·莆田第二十五中学高三月考)2021年东京奥运会,中国举重选手8人参赛,7金1银,在全世界面前展现了真正的中国力量;举重比赛根据体重进行分级,某次举重比赛中,男子举重按运动员体重分为下列十级:每个级别的比赛分为抓举与挺举两个部分,最后综合两部分的成绩得出总成绩,所举重量最大者获胜,在该次举重比赛中,获得金牌的运动员的体重以及举重成绩如下表 (1)根据表中的数据,求出运动员举重成绩y 与运动员的体重x 的回归直线方程(保留1位小数); (2)某金牌运动员抓举成绩为170公斤,挺举成绩为204公斤,则该运动员最有可能是参加的哪个级别的举重?参考数据:()()()992112620,7076i i i i i x x x x y y ==-=--=∑∑;参考公式:()()()121ˆˆˆ,niii nii x x yy bay bx xx ==--==--∑∑. 【答案】(1) 2.7155.4y x =+;(2)83公斤级举重. 【解析】(1)依题意,5459647076839199106789x ++++++++==,2913043373533633894064214303669y ++++++++==,()()()1217076ˆ 2.702620nii i nii xx y y bxx ==--===-∑∑, 则366 2.778155.4a y bx =-=-⨯=, 故回归方程为: 2.7155.4y x =+.(2)该运动员的抓举和挺举的总成绩为374公斤,根据回归方程可知:374 2.7155.4x =+, 解得81x ≈,即该运动员的体重应该在81公斤左右,即参加的应该是83公斤级举重.7.(2021·西藏·拉萨中学高二月考)珠海国际赛车场(简称ZIC)位于珠海经济特区金鼎镇.创建于1996年,是中国国内第一座符合国际汽车联盟一级方程式标准的国际级赛车场.目前该赛事已打造成集赛车竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年参会人数(万人)与所需环保车辆数量(辆),得到如下统计表:(1)根据统计表所给5组数据,求出关于,x y 的线性回归方程ˆˆy bxa =+. (2)已知租用的环保车平均每辆的使用成本费用C (元)与数量(辆)的关系为3000200035,N 2900t t 35,N t t t C t +<<∈⎧=⎨≥∈⎩,主办方根据实际参会人数投入所需环保车,租车每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次赛车会大约有14万人参加,根据(1)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少? (注:利润L =主办方支付费用-使用成本费用C ).参考公式:()()()1122211ˆ,ˆˆn niii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ 【答案】(1) 2.32y x =+;(2)为确保完成任务,需要租用35辆环保车,获得的利润108500元. 【解析】(1)11981012105x ++++==2823202529255y ++++== ()()()()()()()()()22222131******** 2.310111091081010101210ˆb ⨯+-⨯-+-⨯-++⨯===-+-+-+-+- ˆˆ2ay bx =-= 关于,x y 的线性回归方程 2.32y x =+ (2)将14x =代入 2.32y x =+得34.2y =为确保完成任务,需要租用35辆环保车, 所以290035101500C =⨯=获得的利润600035101500108500L =⨯-=元8.(2021·江西·新余市第一中学高二月考)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 中至少有一个数小于25”的概率;(2)请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程y bx a =+.(参考公式:回归直线方程为y bx a =+,其中()1221ni ii nii x y nxyb xn x==-=-∑∑,a y bx =-)【答案】(1)710(2)532y x =-【解析】(1)从3月1日至3月5日中任选2天,m ,n 构成的基本事件(m ,n )有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共有10个.记“m ,n 至少有一个数小于25”为事件A ,包括:(23,25),(23,30),(23,26),(23,16),(25,16),30,16),(26,16),共有7个基本事件 由古典概型概率公式:7()10P A = (2)11131225302612,27,33x y ++++==== 22221125133012263122751113123122b ⨯+⨯+⨯-⨯⨯==++-⨯. 于是,5271232a =-⨯=-故所求线性回归方程为532y x =- 9.(2021·全国·高二单元测试)某地区2013年至2019年居民纯收入y (单位:千元)的部分数据如表所示:2018和2019年的居民纯收入y (单位:千元)数据采用随机抽样的方式获得,用样本的均值来代替当年的居民人均纯收入,其数据如下:2018年抽取的居民纯收入(单位:千元)数据:5.2 4.8 6.5 5.6 6.0 7.1 6.1 7.3 5.9 7.5 2019年抽取的居民纯收入(单位:千元)数据:6.2 7.8 6.6 5.8 7.1 6.8 7.2 7.9 5.9 7.7 (1)求y 关于t 的线性回归方程;(2)当地政府为了提高居民收入水平,现从2018和2019年居民纯收入(单位:千元)高于7.0千元的样本中随机选择3人进行座谈,了解其工作行业及主要收入来源.设X 为选出的3人中2018年纯收入高于7.0千元的人数,求随机变量X 的分布列和数学期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:121()()()niii nii t t y y b tt ==--=-∑∑,a y bt =-.【答案】(1)ˆ0.5 3.3yt =+;(2)分布列见解析;期望为98. 【解析】(1)根据2018年的抽样数据可得2018年的人均纯收入为1(5.2 4.8 6.5 5.6 6.07.1 6.17.3 5.97.5) 6.210+++++++++= 千元,根据2019年的抽样数据可得2019年的人均纯收入为1(6.27.8 6.6 5.87.1 6.87.27.9 5.97.75) 6.910+++++++++=千元,由所给的数据得1(1234567)47t =++++++=,1(3.9 4.3 4.6 5.4 5.8 6.2 6.9) 5.37y =++++++=, ∴721()941014928i i t t =-=++++++=∑,71()()(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.614ii i tt y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,∴71721()()14ˆ0.528()ii i ii tt y y btt ==--===-∑∑, 则ˆˆ 5.30.54 3.3ay bt =-=-⨯=, 则所求y 关于t 的线性回归方程为ˆ0.5 3.3yt =+; (2)由2018年和2019年的抽样数据可知,2018年居民纯收入高于7.0千元的有3人,2019年居民纯收入高于7.0千元的有5人,由题意可得,随机变量X 的可能取值为0,1,2,3,则35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(1)56C P X C ===,∴随机变量X 的分布列为则X 的分布列为:则5151519()0123282856568E X =⨯+⨯+⨯+⨯= 【题组三 非线性回归方程】1.(2021·福建·泉州科技中学 )数独是源自18世纪瑞士的一种数学游戏,玩家需要根据99⨯盘面上的已知数字,推理出所有剩余空格的数字,并满足每一行、每一列、每一个粗线宫(33⨯)内的数字均含1﹣9,不重复.数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛.(1)赛前小明在某数独APP 上进行一段时间的训练,每天的解题平均速度y (秒)与训练天数x (天)有关,经统计得到如表的数据:现用by a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过100天训练后,每天解题的平均速度y约为多少秒?(2)小明和小红在数独APP 上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为34,已知在前3局中小明胜2局,小红胜1局.若不存在平局,请你估计小明最终赢得比赛的概率.参考数据(其中1i t x =)参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-⋅.【答案】(1)1000130y x=+,经过100天训练后,每天解题的平均速度y 约为140秒;(2)243256.【解析】(1)由题意,1(990990450320300240210)5007y =++++++=,令1t x=,设y 关于t 的线性回归方程为y bt a =+,则 717221184570.3750010000.5577i ii i i t y t yb t t==-⨯-⨯-===⋅∑∑,则50010000.37130a =-⨯=. ∴1000130y t =+,又1t x=,∴y 关于x 的回归方程为1000130y x=+, 故100x =时,140y =.∴经过100天训练后,每天解题的平均速度y 约为140秒.(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜, 由题意知,最多再进行4局就有胜负.当2X =时,小明4:1胜,∴339(2)4416P X ==⨯=;当3X =时,小明4:2胜,∴123339(3)144432P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭;当4X =时,小明4:3胜,∴21333327(4)1444256P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭.∴小明最终赢得比赛的概率为99272431632256256++=. 2.(2021·云南大理 )2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F 遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A 型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A 型材料更好地投入商用,拟对A 型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x (亿元)与产品的直接收益y (亿元)的数据统计如下:当017x <≤时,建立了y 与x 的两个回归模型:模型①: 4.1109ˆ.y x =+,模型②:ˆ14.4y =;当17x >时,确定y 与x 满足的线性回归方程为ˆˆ0.7yx a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①,②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对A 型材料进行应用改造的投入为17亿元时的直接收益;(2)为鼓励科技创新,当应用改造的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,根据(1)中选择的拟合精度更高更可靠的模型,比较投入17亿元与20亿元时公司收益(直接收益+国家补贴)的大小.附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑,且当2R 越大时,4.1≈.用最小二乘法求线性回归方程ˆˆˆybx a =+的截距:ˆˆa y bx =-. 【答案】(1)模型②拟合精度更高、更可靠,72.93亿;(2)投入17亿元比投入20亿元时收益小. 【解析】(1)对于模型①, 对应的15222740485460=387y ++++++=,故对应的()12222111271750i i i i y y y y ==-=-=∑∑,故对应的相关指数2179.1310.9551750R =-≈, 对于模型②,同理对应的相关指数2220.210.9881750R =-≈, 故模型②拟合精度更高、更可靠.故对A 型材料进行应用改造的投入为17亿元时的直接收益为ˆ14.472.93=≈y. (2)当17x >时, 后五组的2122232425235x ++++==,68.56867.5+66+65675y ++==,由最小二乘法可得()ˆ670.72383.1a=--⨯=, 故当投入20亿元时公司收益(直接收益+国家补贴)的大小为:0.72083.1+574.172.93-⨯+=>,故投入17亿元比投入20亿元时收益小.3.(2021·全国·高二单元测试)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产的产品数量x (千件)有关,经统计得到如下数据:根据以上数据,绘制了如下散点图.参考数据:(其中1iu x =) (1)观察散点图判断,by a x=+与y c dx =+哪一个适宜作为非原料成本y 与生产的产品数量x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)试预测生产该产品10千件时,每件产品的非原料成本为多少元? 【答案】(1)b y a x =+;(2)100ˆ11y x=+;(3)21元.【解析】(1)由题意,根据题设中的散点图,可得这些点分布在b y a x =+的两侧,所以选择函数by a x=+作为非原料成本y 与生产的产品数量x 的回归方程类型. (2)令1u x =,则by a x=+可转化为y a bu =+,则y 与u 的关系可看成线性相关关系. 因为360458y ==,所以8182218183.480.344561ˆ1001.5380.1150.618i ii ii u yu y b uu==-⋅-⨯⨯====-⨯-∑∑,则ˆˆ451000.3411a y bu =-=-⨯=,所以ˆ11100y u =+,代入1u x =,得100ˆ11y x=+.(3)当10x =时,100ˆ112110y=+=,所以预测生产该产品10千件时,每件产品的非原料成本为21元. 4.(2021·全国·高三课时练习)某芯片公司为制订下一年的研发投入计划,需了解年研发资金投入量x (单位:亿元)对年销售额y (单位:亿元)的影响,该公司对历史数据进行对比分析,建立了两个函数模型:①2y x αβ=+,②e x t y λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.现该公司对收集的近12年的年研发资金投入量i x 和年销售额i y (1,2,,12i =⋅⋅⋅)的数据作了初步处理,令2u x =,ln v y =,经计算得到如下数据:(1)设u 和y 的样本相关系数为1r ,x 和v 的样本相关系数为2r ,请从样本相关系数(精确到0.01)的角度判断,哪个模型拟合效果更好;(2)(i)根据(1)的选择及表中数据,建立y 关于x 的非线性经验回归方程;(ii)若下一年销售额y 需达到90亿元,预测下一年的研发资金投入量x 约为多少亿元? 参考数据为308477=⨯9.4868, 4.4998e 90≈.【答案】(1)模型e x t y λ+=的拟合效果更好;(2)(i)0.018 3.84ˆe x y+=;(ii)36.66亿元. 【解析】(1)()()121215000.8625000iiu u y y r --====∑,()()12214100.91770.211iix x v v r --====≈⨯∑,因为12r r <,所以从样本相关系数的角度判断,模型e x t y λ+=的拟合效果更好. (2)(i)先建立v 关于x 的经验回归方程. 由e x t y λ+=,得ln y x t λ=+,即v λx t =+.()()()121122114ˆ0.018770iii ii x x v v x x λ==--==≈-∑∑, ˆˆ 4.20.01820 3.84tv x λ=-=-⨯=, 所以v 关于x 的经验回归方程为0.01838ˆ.4vx +=, 所以0.0134ˆln 8.8x y=+,即0.018 3.84ˆe x y +=.(ii)若下一年销售额y 需达到90亿元,则由0.018 3.84ˆe x y+=,得0.018 3.8490e x +=, 又 4.4998e 90≈,所以4.49980.018 3.84x ≈+, 所以 4.4998 3.8436.660.018x -≈≈,所以预测下一年的研发资金投入量约为36.66亿元.5.(2021·全国·高二课时练习)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D (单位:dB )与声音能量I (单位:2W cm -⋅)之间的关系,将测量得到的声音强度D 和声音能量I 的数据作了初步处理,得到如图所示的散点图:参考数据:111.0410I -⨯=,45.7D =,11.5W =-,()1022111.5610i i I I-=-=⨯∑,()10210.51i i W W=-=∑,()()101116.8810iii IID D -=--=⨯∑,()()1015.1i i i W W D D =-⋅-=∑,其中lg i i W I =,101110i i W W ==∑.(1)根据散点图判断,11D a b I =+与22lg D a b I =+哪一个适宜作为声音强度D 关于声音能量I 的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D 关于声音能量I 的非线性经验回归方程.(3)假定当声音强度大于60dB 时,会产生噪声污染.城市中某点P 处共受到两个声源的影响,这两个声源的声音能量分别是a I 和b I ,且101410a bI I +=.已知点P 处的声音能量等于a I 与b I 之和.请根据(2)中的非线性经验回归方程,判断点P 处是否受到噪声污染,并说明理由.【答案】(1)22lg D a b I =+更适合;(2)ˆ10lg 160.7DI =+;(3)P 会受到噪声污染,理由见解析. 【解析】(1)22lg D a b I =+更适合. (2)设ˆˆD bW a =+,则 ∵()()()10110215.1ˆ100.51iii i i W W D D bW W==--===-∑∑, ∴ˆˆ160.7a D bW=-=, ∴D 关于W 的经验回归方程是ˆ10160.7DW =+,则D 关于I 的非线性经验回归方程是ˆ10lg 160.7DI =+. (3)设点P 处的声音能量为1I ,则1a b I I I =+. ∵101410a bI I +=, ∴()101010141410105910b a a b a b a b a b I I I I I I I I I I I ---=+=++=++≥⎛⎫⎛⎫ ⎪⎝⨯ ⎪⎝⎭⎭(当且仅当10310a I =,93510bI =⨯时等号成立) 根据(2)中非线性经验回归方程,知点P 处的声音强度D 的预报值的最小值,()10min 10lg 910160.710lg960.760D -=⨯+=+>,∴点P 会受到噪声污染.6.(2021·福建·福州三中高二期中)某地从2月20日开始的连续7天的某传染病累计确诊人数如下表:由上述表格得到如下散点图.(1)根据散点图判断lg =+y a b x 与x y c d =⋅(,c d 均为大于0的常数)哪一个更适合作为累计确诊人数y 与天数x 的回归方程类型(给出判断即可,不必说明理由),并求出y 关于x 的回归方程;(2)3月20日,该地的疾控中心接受了1000份血液样本,假设每份样本的检验结果是阳性还是阴性是相互独立的,且每份样本是阳性的概率是0.6,试剂把阳性样本检测出阳性结果的概率是0.99(试剂存在阳性样本检测不出来的情况,但不会把阴性样本检测呈阳性样本),求这1000份样本中检测出呈阳性的份数的期望.参考数据:其中11lg ,7i i i i v y v v ===∑参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ⋯,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221,ni i i ni i u v nuvv u unuβαβ==-==--∑∑,v u αβ=-.【答案】(1)0.253.4710x x y c d y =⋅=⨯; (2)594【解析】(1)由散点图可知,x y c d =⋅更适合作为累计确诊人数y 与天数x 的回归方程类型. 把x y c d =⋅两边取对数,得lg lg lg y c x d =+, 令lg v y =,则lg lg v c x d =+,1(1234567)47x =++++++=,7211.54140i i v x ===∑,, 7172221750.1274 1.54lg 0.25140747i i i i i x v xvd x x==--⨯⨯===-⨯-∑∑,所以lg 1.540.2540.54c =-⨯=,则0.540.25v x =+, 所以y 关于x 的回归方程为0.253.4710x y =⨯; (2)设这1000份样本中检测出呈阳性的份数为X , 每份样本检测出阳性的概率为0.60.990.594P =⨯=, 由题意可知,(10000.594)XB ,,所以()10000.594594E X =⨯=份.故这1000份样本中检测出呈阳性的份数的期望为594.7.(2021·山西太原·高二期中(文))为了更好的指导青少年健康饮食,某机构调查了本地区不同身高的未成年男性,得到他们的体重的平均值,并对数据作了初步处理,得到下面的散点图及一些统计量的值.表中ln i i w y =(1)根据散点图判断,可采用x y a b =⋅作为这个地区未成年男性体重y 千克与身高x 厘米的回归方程.利用表中数据建立y 关于x 的回归方程;(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区一名身高为175厘米,体重为78千克的在校男生的体重是否正常? 参考数据:0.020.71751.02,2,1.0231.99e e ===. 参考公式:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆˆˆ,nii i nii uu v v v u uu βαβ==--==--∑∑.【答案】(1)2 1.02x y =⨯;(2)体重偏胖. 【解析】(1)由x y a b =⋅,得ln ln ln y a x b =+⋅, 设ˆˆˆw cx d=+,由表格中数据,得801ˆ0.02400050c ===, ˆ 3.40.021350.7d=-⨯=, 则0.70.02ln 0.7,ln 0.02,2, 1.02a b a e b e ======, 则y 关于x 的回归方程为2 1.02x y =⨯.(2)当175x =时,1752 1.02231.9963.98y =⨯=⨯=,因为63.98 1.276.77678⨯=<,所以该名在校男生的体重偏胖.。

高中数学专题03线性回归方程及其应用分项汇编(含解析)新人教A版必修3(2021年整理)

高中数学专题03线性回归方程及其应用分项汇编(含解析)新人教A版必修3(2021年整理)

2018版高中数学专题03 线性回归方程及其应用分项汇编(含解析)新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学专题03 线性回归方程及其应用分项汇编(含解析)新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学专题03 线性回归方程及其应用分项汇编(含解析)新人教A版必修3的全部内容。

专题03 线性回归方程及其应用一、选择题1.【北京101中学2016-2017学年下学期高二年级期中考试】一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的回归模型为y=7。

19x+73。

93,用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A. 身高一定是145。

83cmB。

身高在145.83cm以上C. 身高在145。

83cm左右D。

身高在145.83cm以下【答案】C【解析】由回归模型可得y=7。

1910x+73.93=145.83,所以预测这个孩子10岁时的身高在145.83cm左右.2.【吉林省辽源市田家炳高级中学2017—2018学年高二下学期3月月考】有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为ˆy=-2。

35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是( )A。

140 B. 143 C. 152 D。

156【答案】B点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报y 的值,这是一些解答题目中经常会出现的一个问题,是一个基础题。

回归分析-高中数学知识点讲解(含答案)

回归分析-高中数学知识点讲解(含答案)

回归分析(北京习题集)(教师版)一.选择题(共2小题)1.(2012秋•西城区期中)下面给出了某池塘中的浮萍蔓延的面积2()y m 与时间t (月)的关系的散点图.以下叙述中不正确的说法是( )A .与函数21y t =+相比,函数2t y =作为近似刻画y 与t 的函数关系的模型更好B .按图中数据显现出的趋势,第5个月时,浮萍的面积就会超过230mC .按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍D .按图中数据显现出的趋势,浮萍从2月的24m 蔓延到216m 至少需要经过3个月2.(2009春•大兴区期末)一位母亲记录了儿子3~9岁的身高(单位:)cm ,由此建立身高与年龄的回归模型为ˆ73.937.19yx =+.则下列说法中正确的是( ) A .身高与年龄是一次函数关系 B .这个模型适合所有3~9岁的孩子C .预测这个孩子10岁时,身高一定在145.83cm 以上D .这个孩子在3~9岁之内,年龄每增加1岁,身高平均增加约7.19cm 二.填空题(共5小题)3.(2013春•房山区校级期中)某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)26394954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4.据此模型可知广告费用每增加1万元,销售额平均增加 万元,当广告费用为6万元时可以预测销售额为 万元.4.(2012•丰台区二模)某地区恩格尔系数(%)y 与年份x 的统计数据如下表:年份x 2004 2005 2006 2007 恩格尔系数(%)y4745.543.541从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为 .5.(2011春•海淀区期中)成年人的身高()y cm 与足长(脚趾到脚跟的长度)()x cm 有很强的线性相关性.有关部门研究获得y 与x 的线性回归方程为ˆ 6.8yx =,如果某人留下的足印长为25cm ,根据上面回归方程可推测此人的身高为 cm .6.(2009春•北京校级期末)许多因素都会影响贫穷,教育也许是其中之一,在研究这两个因素的关系时收集了美国 50个州的成年人受过9年或更少教育的百分比( x )和收入低于官方规定的贫困线的人数占本州人数的百分比( y )的数据,建立的回归直线方程为ˆ0.8 4.6yx =+,斜率的估计等于0.8说明 . 7.(2008秋•通州区期中)回归方程ˆ 1.55yx =-,则当4x =时,y 的估计值为 . 三.解答题(共2小题)8.(2009春•房山区期中)某产品的广告费支出x (单位:百万元)与销售额y (单位:百万元)之间有如下数据:(1)画出散点图.(2)求y 关于x 的回归直线方程.(3)预测广告费为9百万元时的销售额是多少?9.(2009春•东城区校级月考)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据: (Ⅰ)画出表中数据的散点图;(Ⅱ)求出y 对x 的回归直线方程ˆybx a =+,其中1122211()()().nni i i ii i nni ii i x x y y x ynxy b x x xnx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑(Ⅲ)若广告费为9万元,则销售收入约为多少万元?回归分析(北京习题集)(教师版)参考答案与试题解析一.选择题(共2小题)1.(2012秋•西城区期中)下面给出了某池塘中的浮萍蔓延的面积2()y m 与时间t (月)的关系的散点图.以下叙述中不正确的说法是( )A .与函数21y t =+相比,函数2t y =作为近似刻画y 与t 的函数关系的模型更好B .按图中数据显现出的趋势,第5个月时,浮萍的面积就会超过230mC .按图中数据显现出的趋势,浮萍每个月增加的面积约是上个月增加面积的两倍D .按图中数据显现出的趋势,浮萍从2月的24m 蔓延到216m 至少需要经过3个月【分析】本题考查的是函数模型的选择和应用问题.在解答时,首先应该仔细观察图形,结合图形读出过的定点进而确定函数解析式,结合所给月份计算函数值从而获得相应浮萍的面积进而对问题作出判断,至于第D 要充分结合对数运算的运算法则进行计算验证.【解答】解:1t =时,2122t y t =+==,2t =时,215t +=,24t =,3t =时,2110t +=,28t =,由图可知这些点更符合函数2t y =,故A 正确当5x = 时,253230y ==>,故第5个月时,浮萍的面积就会超过230m 成立,故B 正确; 由2x y =知,浮萍每个月增加的面积约是上个月增加面积的两倍,故C 正确 由2x y =知,2x =,4y =,4x =,16y =,即需要经过2个月,故D 不正确; 故选:D .【点评】本题考查的是函数模型的选择和应用问题.在解答的过程当中充分体现了观察图形、分析图形和利用图形的能力,同时对数求值和对数运算的能力也得到了体现,值得同学们体会与反思.2.(2009春•大兴区期末)一位母亲记录了儿子3~9岁的身高(单位:)cm ,由此建立身高与年龄的回归模型为ˆ73.937.19yx =+.则下列说法中正确的是( ) A .身高与年龄是一次函数关系 B .这个模型适合所有3~9岁的孩子C .预测这个孩子10岁时,身高一定在145.83cm 以上D .这个孩子在3~9岁之内,年龄每增加1岁,身高平均增加约7.19cm【分析】根据所给的高与年龄的回归模型,可以估计这个孩子在3~9岁之内,年龄每增加1岁,身高平均约增加多少,这是一个预报值,不是确定的值,在叙述时注意不要出错. 【解答】解:身高与年龄的回归模型为为ˆ73.937.19yx =+. ∴可以估计这个孩子在3~9岁之内,年龄每增加1岁,身高平均约增加7.19cm .选项D 正确;对于A ,身高与年龄是相关关系,不是一次函数关系;对于B ,这个模型只适合这个3~9岁的孩子,其它孩子不一定适合这个模型; 对于C ,可以估计孩子在10岁时可能的身高,这是一个预报值,不是确定的值. 故选:D .【点评】本题考查回归分析的初步应用,是一个基础题,这种根据回归直线方程预报出的结果,是一个估计值,不是确定的值,这是题目要考查的知识点. 二.填空题(共5小题)3.(2013春•房山区校级期中)某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)26394954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4.据此模型可知广告费用每增加1万元,销售额平均增加 9.4 万元,当广告费用为6万元时可以预测销售额为 万元.【分析】首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为7代入,预报出结果. 【解答】解:3.5x =,42y =,数据的样本中心点在线性回归直线上, 回归方程ˆˆˆybx a =+中的ˆb 为9.4, 429.4 3.5a ∴=⨯+, 9.1a ∴=,∴线性回归方程是ˆ9.49.1yx =+, ∴广告费用每增加1万元,销售额平均增加9.4万元,广告费用为6万元时销售额为ˆ9.469.165.5y=⨯+=, 故答案为:9.4;65.5.【点评】本题考查求回归方程,考查利用回归方程进行预测,解题的关键是根据回归方程必过样本中心点,求出回归系数.4.(2012•丰台区二模)某地区恩格尔系数(%)y 与年份x 的统计数据如下表:从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为 31.25 .【分析】先计算,x y ,再代入回归方程可得ˆ2b=,从而可预测2012年该地区的恩格尔系数. 【解答】解:由题意,20042005200620072005.54x +++==,4745.543.54144.254y +++==将(2005.5,44.25)代入??4055.25y b x =+,可得ˆ2b= ∴?24055.25y x =+当2012x =时,?220124055.2531.25y =⨯+= 故答案为:31.25【点评】本题考查回归方程及其运用,利用回归方程过样本中心点是关键.5.(2011春•海淀区期中)成年人的身高()y cm 与足长(脚趾到脚跟的长度)()x cm 有很强的线性相关性.有关部门研究获得y 与x 的线性回归方程为ˆ 6.8yx =,如果某人留下的足印长为25cm ,根据上面回归方程可推测此人的身高为 170 cm .【分析】根据得有关部门研究获得y 与x 的线性回归方程,把所给的x 的值代入计算y 的值,即可推测此人的身高. 【解答】解:有关部门研究获得y 与x 的线性回归方程为ˆ 6.8yx =, ∴当25x =时, 6.825170y =⨯=,∴可推测此人的身高为170cm.故答案为:170.【点评】本题考查回归分析的初步应用,本题解题的关键是正确运算线性回归方程,根据所给的自变量的值和线性回归方程得到的结果是一个预报值,而不是准确值,本题是一个容易题目.6.(2009春•北京校级期末)许多因素都会影响贫穷,教育也许是其中之一,在研究这两个因素的关系时收集了美国50个州的成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线的人数占本州人数的百分比( y)的数据,建立的回归直线方程为ˆ0.8 4.6y x=+,斜率的估计等于0.8说明一个地区受过9年或更少教育的百分比每增加1%,收入低于官方规定的贫困线的人数占本州人数的百分比将增加0.8%左右.【分析】根据线性回归方程中回归系数的意义,即可得出结论.【解答】解:线性回归方程中回归系数为正,从而可知:一个地区受过9年或更少教育的百分比每增加1%,收入低于官方规定的贫困线的人数占本州人数的百分比将增加0.8%左右.故答案为:一个地区受过9年或更少教育的百分比每增加1%,收入低于官方规定的贫困线的人数占本州人数的百分比将增加0.8%左右.【点评】回归直线是对相关关系的一种估计关系式,通过回归直线可对某些事物的发展趋势进行预报,回归直线方程对相应的数据进行预报时,其误差反映了数据的稳定性,即预报的准确度.7.(2008秋•通州区期中)回归方程ˆ 1.55y x=-,则当4x=时,y的估计值为1.【分析】根据所给的线性回归方程,把x的值代入线性回归方程,得到对应的y的值,这里所得的y的值是一个估计值.【解答】解:回归直线方程为?1.55y x=-,4x=,1.545651y∴=⨯-=-=,故答案为:1.【点评】本题考查线性回归方程,考查用线性回归方程估计或者说预报y的值,这是一个基础题,题目主要数字的运算不出错,一般是一个送分题目.三.解答题(共2小题)8.(2009春•房山区期中)某产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下数据:(1)画出散点图.(2)求y关于x的回归直线方程.(3)预测广告费为9百万元时的销售额是多少?【分析】(1)根据表中所给的五组数据,得到对应的五个点的坐标,在平面直角坐标系中画出五个点,得到这组数据的散点图.(2)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,利用样本中心点求出a 的值,写出线性回归方程.(3)将9x =代入回归直线方程求出y 的值即为当广告费支出9(百万元)时的销售额的估计值. 【解答】解:(1)根据表中所给的五组数据,得到对应的五个点的坐标,在平面直角坐标系中画出五个点(2)由散点图知,y 与x 有线性相关,设回归方程为:ˆy bx a =+ 521550145i i x y x ====∑511380i ii x y==∑ˆˆ17.5ay bx =-= 故ˆ 6.517.5yx =+ (3)当9x =时, 6.5917.576y =⨯+=(百万元) 即广告费为9百万元时的销售额预报值是77百万元.【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,再进一步根据样本中心点求出a 的值,注意把一个自变量的值代入线性回归方程,得到的是一个预报值,本题是一个中档题目.9.(2009春•东城区校级月考)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据: 广告支出x (单位:万元) 1 2 3 4销售收入y (单位:万元)12 28 42 56(Ⅰ)画出表中数据的散点图;(Ⅱ)求出y 对x 的回归直线方程ˆybx a =+,其中1122211()()().nni i i ii i nn i i i i x x y y x ynxyb x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑(Ⅲ)若广告费为9万元,则销售收入约为多少万元?【分析】()I 根据所给的数据构造有序数对,在平面直角坐标系中画出散点图.()II 观察散点图可知各点大致分布在一条直线附近,得到这组数据符合线性相关,求出利用最小二乘法所需要的数据,做出线性回归方程的系数,得到方程.()III 把9x =代入线性回归方程,估计出当广告费为9万元时,销售收入约为129.4万元.【解答】解:(Ⅰ)作出的散点图如图⋯(4分)(Ⅱ)观察散点图可知各点大致分布在一条直线附近,列出下表:序号 xy2xxy1 1 12 1 12 2 2 28 4 563 3 42 9 126 44 56 16 224 ∑1013830418可得52x =,692y =. 所以122215694184732255304()2ni ii nii x ynxy b xnx ==--⨯⨯===-⨯-∑∑,697352252a y bx =-=-⨯=-. 故y 对x 的回归直线方程73ˆ25y x =-.⋯(8分) (Ⅲ)当9x =时,73ˆ92129.45y=⨯-=.故当广告费为9万元时,销售收入约为129.4万元. (12分)【点评】本题考查线性回归方程的写法和应用,解题的关键是正确求出线性回归方程的系数,本题是一个基础题.。

2019-2020年高中数学必修3线性回归方程(1)

2019-2020年高中数学必修3线性回归方程(1)

2019-2020年高中数学必修3线性回归方程(1)教学目标(1)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;(2)在两个变量具有线性相关关系时,会在散点较长中作出线性直线,会用线性回归方程进行预测;(3)知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义.教学重点散点图的画法,回归直线方程的求解方法.教学难点回归直线方程的求解方法.教学过程一、问题情境1.情境:客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系2.问题:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的气温/C261813104杯数202434385064二、学生活动为了了解热茶销量与气温的大致关系,我们以横坐标表示气温,纵坐标表示热茶销量,建立直角坐标系,将表中数据构成的个数对所表示的点在坐标系内标出,得到下图,今后我们称这样的图为散点图(scatterplot).从右图可以看出.这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系?我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取这两点的直线;(2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;………………怎样的直线最好呢?三、建构数学1.最小平方法:用方程为的直线拟合散点图中的点,应使得该直线与散点图中的点最接近。

高中数学选择性必修三 精讲精炼 8 一元线性回归模型及其应用(精讲)(含答案)

高中数学选择性必修三 精讲精炼 8  一元线性回归模型及其应用(精讲)(含答案)

8.2 一元线性回归模型及其应用(精讲)考点一样本中心求参数【例1-1】(2021·全国·高二课时练习)若两个变量x,y是线性相关的,且样本()(),1,2,,i ix y i n=的中心点为()3,2.5,则由这组样本数据算得的回归直线方程不可能是( )A.ˆ0.51y x=+B.ˆ0.60.7y x=+C.ˆ0.2 1.9y x=+D.ˆ 1.5y x=-【答案】D【解析】因为0.531 2.5⨯+=,即点()3,2.5在回归直线ˆ0.51y x=+上,所以A有可能;因为0.630.7 2.5⨯+=,即点()3,2.5在回归直线ˆ0.60.7y x=+上,所以B有可能;因为0.23 1.9 2.5⨯+=,即点()3,2.5在回归直线ˆ0.2 1.9y x=+上,所以C有可能;因为3 1.5 1.5 2.5-=≠,即点()3,2.5不在回归直线ˆ 1.5y x=-上,所以D没有可能.故选:D.【例1-2】(2021·广西河池)根据下表中数据求得的线性回归方程是4y x a=-+,则=a( )A .98B .107C .110D .106【答案】D【解析】由已知得,139(456789)66x =+++++=,1(908483807568)806y =+++++=, ∴398046a =-⨯+,即106a =.故选:D 【一隅三反】1.(2021·河北·藁城新冀明中学高二月考)实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( )A .ˆ1yx =+ B .ˆ2y x =+ C .ˆ21y x =+ D .ˆ1y x =- 【答案】A【解析】由已知可得11(1234) 2.5,(2345) 3.544x y =⨯+++==⨯+++=, 所以这组数据的样本中心点为(2.5,3.5), 因为样本中心必在回归直线上,所以把样本中心点代入四个选项中验证,可得只有1y x =+成立, 故选:A.2.(2021·陕西·西北工业大学附属中学 )为了研究某班学生的听力成绩x (单位:分)与笔试成绩y (单位:分)的关系,从该班随机抽取20名学生,根据散点图发现x 与y 之间有线性关系,设其回归直线为y bx a =+,已知201400i i x ==∑,2011580i i y ==∑,1a =-,若该班某学生的听力成绩为26,据此估计其笔试成绩约为( )A .99B .101C .103D .105【答案】C【解析】201400i i x ==∑,故4002020x ==;2011580i i y ==∑,故15807920y ==, 故点()20,79在回归直线上,即79201b =-,得4b =, 即41y x =-,当26x =时,代入计算得到103y =. 故选:C.3.(2021·广东肇庆 )某种兼职工作虽然以计件的方式计算工资,但是对于同一个人的工资与其工作时间还是存在一定的相关关系,已知小孙的工作时间x (单位:小时)与工资y (单位:元)之间的关系如下表:若y 与x 的线性回归方程为ˆ 6.5yx a =+,预测当工作时间为9小时时,工资大约为( ) A .75元 B .76元C .77元D .78元【答案】B【解析】由表格数据知:2456855x ++++==,3040506070505y ++++==,6.55032.517.5a y x ∴=-=-=,∴线性回归方程为ˆ 6.517.5yx =+, 6.5917.576∴⨯+=,即当工作时间为9小时时,工资大约为76元.故选:B.4.(2021·全国·高三专题练习)为了研究某种细菌在特定环境下随时间变化的繁殖情况,得到的实验数据如下表,并由此计算得到回归直线方程ˆ0.850.25yx =-,后来工作人员不慎将下表中的实验数据c 丢失.则上表中丢失的实验数据c 的值为( ) A .1 B .1.5 C .2 D .2.5【答案】D【解析】由表中数据可得3456755x ++++==,34 4.5617.555c c y +++++==,将点17.5(5,)5c +代入ˆ0.850.25yx =-中,得17.50.8550.255c +=⨯-,解得 2.5c =, 所以丢失的实验数据c 的值为2.5.故选:D考点二 线性回归方程【例2】(2021·江西赣州)某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数x (份)与收入y (元)之间有如下的对应数据:(1)画出散点图;(2)请根据以上数据用最小二乘法原理求出收入y 关于份数x 的线性回归方程; (3)据此估计外卖份数为12份时,收入为多少元.注:①参考方式:线性回归方程系数公式1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-;②参考数据:521145ii x ==∑,52113500ii y ==∑,511380i i i x y ==∑.【答案】(1)图象见解析(2) 6.517.5y x =+(3)95.5 【解析】(1)解:作出散点图如下图所示:(2)解:2456855x ++++==,3040605070505y ++++==,已知521145i i x ==∑,511380i i i x y ==∑,则1222551513805550ˆ 6.5145555i iiii x y x ybx x==--⨯⨯===-⨯-∑∑,50 6.5517.5a y bx =-=-⨯=, 因此,线性回归方程为 6.517.5y x =+. (3)解:12x =时,12 6.517.595.5y =⨯+=, 即外卖份数为12份时,收入大约为95.5元. 【一隅三反】1.(2021·贵州·凯里一中 )凯里市2017至2021年农村居民家庭纯收入y (单位:千元)的数据如下表:从表出看出,人均纯收入y 与年份代号t 线性相关,已知516470.i i i t y ==∑.(1)求y 关于t 的线性回归方程y bt a =+;(2)预测2025年的人均纯收入为多少.(附:参考公式:1122211()()()nnii i ii i nniii i tt y y t y nt yb tt tnt====---==--∑∑∑∑,a y bt =-).【答案】(1)0.47 2.59y t =+(2)6.82【解析】(1)由题中表格知,5n =,1(12345)35t =++++=,1(3.1 3.5 3.9 4.6 4.9)45y =++++=,522222211234555i i t==++++=∑,则5152221564.75340.4755535i ii i i t y t yb t t==--⨯⨯===-⨯-∑∑,40.473 2.59a y bt =-=-⨯=,故回归直线方程为0.47 2.59y t =+.(2)当年份为2025年时,对应的年份代码9t =, 所以0.479 2.59 6.82y =⨯+=, 故2025年的人均纯收入约为6.82千元.2.(2021·福建宁德)近年来,新能源产业蓬勃发展,已成为我市的一大支柱产业.据统计,我市一家新能源企业近5个月的产值如下表:(1)根据上表数据,计算y 与x 的线性相关系数r ,并说明y 与x 的线性相关性强弱;(0.75||1r ≤≤,则认为y 与x 线性相关性很强;0.75r <,则认为y 与x 线性相关性不强) (2)求出y 关于x 的线性回归方程,并预测10月该企业的产值.参考公式:1221,nni ii ii nii x ynx yx ynx y r b a y bx xnx==--===--∑∑∑;参考数据:55522111442,55,52.3i i ii i i i x y x y ======≈∑∑∑.【答案】(1)0.993r =;相关系数较强;(2) 5.210.4y x =+;10月该企业的产值约为41.6亿元 【解析】(1)1234535x ++++==,16+20+27+30+37=265y =,0.993ni ix ynx yr -==≈∑,因为[]0.75,1r ∈,所以y 与x 线性相关性较强. (2)设线性回归方程为:y bx a =+;122144253265.25559ni ii n i i x ynx yb x nx==--⨯⨯===-⨯-∑∑,26 5.2310.4a y bx =-=-⨯=,即 5.210.4y x =+, 10月份对应的代码为6, 5.2610.441.6y =⨯+=,10月该企业的产值约为41.6亿元.3(2021·河南·高二月考 )有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为()1,2,3,,10i x i =⋅⋅⋅和一些美食家以百分制给出的对此种食品口味的评价分数记为()123,,10i y i =⋅⋅⋅,,:参考数据:1220i i x ==∑,1720i i y ==∑,()21272i i x x=-=∑,()()1429i ii x xy y =--=∑参考公式:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-(1)已知这些品牌食品的所含热量的百分比i x 与美食家以百分制给出的对此种食品口味的评价分数i y 具有相关关系.试求出回归方程(最后结果精确到0.1);(2)某人只能接受食品所含热量的百分比为20及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为75分以上的概率.【答案】(1) 1.637.3y x =+(2)35【解析】(1)解:设所求的回归方程为y bx a =+,由()()()10110214291.6272iii i i x x y y b x x==--==≈-∑∑, 10112210i i x x ==⨯=∑,10117210i i y y ==⨯=∑, 429722237.3272a y bx ∴=-=-⨯≈, ∴所求的回归方程为: 1.637.3y x =+.(2)解:由表可知某人只能接受的食品共有6种,其中美食家以百分制给出的对此种食品口味的评价为75分以上的有2种可记为a ,b ,另外4种记为1,2,3,4.任选两种分别为:(),a b ,(),1a ,(),2a ,(),3a ,(),4a ,(),1b ,(),2b ,(),3b ,(),4b ,()1,2,()1,3,()1,4,()2,3,()2,4,()3,4,共15个基本事件.记“所选取的两种食品至少有一种是美食家以百分制给出的对此食品口味的评价分数为75分以上”为事件A ,则事件A 包含(),a b ,(),1a ,(),2a ,(),3a ,(),1b ,(),2b ,(),3b ,(),4b ,共9个基本事件, 故事件A 发生的概率为()93155P A ==. 4.(2021·陕西·西安中学 )某连锁经营公司所属5个零售店某月的销售额和利润额资料如表.(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y 对销售额x 的回归直线方程.(参考公式1221ni ii nii x y n x yb xn x ==-⋅⋅=-⋅∑∑,ˆˆay bx =-) (3)若该公司计划再开一个店想达到预期利润为8百万,请预估销售额需要达到多少.【答案】(1)答案见解析(2)ˆy=0.5x +0.4(3)8百万 【解析】(1)(2)由表中的数据可得,()13567965x =⨯++++=,()123345 3.45y =⨯++++=,515221511256 3.40.520056ˆ65i ii ii x y x ybxx ==-⋅⋅-⨯⨯===-⨯⨯-⋅∑∑,∵回归直线方程恒过样本中心,∴ˆ 3.40.560.4a=-⨯=, 故利润额y 对销售额x 的回归直线方程为ˆy =0.5x +0.4. (3)∵该公司计划再开一个店想达到预期利润为8百万,即0.8千万, ∴0.8=0.5x +0.4,解得x =0.8, 故预计销售额需要达到8百万.考点三 非线性回归方程【例3】(2021·黑龙江·哈尔滨市第六中学校高二期中)某公司在市场调查中,发现某产品的单位定价x (单位:万元)对月销售量y (单位:吨)有影响对不同定价i x 和月销售量i y (1,2,8)i =数据作了初步处理,表中1z x =.经过分析发现可以用by a x=+来拟合y 与x 的关系. (1)求ˆy关于x 的回归方程; (2)若生产1吨产品的成本为0.9万元,那么预计单位定价为多少时,该产品的月利润取最大值,求此时的月利润.附:对于一组数据11(),v ω,22(,)v ω,,(,)n n v ω,其回归直线ˆˆˆvαβω=+的斜率和截距的最小二乘法估计分别为:1122211()()ˆ()nniii i i i nniii i v v v n vn ωωωωβωωωω====---==--∑∑∑∑,ˆˆv αβω=- 【答案】(1)^52y x=-+(2)单位定价为1.5万元时,月利润最大,最大值为0.8万元.【解析】(1)令1z x=,则y a b z =+⋅,则8^1822123956894358208988i ii i i z y z yb z z==-⨯⨯===-⨯--∑∑,^^2a y b z =-⋅=-,∴^52y x=-+. (2)设月利润为W ,则由已知()59934340.92260.810255W y x x x x x ⎛⎫⎛⎫=-=-+-=--+≤-+= ⎪⎪⎝⎭⎝⎭, 当且仅当922x x-=-即 1.5x =时取等号所以单位定价为1.5万元时,月利润最大,最大值为0.8万元. 【一隅三反】1.(2021·重庆市实验中学)某电器企业统计了近10年的年利润额y (千万元)与投入的年广告费用x (十万元)的相关数据,散点图如图,对数据作出如下处理:令ln i i u x =,ln i i v y =,得到相关数据如表所示:(1)从①y bx a =+;②()0,0ky m x m k =⋅>>;③2y cx dx e =++三个函数中选择一个作为年广告费用x 和年利润额y 的回归类型,判断哪个类型符合,不必说明理由; (2)根据(1)中选择的回归类型,求出y 与x 的回归方程;(3)预计要使年利润额突破1亿,下一年应至少投入多少广告费用?(结果保留到万元) 参考数据:3103.67883.678849.787e≈≈, 参考公式:回归方程ˆˆˆv bu a =+中斜率和截距的最小二乘估计公式分别为1221ˆni i i ni i u v nxybunu==-=-∑∑【答案】(1)选择回归类型k y m x =⋅更好;(2)13y ex =;(3)下一年应至少投入498万元广告费用. 【解析】(1)由散点图知,年广告费用x 和年利润额y 的回归类型并不是直线型的,而是曲线型的, 所以选择回归类型k y m x =⋅更好.(1)对k y m x =⋅两边取对数,得:ln ln ln y k x m =+,即ln v ku m =+,由表中数据得:101102211030.510 1.5 1.51ˆ46.510 1.5 1.5310i i i ii u v uvkuu ==--⨯⨯===-⨯⨯-∑∑,1ˆln 1.5 1.513m v ku ∴=-=-⨯=,m e ∴=, ∴年广告费用x 和年利润额y 的回归方程为13y ex =.(3)由(2)知:13y e x =⋅, 令1310y e x =⋅>得:1310x e>,解得:13 3.6788x >, 33.678849.787x ∴>≈,49.8x ∴≈(十万元),49.8十万元498=万元∴下一年应至少投入498万元广告费用.2.(2021·全国·高二课时练习)某地区不同身高的未成年男性的平均体重如下表,并由表中数据作出如图所示的散点图.(1)根据散点图,判断y a bx =+与x y a b =⋅哪一个能比较近似地反映这个地区未成年男性平均体重y 与身高x 的关系?(给出判断即可,不必说明理由)(2)令ln u y =,根据(1)的判断结果及下表数据,建立y 关于x 的非线性经验回归方程(参考数据:0.66e 1.93≈,0.02e 1.02≈).【答案】(1)x y a b =⋅;(2)ˆ 1.93 1.02x y=⨯. 【解析】(1)根据散点图,知x y a b =⋅能比较近似地反映这个地区未成年男性平均体重y 与身高x 的高度. (2)由ln u y =和x y a b =⋅,得12u c x c =+(1ln c b =,2ln c a =),()()()12111221282ˆ0.0214300iii ii xx uucx x ==--==≈-∑∑,又 2.96u =, 所以21ˆˆ 2.960.021150.66cu c x =-=-⨯=,ˆ0.020.66u x =+, 所以0.020.660.660.02ˆe e e 1.93 1.02x x x y+==⨯=⨯, 所以y 关于x 的非线性经验回归方程为ˆ 1.93 1.02x y=⨯. 3.(2021·黑龙江肇州 )如图是某小区2020年1月至2021年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码1~13分别对应2020年1月~2021年1月).根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到两个回归方程分别为0.9369y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:(1)请利用相关指数2R 判断哪个模型的拟合效果更好;(2)估计该小区2021年6月份的二手房均价.(精确到0.001万元/平方米)参考数据:ln 20.69≈,ln3 1.10≈,ln17 2.83≈,ln192.94≈ 1.41≈ 1.73≈ 4.12≈ 4.36≈.参考公式:相关指数()()221211niii nii y y R y y==-=--∑∑.【答案】(1)模型0.95540.0306ln y x =+;(2)1.044(万元/平方米).【解析】(1)设模型0.9369y =+0.95540.0306ln y x =+的相关指数分别为21R 和22R ,则210.00059110.00605R =-,220.00016410.00605R =-.因为0.0005910.000164>,所以2212R R <.所以模型0.95540.0306ln y x =+的拟合效果更好.(2)由(1)知,模型0.95540.0306ln y x =+的拟合效果更好,利用该模型预测可得,这个小区2021年6月份的在售二手房均价为:0.95540.0306ln18y =+()0.95540.0306ln 22ln3=++ 1.044≈(万元/平方米).。

高一数学(必修3):第四章线性回归方程Word版含解析

高一数学(必修3):第四章线性回归方程Word版含解析

重点列表:重点详解:1.变量间的相关关系常见的两变量之间的关系有两类:一类是确定性的函数关系,另一类是________;与函数关系不同,相关关系是一种________关系,带有随机性. 2.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有____________,这条直线叫________.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为________;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为________.※ (3)相关系数r =∑∑∑===----nj jn i ini iiy yx x y y x x 12121)()())((,当r >0时,表示两个变量正相关;当r <0时,表示两个变量负相关.r 的绝对值越接近________,表示两个变量的线性相关性越强;r 的绝对值越接近________,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,认为两个变量具有很强的线性相关关系. 3.回归直线方程 (1)通过求Q =∑=--ni i ix y12)(βα的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做____________.该式取最小值时的α,β的值即分别为,.(2)两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为a x b yˆˆˆ+=,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.ˆˆ,)())((ˆ1221121x b y axn xy x n yx x x y y x x b ni ini ii n i i ni i i【答案】1.相关关系 非确定性2.(1)线性相关关系 回归直线 (2)正相关 负相关 (3)1 0 3.最小二乘法重点1:相关关系的判断 【要点解读】在研究两个变量之间是否存在某种关系时,必须从散点图入手.对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.(2)如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系. (3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系. 【考向1】确定性关系与随机关系【例题】下列变量之间的关系不是..相关关系的是( ) A .已知二次函数y =ax 2+bx +c ,其中a ,c 是已知常数,取b 为自变量,因变量是这个函数的判别式Δ=b 2-4ac B .光照时间和果树亩产量 C .降雪量和交通事故发生率 D .每亩施用肥料量和粮食亩产量解:由函数关系和相关关系的定义可知,A 中Δ=b 2-4ac ,因为a ,c 是已知常数,b 为自变量,所以给定一个b 的值,就有唯一确定的Δ与之对应,所以Δ与b 之间是一种确定的关系,是函数关系.B ,C ,D 中两个变量之间的关系都是相关关系.故选A .【评析】要注意函数关系与相关关系的区别:函数关系是确定性关系,而相关关系是随机的、不确定的.重点2:线性回归方程有关概念 【要点解读】样本中心点一定在回归直线上 【考向1】样本中心点【例题】为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1,l 2,已知两人得到的试验数据中,变量x 的平均值都等于s ,变量y 的平均值都等于t ,那么下列说法正确的是( ) A .直线l 1和l 2一定有公共点(s ,t ) B .直线l 1和l 2相交,但交点不一定是(s ,t ) C .必有直线l 1∥l 2 D .直线l 1和l 2必定重合【评析】回归方程一定通过样本点的中心(,y );中心相同的样本点的回归方程不一定相同.【考向2】线性回归直线的理解【例题】由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程a x b yˆˆˆ+=,那么下面说法错误..的是( ) A .直线a x b yˆˆˆ+=必经过点(,y ) B .直线a x b yˆˆˆ+=至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点 C .直线a x b yˆˆˆ+=的斜率=∑∑==--ni ini ii xn xy x n yx 1221D .直线a x b y ˆˆˆ+=和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑=+-ni ii a x b y 12)]ˆˆ([是该坐标平面上所有直线与这些点的偏差中最小的重点3:散点图 【要点解读】根据散点图可以直观判断正负相关以及数据所对应的函数模型 【考向1】正相关与负相关【例题】(1)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )图1图2A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解:由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,故选C.【评析】点分布在从左下角到右上角的区域时,两个变量的相关关系为正相关;点分布在从左上角到右下角的区域时,两个变量的相关关系为负相关.(2)下面是一块田的水稻产量与施化肥量的一组观测数据(单位:kg): 施化肥量15 20 25 30 35 40 45 水稻产量 320 330 360 410 460 470 480 (Ⅰ)将上述数据制成散点图;(Ⅱ)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗? 解:(Ⅰ)散点图如下:(Ⅱ)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大.图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长,不会一直随化肥施用量的增加而增长.【评析】任何一组数据(二元数据)都可以作出散点图,散点图可以直观地观察两个变量间的关系.【考向2】散点图的画法及相关关系识别【例题】(1)从左至右,观察下列三个散点图,变量x与y的关系依次为________(正相关记作①;负相关记作②;不相关记作③).(2)科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计:(Ⅰ)试画出散点图;(Ⅱ)判断两个变量是否具有线性相关关系.解:(Ⅰ)作出散点图如图所示.(Ⅱ)由散点图可知,各点并不在一条直线附近,所以两个变量不具有线性相关关系.难点列表:求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数b ^:公式有两种形式,b ^=∑ni =1(x i -x -)(y i -y -)∑n i =1(x i -x -)2=∑n i =1x i y i -nx - y-∑ni =1x 2i -nx-2,根据题目具体情况灵活选用;(3)求a ^:a ^=y --b ^x -; (4)写出回归直线方程.说明:当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果可确定选用公式的哪种形式求b ^.难点1:求回归方程及用回归方程进行估计 【要点解读】(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则无意义.(2)根据回归方程进行的估计仅是一个预测值,而不是真实发生的值.(3)用最小二乘法求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细小心,分层进行(最好列出表格),避免因计算而产生错误. 【考向1】求线性回归方程【例题】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考值3×2.5+4×3+5×4+6×4.5=66.5) 解:(1)散点图如下:(2)由系数公式可知,=4.5,y =3.5, =66.5-4×4.5×3.586-4×4.52=0.7, =3.5-0.7×4.5=0.35,所以线性回归方程为yˆ=0.7x +0.35. (3)x =100时,yˆ=0.7x +0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.【评析】牢记求线性回归方程的步骤:(1)列表;(2)计算,y ,∑=ni i i y x 1,∑=ni i x 12;(3)代入公式求,再利用x b y aˆˆ-=求,(4)写出回归方程. 【考向2】利用线性回归方程进行预测【例题】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑=101i ix=80,∑=101i iy=20,∑=101i ii y x =184,∑=1012i ix=720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y =bx +a 中,b =∑∑==--ni ini ii xn xy x n yx 1221,x b y a -=,其中,y 为样本平均值,线性回归方程也可写为y ^=b ^x +a ^.解:(1)由题意知n =10,=1n ∑=ni ix 1=8010=8, y =1n ∑=ni i y 1=2010=2,又∑=ni ix12- n 2 =720 -10×82=80,∑=ni ii y x 1-n y x =184-10×8×2=24,由此得b =2480=0.3,a =y -b =2-0.3×8=-0.4,故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 难点2:非线性相关转化为线性相关 【要点解读】通过观察散点图,分析其函数模型,然后转化成线性相关 【考向1】非线性相关转化为线性相关【例题】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+β u 的斜率和截距的最小二乘估计分别为β^=解题指导] 切入点:回归分析中对散点图的理解,回归方程的求法和应用;关键点:通过换元把非线性回归方程转化为线性回归方程求解.解] (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.c ^=y -d^ w =563-68×6.8=100.6, 所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.【趁热打铁】1.两个变量成负相关关系时,散点图的特征是( ) A .点分布在从左下角到右上角的区域B .散点图在某方形区域内C .散点图在某圆形区域内D .点分布在从左上角到右下角的区域2.对于给定的两个变量的统计数据,下列说法正确的是( ) A .都可以分析出两个变量的关系B .都可以用一条直线通过近似表示两者关系来估计总体的均值C .都可以作出散点图D .都可以用确定的表达式表示两者的关系 3.下列命题:①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线把非确定性问题转化为确定性问题进行研究. 其中正确的命题为( )A .①③④B .②④⑤C .③④⑤D .②③⑤4.对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 35.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.A .67B .68C .69D .706.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 17.某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,得到售价x (元)和销售量y (件)之间的一组数据如下表:yˆ=-3.2x +a ,则a =______.8.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.9.假设关于某种设备的使用年限x (年)与所支出的维修费用y (万元)有如下统计资料:已知∑=512i ix=90,∑=51i ii y x =112.3.(1)求,y ;(2)如果x 与y 具有线性相关关系,求出线性回归方程; (3)估计使用年限为10年时,维修费用约是多少?10.某班主任为了对本班学生的月考成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.(1)如果按性别比例分层抽样,应选男女生各多少人; (2)随机抽取8位同学的数学、物理分数对应如表:性相关性,求出线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.第四章1解:正确的只有D 选项.故选D.2解:任两个变量均可作出散点图,从散点图上看有相关关系的才具有分析的价值,无相关关系的则作不出什么结论.故选C.4解:由相关系数定义及散点图所表达含义可知r 2<r 4<0<r 3<r 1,故选A.5解:=15×(10+20+30+40+50)=30,由于y ^=0.67x +54.9必过点(,y ),∴y =0.67×30+54.9=75,因此图表中的模糊数据为75×5-(62+75+81+89)=68.故选B. 6解:对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,故r 2<0<r 1.故选C.7解:价格的平均数=9+9.5+10+10.5+115=10,销售量的平均数y =11+10+8+6+55=8,由yˆ=-3.2x +a 知b =-3.2,所以a =y -b =8+3.2×10=40.故填40. 8解:根据题中所提供的信息,可知父亲与儿子的身高的对应数据可列表如下:=173,y =176,∴=∑∑==---3121)())((i ii i ix xy y x x=3×6(-3)2+32=1,=y -=176-173=3. ∴回归直线方程为yˆ=x +3,从而可预测他孙子的身高为182+3=185(cm).故填185.10解:(1)按性别比例分层抽样,应选男生15×840=3(人),选女生25×840=5(人).(2)以数学成绩x 为横坐标,物理成绩y 为纵坐标作散点图如图所示.从散点图可以看出这些点大致分布在一条直线附近,并且在逐步上升,故物理与数学成绩线性正相关.设y 与x 的线性回归方程是yˆ=bx +a ,根据所给的数据,可以计算出≈0.65,≈34.5, 所以y 与x 的回归方程是yˆ=0.65x +34.5.。

高中数学选择性必修三 第二课时 非线性回归模型及其应用

高中数学选择性必修三 第二课时 非线性回归模型及其应用

第二课时非线性回归模型及其应用课标要求素养要求1.进一步掌握一元线性回归模型参数的统计意义,会用相关统计软件.2.了解非线性回归模型.3.会通过分析残差和利用R2判断回归模型的拟合效果. 通过学习回归模型的应用,提升数学运算及数据分析素养.新知探究在实际问题中,有时两个变量之间的关系并不是线性关系,这就需要运用散点图选择适当的函数模型来拟合观测数据,然后通过适当的变量代换,把非线性问题转化为线性问题,从而确定未知参数,建立相应的线性回归方程.问题具有相关关系的两个变量的线性回归方程为y^=b^x+a^.预测值y^与真实值y 一样吗?预测值y^与真实值y之间误差大了好还是小了好?提示不一定;越小越好.1.残差的概念对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析. 2.刻画回归效果的方式 (1)残差图法作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好. (2)残差平方和法残差平方和∑ni =1 (y i -y ^i )2,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差. (3)利用R 2刻画回归效果决定系数R 2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客户预报变量的能力.R 2=1-∑ni =1(y i -y ^i )2∑n i =1 (y i -y -)2,R 2越大,即拟合效果越好,R 2越小,模型拟合效果越差.拓展深化[微判断]1.残差平方和越接近0, 线性回归模型的拟合效果越好.(√)2.在画两个变量的散点图时, 响应变量在x 轴上,解释变量在y 轴上.(×) 提示 在画两个变量的散点图时, 响应变量在y 轴上,解释变量在x 轴上. 3.R 2越小, 线性回归模型的拟合效果越好.(×) 提示 R 2越大, 线性回归模型的拟合效果越好. [微训练]1.在残差分析中, 残差图的纵坐标为__________.答案 残差2.甲、乙、丙、丁四位同学在建立变量x ,y 的回归模型时,分别选择了4种不同模型,计算可得它们的决定系数R 2分别如下表:甲 乙 丙 丁 R 20.980.780.500.85哪位同学建立的回归模型拟合效果最好?解 R 2越大,表示回归模型的拟合效果越好,故甲同学建立的回归模型拟合效果最好. [微思考]在使用经验回归方程进行预测时,需要注意哪些问题?提示 (1)经验回归方程只适用于所研究的样本的总体;(2)所建立的经验回归方程一般都有时效性;(3)解释变量的取值不能离样本数据的范围太远.一般解释变量的取值在样本数据范围内,经验回归方程的预报效果好,超出这个范围越远,预报的效果越差;(4)不能期望经验回归方程得到的预报值就是响应变量的精确值.题型一 线性回归分析【例1】 已知某种商品的价格x (单位:元/件)与需求量y (单位:件)之间的关系有如下一组数据:x 14 16 18 20 22 y1210753求y 对x 的回归直线方程,并说明回归模型拟合效果的好坏.解 x -=15(14+16+18+20+22)=18, y -=15(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1 660,∑5i =1x i y i=14×12+16×10+18×7+20×5+22×3=620, 所以b ^=∑5i =1x i y i -5x - y -∑5i =1x 2i -5x -2=620-5×18×7.41 660-5×182=-1.15, a^=7.4+1.15×18=28.1, 所以所求回归直线方程是y ^=-1.15x +28.1. 列出残差表:所以∑5i =1 (y i -y ^i )2=0.3, ∑5i =1(y i -y -)2=53.2, R 2=1-∑5i =1 (y i -y ^i )2∑5i =1 (y i -y -)2≈0.994,所以回归模型的拟合效果较好.规律方法 (1)解答线性回归问题,应通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模型的拟合效果,在此基础上,借助回归方程对实际问题进行分析.(2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适.②残差平方和法:残差平方和∑ni =1 (y i -y ^i )2越小,模型的拟合效果越好. ③决定系数法:R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y -)2越接近1,表明回归的效果越好.【训练1】 某地区2011年到2017年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2011年到2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2020年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为解 (1)由所给数据计算得t -=17× (1+2+3+4+5+6+7)=4,y -=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑7i =1(t i -t -)2 =9+4+1+0+1+4+9=28,∑7i =1(t i -t -) (y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14, b ^=∑7i =1(t i -t -) (y i -y -)∑7i =1(t i -t -)2=1428=0.5,a ^=y --b ^ t -=4.3-0.5×4=2.3, 所以所求回归方程为y ^=0.5t +2.3.(2)由(1)知b^=0.5>0,故2011年到2017年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2020年的年份代号t =10代入(1)中的回归方程,得y ^=0.5×10+2.3=7.3.故预测该地区2020年农村居民家庭人均纯收入为7.3千元.题型二 残差分析与相关指数的应用【例2】 假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求R 2,并说明(2)中求出的回归模型的拟合程度. 解 (1)散点图如下.(2)由(1)中散点图看出,样本点大致分布在一条直线的附近,有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,又x -=30.36,y -=43.5,∑5i =1x 2i=5 101.56,x - y - =1 320.66,x -2=921.729 6,∑5i =1x i y i=6 746.76. 则b ^=∑5i =1x i y i -5x - y -∑5i =1x 2i -5x -2≈0.29,a ^=y --b ^ x -≈34.70.故所求的回归直线方程为y ^=0.29x +34.70. 当x =56.7时,y ^=0.29×56.7+34.70=51.143. 故估计成熟期有效穗为51.143.(3)由y ^i =b ^x i+a ^,可以算得e ^i =y i -y ^i 分别为e ^1=0.35,e ^2=0.718,e ^3=-0.5,e ^4=-2.214,e ^5=1.624,残差平方和:∑5i =1e ^2i ≈8.43. (4) ∑5i =1 (y i -y -)2=50.18,故R 2≈1-8.4350.18≈0.832.所以(2)中求出的回归模型的效果较好.规律方法 (1)利用残差分析研究两个变量间的关系时,首先要根据散点图来判断它们是否线性相关,是否可以用线性回归模型来拟合数据,然后通过残差e ^1,e ^2,…,e ^n 来判断模型拟合的效果.(2)若残差点比较均匀地分布在水平带状区域中,带状区域越窄,说明模型拟合度越高,回归方程预报精确度越高.【训练2】 为研究质量x (单位:g)对弹簧长度y (单位:cm)的影响,对不同质量的6个物体进行测量,数据如下表:(1)作出散点图并求回归直线方程; (2)求出R 2并说明回归模型拟合的程度; (3)进行残差分析.解 (1)散点图如图所示.样本点分布在一条直线附近,y 与x 具有线性相关关系.由表中数据,得x -=16×(5+10+15+20+25+30)=17.5,y -=16×(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑6i =1x 2i = 2 275,∑6i =1x i y i=1 076.2. 计算得b^≈0.183,a ^≈6.285. 故所求回归直线方程为y ^=6.285+0.183x . (2)列表如下:y i -y ^i0.05 0.005 -0.08 -0.045 0.04 0.025 y i -y --2.237-1.367 -0.5370.4131.4132.313可得∑6i =1 (y i -y ^i )2≈0.013 18, ∑6i =1(y i -y -)2≈14.678 3. 所以R 2=1-0.013 1814.678 3≈0.999 1,回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正错误,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在宽度不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与所挂物体的质量成线性关系. 题型三 非线性回归分析【例3】 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x -y -w -∑8i =1(x i -x -)2∑8i =1(w i -w -)2∑8i =1(x i -x -)·(y i -y -)∑8i =1(w i -w -)·(y i -y -)46.65636.8289.81.61 469108.8表中w i =x i ,w -=18∑8i =1w i . (1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程; (3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x . 根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为β^=∑ni =1 (u i -u -)(v i -v -)∑ni =1(u i -u -)2,a ^=v --β^u -. 解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程.由于d^=∑8i=1(w i-w-)(y i-y-)∑8i=1(w i-w-)2=108.81.6=68,c^=y--d^w-=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)①由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6(t),年利润z的预报值z^=576.6×0.2-49=66.32(千元).②根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.规律方法求非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程.(4)分析拟合效果:通过计算决定系数或画残差图来判断拟合效果.(5)根据相应的变换,写出非线性回归方程.【训练3】下表为收集到的一组数据:y 711212466115325(1)作出x与y的散点图,并猜测x与y之间的关系;(2)建立x与y的关系,预报回归模型并计算残差;(3)利用所得模型,预报x=40时y的值.解(1)作出散点图如下图,从散点图可以看出x与y不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y=c1e c2x的周围,其中c1,c2为待定的参数.(2)对y=c1e c2x两边取对数,得ln y=ln c1+c2x,令z=ln y,则有变换后的样本点应分布在直线z=bx+a(a=ln c1,b=c2)的周围,这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了,数据可以转化为x 21232527293235z 1.946 2.398 3.045 3.178 4.190 4.745 5.784求得回归直线方程为z^=0.272x-3.849,^=e0.272x-3.849.∴y残差y i711212466115325 y^i 6.44311.10119.12532.95056.770128.381290.325 e^i0.557-0.101 1.875-8.9509.23-13.38134.675 (3)当x=40时,y^=e0.272×40-3.849≈1 131.一、素养落地1.通过本节课的学习,进一步提升数学运算及数据分析素养.2.当根据给定的样本数据得到的散点图并不是分布在一条直线附近时,就不能直接求其回归直线方程了,这时可根据得到的散点图,选择一种拟合得最好的函数,常见的函数有幂函数、指数函数、对数函数等,然后进行变量置换,将问题转化为线性回归分析问题.二、素养训练1.下列两个变量之间的关系不是函数关系的是()A.角度和它的余弦值B.正方形的边长和面积C.正n边形的边数和内角度数和D.人的年龄和身高解析函数关系就是变量之间的一种确定性关系.A,B,C三项中的两个变量之间都是函数关系,可以写出相应的函数表达式,分别为f(θ)=cos θ,g(a)=a2,h(n)=(n-2)π.D选项中的两个变量之间不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选D.答案 D2.(多选题)关于残差图的描述正确的是()A.残差图的横坐标可以是样本编号B.残差图的横坐标也可以是解释变量或预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小解析残差点分布的带状区域的宽度越窄,说明模型拟合精度越高,则残差平方和越小,此时,R2的值越大,故描述错误的是C.答案ABD3.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程y ^=b ^x +a ^中的b ^=-5,据此模型预测当零售价为14.5元时,每天的销售量为( ) A .51个 B .50个 C .54个D .48个解析 由题意知x -=17.5,y -=39,代入回归直线方程得a ^=126.5,126.5-14.5×5=54,故选C. 答案 C4.在研究硝酸钠的溶解度时,观察它在不同温度(x )的水中溶解度(y )的结果如下表:由此得到回归直线的斜率是__________. 解析 x -=15(0+10+20+50+70)=30,y -=15(66.7+76.0+85.0+112.3+128.0)=93.6,由公式b ^=∑5i =1 (x i -x -)(y i -y -)∑5i =1(x i -x -)2可得b^≈0.880 9.答案 0.880 95.在一次抽样调查中测得样本的5个样本点,数值如下表:试建立y 与x 之间的回归方程. 解 由数值表可作散点图如图,根据散点图可知y 与x 近似地呈反比例函数关系, 设y ^=k x ,令t =1x ,则y ^=kt ,原数据变为:t 4 2 1 0.5 0.25 y1612521由置换后的数值表作散点图如下:由散点图可以看出y 与t 呈近似的线性相关关系,列表如下:I t i y i t i y i t 2i 1 4 16 64 16 2 2 12 24 4 3 1 5 5 1 4 0.5 2 1 0.25 5 0.25 1 0.25 0.062 5 ∑7.753694.2521.312 5所以t -=1.55,y -=7.2.所以b ^=∑5i =1t i y i -5t - y -∑5i =1t 2i -5t -2≈4.134 4,a ^=y --b ^t -≈0.8. 所以y ^=4.134 4t +0.8.所以y 与x 之间的回归方程是 y ^=4.134 4x +0.8.基础达标一、选择题1.已知某地财政收入x 与支出y 满足回归方程y ^=b ^x +a ^+e i (单位:亿元)(i =1,2,…),其中b ^=0.8,a ^=2,|e i |<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( ) A .10亿元 B .9亿元 C .10.5亿元D .9.5亿元解析 y ^=0.8×10+2+e i =10+e i , ∵|e i |<0.5,∴9.5<y ^<10.5. 答案 C2.对变量x ,y 进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是( )解析 用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 答案 A3.在回归分析中,R 2的值越大,说明残差平方和( ) A .越大B .越小C .可能大也可能小D .以上均错解析 因为R 2=1-∑n i =1 (y i -y ^i )2∑n i =1 (y i -y -)2,所以当R 2越大时,∑n i =1 (y i -y ^i )2越小,即残差平方和越小. 答案 B4.若一函数模型为y =sin 2α+2sin α+1,为将y 转化为t 的回归直线方程,则需作变换t 等于( ) A .sin 2 α B .(sin α+1)2 C.⎝ ⎛⎭⎪⎫sin α+122D .以上都不对解析 因为y 是关于t 的回归直线方程,实际上即y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 答案 B5.甲、乙、丙、丁4位同学各自对A ,B 两变量进行回归分析,分别得到散点图与残差平方和∑ni =1(y i -y ^i )2如下表:甲乙丙丁散点图残差平方和115106124103哪位同学的试验结果体现拟合A ,B 两变量关系的模型拟合精度高( ) A .甲 B .乙 C .丙D .丁解析 根据线性相关的知识,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获取的样本数据,R 2的表达式中∑n i =1(y i -y -)2为确定的数,则残差平方和越小,R 2越大),由回归分析建立的线性回归模型的拟合效果越好,由试验结果知丁要好些. 答案 D 二、填空题6.某种产品的广告支出费用x (单位:万元)与销售额y (单位:万元)的数据如下表:已知y 关于x 的线性回归方程为y ^=6.5x +17.5,则当广告支出费用为5万元时,残差为__________万元.解析 当x =5时,y ^=6.5×5+17.5=50,表格中对应y =60,于是残差为60-50=10(万元). 答案 107.某商场为了了解某品牌羽绒服的月销售量(单位:件)与月平均气温x (单位:℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:由表中数据算出线性回归方程y ^=b ^x +a ^中的b ^≈-2.气象部门预测下个月的平均气温约为 6 ℃,据此估计,该商场下个月该品牌羽绒服的销售量的件数约为________.解析 由表格中数据可得x -=17+13+8+24=10,y -=24+33+40+554=38.又∵b ^≈-2,∴a ^=y --b ^ x -≈38+2×10=58,∴y ^=-2x +58.当x =6时,y ^=-2×6+58=46. 答案 468.在研究气温和热茶销售杯数的关系时,若求得决定系数R 2≈0.85,则表明气温解释了__________的热茶销售杯数变化,而随机误差贡献了剩余的__________,所以气温对热茶销售杯数的效应比随机误差的效应大得多. 解析 由决定系数R 2的意义可知,R 2≈0.85表明气温解释了85%,而随机误差贡献了剩余的15%. 答案 85% 15% 三、解答题9.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 关于月收入x 的线性回归方程y ^=b ^x +a ^; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x -=1n ∑10i =1x i =110×80=8,y -=1n ∑10i =1y i =110×20=2,所以b ^=∑10i =1x i y i -n x - y - ∑10i =1x 2i -nx -2=184-10×8×2720-10×82=2480=0.3, a ^=y --b ^x -=2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入回归方程,可以预测家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元).10.为了研究甲型H1N1中的某种细菌随时间x 变化的繁殖个数y ,收集数据如下:天数x 1 2 3 4 5 6 繁殖个数y612254995190求y 对x 的回归方程. 解 作出散点图如图(1)所示.由散点图看出样本点分布在一条指数型曲线y =c e bx 的周围,则ln y =bx +ln c . 令z =ln y ,a =ln c ,则z =bx +a .x 1 2 3 4 5 6 z1.792.483.223.894.555.25相应的散点图如图(2)所示.从图(2)可以看出,变换后的样本点分布在一条直线附近,因此可以用线性回归方程来拟合.由表中数据得到线性回归方程为z ^=0.69x +1.112.因此细菌的繁殖个数对温度的非线性回归方程为y ^=e 0.69x +1.112.能力提升11.若对于变量x ,y 的10组统计数据的回归模型中,计算R 2=0.95,又知残差平方和为120.55,那么∑10i =1(y i -y -)2的值为( )A .241.1B .245.1C .2 411D .2 451解析 由题意知残差平方和∑10i =1(y i -y ^i )2=120.55,又R 2=1-∑10i =1 (y i -y ^i )2∑10i =1 (y i -y -)2=0.95,所以∑10i =1 (y i -y -)2=2 411.答案 C12.某电容器充电后,电压达到100 V ,然后开始放电,由经验知道,此后电压U 随时间t 变化的规律用公式U =A e bt (b <0)表示,现测得时间t (s)时的电压U (V)如下表:t /s 0 1 2 3 4 5 6 7 8 9 10 U /V100755540302015101055试求:电压U 对时间t 的回归方程(提示 对公式两边取自然对数,把问题转化为线性回归分析问题).解 对U =A e bt 两边取对数得ln U =ln A +bt ,令y =ln U ,a =ln A ,x =t ,则y =a +bx ,y 与x 的对应数据如下表:x 0 1 2 3 4 5 6 7 8 9 10 y4.64.34.03.73.43.02.72.32.31.61.6根据表中数据画出散点图,如图所示,从图中可以看出,y 与x 具有较好的线性相关关系,由表中数据求得x -=5,y -≈3.045,由公式计算得b ^≈-0.313,a ^=y --b ^x -=4.61,所以y 对x 的线性回归方程为y ^=-0.313x +4.61.所以ln U ^=-0.313t +4.61,即U ^=e -0.313t +4.61=e -0.313t ·e 4.61,因此电压U 对时间t 的回归方程为U ^=e -0.313t ·e 4.61.创新猜想13.(多选题)如图四个散点图中,适合用线性回归模型拟合其中两个变量关系的是()A.①B.②C.③D.④解析由图易知①③两个图中样本点在一条直线附近,因此适合用线性回归模型.答案AC14.(多选题)下列说法正确的是()A.残差的绝对值越小,回归方程的拟合效果越好B.残差平方和越小,决定系数R2越大C.决定系数R2可以大于1D.通过经验回归方程得到的预报值是响应变量的可能取值的平均值,不一定是响应变量的精确值解析R2的计算公式,知B正确,C错误;A,D均正确.答案ABD。

2019-2020年苏教版数学必修三讲义:第2章+2.4+线性回归方程及答案

2019-2020年苏教版数学必修三讲义:第2章+2.4+线性回归方程及答案

2.4 线性回归方程学 习 目 标核 心 素 养1.了解两个变量之间的相关关系并与函数关系比较.2.会作散点图,并利用散点图判断两个变量之间是否具有线性相关关系.3.能根据给出的线性回归方程系数公式建立线性回归方程,并能由回归方程对总体进行预测、估计.(重点、难点)通过对已有数量的分析、运算培养学生数据分析、数学运算的核心素养.1.变量之间的两类常见关系在实际问题中,变量之间的常见关系有如下两类:一类是确定性函数关系,变量之间的关系可以用函数表示.另一类是相关关系,变量之间有一定的联系,但不能完全用函数表示.2.相关关系的分类相关关系分线性相关和非线性相关两种. 3.线性回归方程系数公式能用直线方程y ^=bx +a 近似表示的相关关系叫做线性相关关系,该方程叫线性回归方程.给出一组数据(x 1,y 1),(x 2,y 2),…, (x n ,y n ),线性回归方程中的系数a ,b 满足⎩⎪⎨⎪⎧b =n ∑i =1nx i y i -⎝ ⎛⎭⎪⎪⎫∑i =1n x i ⎝ ⎛⎭⎪⎪⎫∑i =1n y i n ∑i =1nx 2i -⎝ ⎛⎭⎪⎪⎫∑i =1nx i 2,a =y -b x .上式还可以表示为⎩⎪⎨⎪⎧b =∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a =y -b x .1.有下列关系:①人的年龄与其拥有的财富之间的关系; ②曲线上点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一树木,其横截面直径与高度之间的关系; ⑤学生与其学号之间的关系. 其中具有相关关系的是________. ①③④ [②⑤为确定关系不是相关关系.]2.下面四个散点图中点的分布状态,直观上判断两个变量之间具有线性相关关系的是________.③ [散点图①中的点无规律的分布,范围很广,表明两个变量之间的相关程度很小;②中所有的点都在同一条直线上,是函数关系;③中点的分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;④中的点也分布在一条带状区域内,但不是线性的,而是一条曲线附近,所以不是线性相关关系,故填③.]3.工人工资y (元)依劳动生产率x (千元)变化的线性回归方程为y ^=50+80x ,下列判断正确的是________.①劳动生产率为1 000元时,工资为130元; ②劳动生产率提高1 000元时,工资提高80元; ③劳动生产率提高1 000元时,工资提高130元;④当月工资为250元时,劳动生产率为2 000元.^增加80,即劳动生产率提高1 000②[回归直线斜率为80,所以x每增加1,y元时,工资提高80元.]4.下表是广告费用与销售额之间的一组数据:广告费用(千元)1461014销售额(千元)1944405253^=2.3x 销售额y(千元)与广告费用x(千元)之间有线性相关关系,回归方程为y+a(a为常数),现要使销售额达到6万元,估计广告费用约为________千元.15[x=7,y=41.6,则a=y-2.3x=41.6-2.3×7=25.5.当y=6万元=60千元时,60=2.3x+25.5,解得x=15(千元).]变量间相关关系的判断【例1】在下列两个变量的关系中,具有相关关系的是________.①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生率之间的关系.②④[两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系.]1.函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.准确理解变量间的相关关系是解答本题的关键.要准确区分两个变量间的相关关系和函数关系,事实上,现实生活中相关关系是处处存在的,从某种意义上讲,函数关系可以看作一种理想的关系模型,而相关关系是一种普遍的关系.两者区别的关键点是“确定性”还是“不确定性”.1.下列两个变量中具有相关关系的是________(填写相应的序号).①正方体的棱长和体积;②单产为常数时,土地面积和总产量;③日照时间与水稻的亩产量.③[正方体的棱长x和体积V存在着函数关系V=x3;单产为常数a公斤/亩,土地面积x(亩)和总产量y(公斤)之间也存在着函数关系y=ax.日照时间长,则水稻的亩产量高,这只是相关关系,应选③.]2.下列命题:①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.其中正确的命题为________.③④⑤[两个变量不一定是相关关系,也可能是确定性关系,故①错误;圆的周长与该圆的半径具有函数关系,故②错误;③④⑤都正确.]散点图的画法及应用【例2】现有5个同学的数学和物理成绩如下表:学生A B C D E学科数学8075706560物理7066686462 利用散点图判断它们是否具有线性相关关系?如果有线性相关关系,是正相关还是负相关?思路点拨:本题涉及两个变量(数学成绩与物理成绩),以x轴表示数学成绩、y轴表示物理成绩,可得相应的散点图,再观察散点图得出结论.[解]把数学成绩作为横坐标,把相应的物理成绩作为纵坐标,在平面直角坐标系中描点(x i,y i)(i=1,2,…,5).从图中可以直观地看出数学成绩和物理成绩具有线性相关关系,且当数学成绩减小时,物理成绩也由大变小,即它们正相关.1.判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果图上发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.如果变量的对应点分布没有规律,我们就可以认为这两个变量不具有相关关系.2.正相关、负相关线性相关关系又分为正相关和负相关.正相关是指两个变量具有相同的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变大.从散点图上看,因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域.负相关是指两个变量具有相反的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变小.从散点图上看,因变量随自变量的增大而减小,图中的点分布在左上角到右下角的区域.提醒:画散点图时应注意合理选择单位长度,避免图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.3.如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?思路点拨:观察图中点的分布情况作出判断.从散点图上看,点的分布散乱无规律,故不具有相关关系.[解]不具有相关关系,因为散点散乱地分布在坐标平面内,不呈线形.4.有个男孩的年龄与身高的统计数据如下:年龄(岁)12345 6身高(cm)788798108115120 画出散点图,并判断它们是否有相关关系?如果有相关关系,是正相关还是负相关?思路点拨:描点(1,78),(2,87),(3,98),(4,108),(5,115),(6,120).观察点的分布,作出判断.[解]作出散点图如图:由图可见,具有线性相关关系,且是正相关.线性回归方程的求法及应用下表所对应的数据.广告支出x/万元123 4销售收入y/万元12284256(2)求出y对x的回归直线方程y^=bx+a,并解释b的意义;(3)若广告费为9万元,则销售收入约为多少万元?思路点拨:画散点图→列表处理数据→计算x ,y ,n ∑i =14x 2i ,∑i =14x i y i →计算b →计算a →线性回归方程→销售收入[解] (1)散点图如图.(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以便计算回归系数a ,B .序号 x y x 2 y 2 xy 1 1 12 1 144 12 2 2 28 4 784 56 3 3 42 9 1 764 126 4 4 56 16 3 136 224 ∑10138305 828418于是x =52,y =692,∑i =14x 2i =30,∑i =14y 2i =5 828,∑i =14x i y i =418,代入公式得,b =∑i =14x i y i -4x y∑i =14x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a =y -b x =692-735×52=-2.故y 对x 的回归直线方程为y ^=735x -2,其中回归系数b =735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y ^=735×9-2=129.4(万元), 即若广告费为9万元,则销售收入约为129.4万元.1.求样本数据的线性回归方程,可按下列步骤进行: 第一步,计算平均数x ,y ; 第二步,求和∑i =1nx i y i ,∑i =1nx 2i ;第三步,计算b =∑i =1n (x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x ;第四步,写出线性回归方程y ^=bx +A .2.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.提醒:(1)对一组数据进行线性回归分析时,应先画出其散点图,判断变量之间是否线性相关,再由系数a ,b 的计算公式,计算出a ,b ,由于计算量较大,在计算时应借助计算器,仔细计算,以防出现错误.(2)为了方便,常制表对应算出x i y i ,x 2i ,以便于求和.(3)研究变量间的相关关系,求得回归直线方程能帮助我们发现事物发展的一些规律,估计、预测某些数据,为我们的判断和决策提供依据.5.如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2012-2018.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.参考数据:∑ 7 i =1y i =9.32,∑ 7 i =1t i y i =40.17,∑ 7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑ ni =1 (t i -t )(y i -y )∑ ni =1(t i -t )2∑ ni =1(y i -y )2,回归方程y ^=a +bt 中斜率和截距的最小二乘估计公式分别为b =∑ n i =1 (t i -t )(y i -y )∑ ni =1(t i -t )2,a =y --b t . 思路点拨:(1)利用相关系数的大小――→确定y 与t 的线性相关程度 (2)求出回归方程→利用方程进行估计[解] (1)由折线图中的数据和附注中的参考数据得t =4,∑ 7i =1 (t i -t )2=28,∑ 7 i =1 (y i -y )2=0.55,∑ 7 i =1 (t i -t )(y i -y )=∑ 7 i =1t i y i -t ∑ 7 i =1y i =40.17-4×9.32=2.89, ∴r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b =∑ 7i =1 (t i -t )(y i -y )∑ 7 i =1(t i -t )2=2.8928≈0.103. a =y -b t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82.所以预测2020年我国生活垃圾无害化处理量约为1.82亿吨.1.本节课的重点是会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系,能根据给出的线性回归方程系数公式建立线性回归方程.难点是了解相关关系、线性相关、回归直线的概念.2.本节课要掌握以下几类问题(1)准确区分相关关系与函数关系.(2)会利用散点图判断两个变量间的相关关系.(3)掌握用线性回归方程估计总体的一般步骤.1.在如图所示的四个散点图中,两个变量具有相关性的是( )A.①②B.①④C.②③D.②④D[由图可知①中变量间是一次函数关系,不是相关关系;②中的所有点在一条直线附近波动,是线性相关的;③中的点杂乱无章,没有什么关系;④中的所有点在某条曲线附近波动,是非线性相关的.故两个变量具有相关性的是②④.] 2.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中一定不正确的结论的序号有()A.①③B.①④C.②③D.②④B[由正、负相关性的定义知①④一定不正确.]3.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如下几组样本数据:x 345 6y 2.534 4.5其回归直线的斜率为0.7,则这组样本数据的线性回归方程是________.y^=0.7x+0.35[∵x=3+4+5+64=4.5,y=2.5+3+4+4.54=3.5,∴a=y-b x=3.5-0.7×4.5=0.35.∴线性回归方程为y ^=0.7x +0.35.]4.2019年元旦前夕,某市统计局统计了该市2018年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)思路点拨:按照求线性回归方程的一般步骤,求出线性回归方程,再根据回归方程作出预测.[解] (1)依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98,又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b =∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a =y -b x =0.81,∴y ^=0.17x +0.81.∴所求的线性回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元),可估计大多数年收入为9万元的家庭每年饮食支出约为2.34万元.。

数学必修三回归分析经典题型

数学必修三回归分析经典题型

数学必修三回归剖析经典题型1 .一位母了儿子 3 ~ 9 的身高,由此成立的身高与年的回模型y? 7.19x 73.93用个模型个孩子10 的身高,正确的表达是()A. 身高必定是145.83cmB.身高在145.83cm以上C. 身高在 145.83cm 以下D.身高在145.83cm左右【答案】 D【分析】解:把x=10 代入能够获得,因为回模型是3-9 的孩子的,所以个是估,只好左右,不可以在上或许下,没有准。

D2.有性有关关系的两个量成立的性回方程$$$$ y =a+ b x,对于回系数 b ,下边表达正确的选项是 ________.①能够小于 0;②大于 0;③能等于0;④只好小于 0.【答案】①$r = 0 ,两量不拥有性有关关系,但 b 能大【分析】由 b 和r的公式可知,当于 0也能小于 0.3.拥有性有关关系的量x、 y 有数据 (x i, y i )(i= 1,2 ,⋯, 10) ,它之$1010的性回方程是x i=18,y i=________.y =3x+20,若i 1i 1【答案】 25410= 18,得x= .【分析】由x ii 1因点 ( x$上, y =., y )在直y=3x+2010所以y i=× 10= 254.i 14.下表是某厂1~4 月份用水量 ( 位:百吨 ) 的一数据:月份 x1234用水量 y43由散点可知,用水量 y 与月份 x 之有好的性有关关系,其性回直方程是y=-+ a, a 等于 ________.【答案】【分析】 x =,y=,∵回直方程定点( x,y ) ,∴=-×+ a.∴ a= .5.由一本数据1122nn$$$ (x, y) ,(x , y ),⋯, (x , y ) 获得性回方程y =b x+a,那么以下法正确的选项是________.$$$①直y= b x+ a 必点(x, y );$$$②直y= b x+ a 起码点(x1,y1),(x2,y2),⋯,(x n,y n)中的一个点;nx i y i nx y③直$y= b$x+ a$的斜率i 1;n2x i2nxi 1$$$n$ $2,y2) ,⋯,(x n,y n) 的误差④直y= b x+ a 和各点(x1,y1),(x2y i-(bx i+a)是i1坐平面上的直与些点的最小误差.【答案】①③④【分析】回直的斜率b,故③正确,回直不必定本点,但必定本中心,故①正确,②不正确.6.某数学老身高176 cm,他、父和儿子的身高分是173 cm、 170 cm 和 182 cm. 因儿子的身高与父的身高有关,老用性回剖析的方法他子的身高________cm.【答案】 185【分析】父身高x cm,儿子身高y cm,x173170176y170176182$=0 (-6)+ ( -3)0+3 6= 1,x =173,y=176,b02+9+9$ $x = 176-1×173= 3,a = y -b $$∴ y = x + 3,当 x =182 时, y = 185.7.下表是对于宿州市服饰机械厂某设施的使用年限(年)和所需要的维修花费 y (万元)的几组统计数据:23 4 5 6y( 1)请依据上表供给的数据,用最小二乘法求出y 对于的线性回归方程;( 2)预计使用年限为 10 年时,维修花费为多少?(参照:①2 2.23 3.8 45.5 56.5 67.0 112.3n②x i y in x yb x )bi 1, ayn22x i n xi 1【 答 案 】 解:( 1) 线性回归方程为y 0.08 1.23 x( 2)预计使用年限为10 年时,维修花费为万元 .n【分析】(1)先 求 出 x, y , 然 后 利 用 公 式 bx i y i n x yi n, a y b x , a y bx ,122x in xi1可求出回归直线y ax b 方程 .(2) 把 x=10 代入回归直线方程可得解:( 1)x2 3 4 5 65y 的值,便可得所求的值.4y2.23.8 5.56.57.0555又x i 2 22 3242 52 62 90i 1b112.35 4 51.239080又a y bx5 1.23 4 0.08线性回归方程为y 0.08 1 .23 x( 2)把 x10 代入回归方程获得:y0.081.23 10 12 .38预计使用年限为 10 年时,维修花费为万元.。

人教B版高中数学必修三高三一轮基础巩固(新)第10章第3节相关关系、回归分析与独立性检验1(含解析).doc

人教B版高中数学必修三高三一轮基础巩固(新)第10章第3节相关关系、回归分析与独立性检验1(含解析).doc

高中数学学习材料马鸣风萧萧*整理制作【走向高考】2016届 高三数学一轮基础巩固 第10章 第3节 相关关系、回归分析与独立性检验1 新人教B 版一、选择题1.(文)(2014·重庆)已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y -=3.5,则由该观测数据算得线性回归方程可能为( ) A.y ^=0.4x +2.3 B .y ^=2x -2.4 C.y ^=-2x +9.5D .y ^=-0.3x +4.4[答案] A[解析] 因为变量x 和y 正相关,所以回归直线的斜率为正,排除C 、D ;又将点(3,3.5)代入选项A 和B 的方程中检验排除B ,所以选A. (理)(2014·安徽宿州一模)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x(吨)与对应的生产能耗y(吨)的几组对应数据.x 3 4 5 6y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为( ) A .3 B .3.15C .3.5D .4.5 [答案] A[解析] ∵样本中心为(4.5,11+t4), ∴11+t4=0.7×4.5+0.35,解得t =3.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由χ2=n ad -bc 2a +bc +d a +cb +d算得, χ2=110×40×30-20×20260×50×60×50≈7.8. 附表:P(χ2≥k) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” [答案] A[解析] 根据独立性检验的定义,由χ2≈7.8>6.635可知,有99%以上把握认为“爱好该项运动与性别有关”. 3.(2013·辽宁六校联考)某产品在某零售摊位上的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:x 16 17 18 19 y50344131由上表可得回归直线方程y ^=b ^x +a ^中的b ^=-4,据此模型预计零售价定为15元时,每天的销售量为( )A .48个B .49个C .50个D .51个 [答案] B[解析] 由题意知x -=17.5,y -=39,代入回归直线方程得a ^=109,109-15×4=49,故选B. 4.(2014·湖北)根据如下样本数据x 3 45 6 7 8 y4.02.5-0.50.5-2.0-3.0得到的回归方程为y ^=bx +a ,则( ) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<0 [答案] B[解析] 画出散点图,观察图象知b<0.又当x =0时,y ^=a>0,∴选B.5.(2014·山东潍坊二模)为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:优秀 非优秀 总计A 班 14 6 20B 班 7 13 20 总计211940附:参考公式及数据:(1)统计量: χ2=n ad -bc 2a +bc +d a +cb +d (n =a +b +c +d). (2)独立性检验的临界值表:P(χ2≥k0) 0.050 0.010 k03.8416.635则下列说法正确的是( )A .有99%的把握认为环保知识测试成绩与专业有关B .有99%的把握认为环保知识测试成绩与专业无关C .有95%的把握认为环保知识测试成绩与专业有关D .有95%的把握认为环保知识测试成绩与专业无关 [答案] C[解析] χ2=40×14×13-7×6220×20×21×19≈4.912, 3.841<χ2<6.635,所以有95%的把握认为环保知识测试成绩与专业有关. 6.(文)(2013·福建)已知x 与y 之间的几组数据如下表:x 1 2 3 4 56 y21334假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( ) A.b ^>b ′,a ^>a ′ B .b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D .b ^<b ′,a ^<a ′[答案] C[解析] 由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16xiyi -6x ·y∑i =16x2i -6x 2=58-6×72×13691-6×722=57,a ^=y --b ^x -=136-57×72=-13, 所以b ^<b ′,a ^>a ′.(理)(2014·江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1成绩 性别 不及格 及格 总计 男 6 14 20 女 10 22 32 总计163652表 2视力 性别 好 差 总计 男 4 16 20 女 12 20 32 总计163652表3智商 性别 偏高 正常 总计 男 8 12 20 女 8 24 32 总计163652表4阅读量 性别 丰富 不丰富 总计 男 14 6 20 女 2 30 32 总计163652A .成绩B .视力C .智商D .阅读量 [答案] D[解析] A 中,K2=52×6×22-10×14220×32×16×36=131440; B 中,K2=52×4×20-12×16220×32×16×36=637360;C 中,K2=52×8×24-8×12220×32×16×36=1310; D 中,K2=52×14×30-2×6220×32×16×36=3757160. 因此阅读量与性别相关的可能性最大,所以选D. 二、填空题7.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:专业 性别 非统计专业 统计专业 男 13 10 女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到χ2=50×13×20-10×7223×27×20×30≈4.844.因为χ2≥3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________. [答案] 5%[解析] 根据独立性检验临界值表可知“x 与y 有关系”的可信度,P(χ2≥3.841)=0.05,∴有95%的可能认为x 与y 有关系,即判断出错的可能性为5%. 8.(2013·唐山统一考试)考古学家通过始祖鸟化石标本发现:其股骨长度x(cm)与肱骨长度y(cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50cm 时,肱骨长度的估计值为________cm. [答案] 56.19[解析] y ^=1.197×50-3.66=56.19(cm).9.(2014·广东韶关二模)某市居民2009~2013年家庭年平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如下表所示:年份 2009 2010 2011 2012 2013 收入x 11.5 12.1 13 13.3 15 支出y6.88.89.81012根据统计资料,居民家庭年平均收入的中位数是________,家庭年平均收入与年平均支出有________线性相关关系. [答案] 13 正[解析] 由中位数的定义知,奇数个数时按大小顺序排列后中间一个是中位数,即中位数是13.由相关性知识,根据统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系. 三、解答题 10.(2014·新课标Ⅱ)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:年份2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为: b ^=ni =1 ti -t yi -yni =1 ti -t 2,a ^=y -b ^t[解析] (1)由所给数据计算得 t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(ti -t -)2=9+4+1+0+1+4+9=28,∑i =17(ti -t -)(yi -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17ti -t -yi -y-∑i =17ti -t-2=1428=0.5, a ^=y --b ^t -=4.3-0.5×4=2.3, 所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元.一、选择题11.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x(cm)160 165 170 175 180 体重y(kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172cm 的高三男生的体重为( )A .70.09kgB .70.12kgC .70.55kgD .71.05kg[答案] B[解析] x -=160+165+170+175+1805=170, y -=63+66+70+72+745=69. ∵回归直线过点(x -,y -),∴将点(170,69)代入y ^=0.56x +a ^中得a ^=-26.2, ∴回归直线方程y ^=0.56x -26.2,代入x =172cm ,则其体重为70.12kg. 二、填空题 12.(2013·乌鲁木齐第一次诊断)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程y ^=0.67x +54.9.零件数x(个) 10 20 30 40 50 加工时间y(min)62758189表中一个数据模糊不清,经推断,该数据的值为______. [答案] 68[解析] 设模糊不清部分的数据为m , x -=10+20+30+40+505=30, 由y ^=0.67x +54.9过点(x -,y -)得,y -=0.67×30+54.9=75, 所以62+m +75+81+895=75,m =68. 三、解答题 13.(文)(2014·河南安阳一模)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加 班级工作 不太主动参加 班级工作 合计 学习积极 性高 18 7 25 学习积极 性一般 6 19 25 合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析学生的学习积极性与对待班级工作的态度是否有关,并说明理由.[解析] (1)积极参加班级工作的学生有24名,总人数为50名,概率为2450=1225. 不太主动参加班级工作且学习积极性一般的学生有19名,总人数为50名,概率为1950. (2)K2=50×18×19-6×7225×25×24×26=15013≈11.5, ∵K2>10.828,∴有99.9%的把握认为学习积极性与对待班级工作的态度有关系. (理)(2014·河北冀州中学检测)通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的列联表:性别与看营养说明列联表 单位:名男 女 总计 看营养说明 50 30 80 不看营养说明 10 20 30 总计6050110(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?(2)从(1)中的5名女生中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率.(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?P(K2≥k0) 0.100 0.050 0.025 0.010 k02.7063.8415.0246.635K2=n ad -bc 2a +bc +d a +cb +d[解析] (1)根据分层抽样可得:样本中看营养说明的女生有550×30=3名,样本中不看营养说明的女生有550×20=2名.(2)在5名女生中不看营养说明的有2人,从中抽取2名,看与不看营养说明的女生各一名的概率为P =C12C13C25=35. (3)根据题中的列联表得K2=110×50×20-30×10280×30×60×50=53972≈7.486,P(K2≥6.635)=0.010,有99%的把握认为该校高中学生“性别与在购买食物时看营养说明”有关.14.某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A 、B 两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.甲 乙6 9 3 67 9 9 9 5 1 08 0 1 5 69 9 4 4 2 7 3 4 5 8 8 8 8 8 5 1 1 0 6 0 7 7 4 3 3 2 5 2 5(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.甲班(A 方式) 乙班(B 方式) 总计成绩优秀 成绩不优秀 总计附:χ2=n ad -bc 2a +bc +d a +cb +d P(χ2≥k) 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001 k1.3232.0722.7063.8415.0246.6357.87910.828[解析] (1)设“抽出的两个均‘成绩优秀’”为事件A.从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个.而事件A 包含基本事件:(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.所以所求概率为P(A)=1015=23. (2)由已知数据得甲班(A 方式) 乙班(B 方式) 总计 成绩优秀 1 5 6 成绩不优秀 19 15 34 总计202040根据列联表中数据得,χ2=40×1×15-5×1926×34×20×20≈3.137, 由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关. 15.(2014·四川内江三模)在每年的春节后,某市政府都会发动公务员参与到植树活动中去.为保证树苗的质量,该市林管部门都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,量出树苗的高度如下(单位:厘米): 甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.(1)根据抽测结果,完成下列的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度平均值为x -,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的S 大小为多少?并说明S 的统计学意义.甲 乙 1 2 34[解析] (1)茎叶图:甲 乙91 0 4 0 9 5 3 1 02 6 7 1 23 7 3 044 6 6 7统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(2)x -=37+21+31+20+29+19+32+23+25+3310=27, S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量.S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越参差不齐.。

高中数学选择性必修三 8 2 一元线性回归模型及其应用(精讲)(含答案)

高中数学选择性必修三 8 2 一元线性回归模型及其应用(精讲)(含答案)

8.2 一元线性回归模型及其应用(精讲)考点一 样本中心解小题【例1】(2021·江西赣州市)某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程为 6.4151y x =-+,则上表中的m 的值为( ) A .38B .39C .40D .41【答案】D 【解析】由题意1617181917.54x +++==,50343111544m my ++++==,所以115 6.417.51514m+=-⨯+,解得41m =.故选:D . 【一隅三反】1.(2021·江西景德镇市·景德镇一中)随机变量x 与y 的数据如表中所列,其中缺少了一个数值,已知y关于x 的线性回归方程为ˆ0.93yx =+,则缺少的数值为( )A .6B .6.6C .7.5D .8【答案】A【解析】设缺少的数值为m ,由于回归方程为ˆ0.93yx =+过样本中心点(),x y , 且2345645x ++++==,代入0.943 6.6y =⨯+=,所以5679 6.65my ++++==,解得6m =.故选:A.2.(2021·河南信阳市)根据如下样本数据:得到的回归方程为y bx a =+,则( ) A .0a >,0b > B .0a >,ˆ0b < C .0a <,0b > D .0a <,ˆ0b< 【答案】B【解析】由图表中的数据可得,变量y 随着x 的增大而减小,则ˆ0b<, 2345645x ++++==,4 2.50.5230.25y +---==,又回归方程y bx a =+经过点(4,0.2),可得0a >,故选:B .3.(2021·安徽六安市·六安一中)蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x(每分钟鸣叫的次数)与气温y (单位:C )存在着较强的线性相关关系.某地观测人员根据下表的观测数据,建立了y 关于x 的线性回归方程0.25y x k =+.)C则当蟋蟀每分钟鸣叫62次时,该地当时的气温预报值为( ) A .33C B .34CC .35CD .35.5C【答案】D【解析】由表格中的数据可得2030405060405x ++++==,2527.52932.536305y ++++==,由于回归直线过样本中心点(),x y ,可得300.2540k =⨯+,解得20k =.所以,回归直线方程为0.2520y x =+.在回归直线方程中,令62x =,可得0.25622035.5y =⨯+=.故选:D.考点二一元线性方程【例2】(2021·兴义市第二高级中学)在2010年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示: 通过分析,发现销售量y 对商品的价格x 具有线性相关关系,求 (1)销售量y 对商品的价格x 的回归直线方程; (2)若使销售量为12,则价格应定为多少.附:在回归直线ˆˆy bxa =+中1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =- 【答案】(1) 3.240y x =-+ (2) 8.75 【解析】(1)由题意知10x =,8y =,∴999580635551083.28190.25100110.25121ˆ5100b++++-⨯⨯==-++++-⨯,8(3.2)1040a =--⨯=,∴线性回归方程是 3.240y x =-+;(2)令 3.24012y x =-+=,可得8.75x =,∴预测销售量为12件时的售价是8.75元.【一隅三反】1.(2020·河南开封市)配速是马拉松运动中常使用的一个概念,是速度的一种,是指每公里所需要的时间,相比配速,把心率控制在一个合理水平是安全理性跑马拉松的一个重要策略.图1是一个马拉松跑者的心率y (单位:次/分钟)和配速x (单位:分钟/公里)的散点图,图2是一次马拉松比赛(全程约42公里)前3000名跑者成绩(单位:分钟)的频率分布直方图.(1)由散点图看出,可用线性回归模型拟合y 与x 的关系,求y 与x 的线性回归方程;(2)该跑者如果参加本次比赛,将心率控制在160左右跑完全程,估计他跑完全程花费的时间,并估计他能获得的名次.参考公式:线性回归方程ˆˆˆybx a =+中,12()()ˆ()nii i nixx y y b xx =--=-∑∑,ˆˆay bx =- 参考数据:135y =.【答案】(1)25285x y ∧=-+;(2)210分钟,192名. 【解析】(1)由散点图中数据和参考数据得 4.55677.565x ++++==,1001091301651711355y ++++==,()()()51522222211.536(1)300(5)1(26) 1.5(35)25( 1.5)(1)01 1.5ˆiii i i x x y y bx x ==---⨯+-⨯+⨯-+⨯-+⨯-===--+-+++-∑∑,135(25)62ˆ85ˆay bx =-=--⨯=, 所以y 与x 的线性回归方程为25285x y ∧=-+. (2)将160y =代入回归方程得5x =,所以该跑者跑完马拉松全程所花的时间为425210⨯=分钟. 从马拉松比赛的频率分布直方图可知成绩好于210分钟的累积频率为()0.0008500.00242102000.064⨯+⨯-=,有6.4%的跑者成绩超过该跑者,则该跑者在本次比赛获得的名次大约是0.0643000192⨯=名.2.(2020·云南红河哈尼族彝族自治州)随着电商事业的快速发展,网络购物交易额也快速提升,特别是每年的“双十一”,天猫的交易额数目惊人.2020年天猫公司的工作人员为了迎接天猫“双十一”年度购物狂欢节,加班加点做了大量准备活动,截止2020年11月11日24时,2020年的天猫“双十一”交易额定格在3700多亿元,天猫总公司所有员工对于新的战绩皆大欢喜,同时又对2021年充满了憧憬,因此公司工作人员反思从2014年至2020年每年“双十一”总交易额(取近似值),进行分析统计如下表:(1)通过分析,发现可用线性回归模型拟合总交易额y 与年份代码t 的关系,请用相关系数加以说明; (2)利用最小二乘法建立y 关于t 的回归方程(系数精确到0.1),预测2021年天猫“双十一”的总交易额. 参考数据:71()()138.5ii i tt y y =--=∑26.7= 2.646≈;参考公式:相关系数()()niit t y y r --=∑;回归方程y bt a ∧∧∧=+中,斜率和截距的最小二乘估计公式分别为:()()()711722211niii ii i niii i tty y t y nx yb tttnx∧====---==--∑∑∑∑,=a y bt ∧∧-.【答案】(1)答案见解析;(2)回归方程为ˆ 4.9 1.2yt =-,预测2021年天猫“双十一”的总交易额约为38百亿.【解析】(1)4t =,721()28ii tt =-=∑,17()()138.5i ii t t yy =--=∑26.7=所以()()138.50.982 2.64626.7niit t y y r --=≈≈⨯⨯∑因为总交易额y 与年份代码t 的相关系数近似为0.98, 说明总交易额y 与年份代码t 的线性相关性很强,从而可用线性回归模型拟合总交易额y 与年份代码t 的关系. (2)因为18.4y =,721()28ii tt =-=∑,所以()()71271()138.5ˆ 4.928i ii i i t t yy bt t ==--==≈-∑∑, ˆˆay b =-,18.4 4.94 1.2b ≈-⨯=- 所以y 关于t 的回归方程为ˆ 4.9 1.2yt =- 又将2021年对应的8t =代入回归方程得:ˆ 4.98 1.238y=⨯-=. 所以预测2021年天猫“双十一”的总交易额约为38百亿.3.(2021·湖北省武昌实验中学高二期末)根据统计,某蔬菜基地西红柿亩产量的增加量y (百千克)与某种液体肥料每亩使用量x(千克)之间的对应数据的散点图,如图所示.(1)依据数据的散点图可以看出,可用线性回归模型拟合y与x的关系,请计算相关系数r并加以说明(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)求y关于x的回归方程,并预测当液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?附:相关系数公式()()n ni i i ix x y y x y nx y r---==∑∑0.55≈0.95≈.回归方程y bx a=+中斜率和截距的最小二乘估计公式分别为()()()1122211n ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑,a y xb=-.【答案】(1)0.95;答案见解析;(2)0.3 2.5y x=+;610千克.【解析】(1)由已知数据可得2456855x++++==,3444545y++++==,所以()()()()()5131100010316i iix x y y=--=-⨯-+-⨯+⨯+⨯+⨯=∑,====所以相关系数()()50.95iix x y y r --===≈∑.因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.(2)()()()5152160.320iii ii x x y y b x x ==--===-∑∑,450.3 2.5a =-⨯=, 所以回归方程为0.3 2.5y x =+. 当12x =时,0.312 2.5 6.1y =⨯+=,即当液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为610千克.考点三 非一元线性方程【例3】(2020·全国高二课时练习)在一次抽样调查中测得5个样本点,得到下表及散点图.(1)根据散点图判断y a bx =+与1y c k x -=+⋅哪一个适宜作为y 关于x 的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果试建立y 与x 的回归方程;(计算结果保留整数) (3)在(2)的条件下,设=+z y x 且[)4,x ∈+∞,试求z 的最小值.参考公式:回归方程ˆˆˆybx a =+中,()()()1122211ˆn niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【答案】(1)1y c k x -=+⋅;(2)41y x=+;(3)6. 【解析】(1)由题中散点图可以判断,1y c k x -=+⋅适宜作为y 关于x 的回归方程; (2)令1t x -=,则y c kt =+,原数据变为由表可知y 与t 近似具有线性相关关系,计算得4210.50.251.555t ++++==,16125217.25y ++++==,222222416212150.520.2515 1.557.238.4544210.50.255 1.559.3k ⨯+⨯+⨯+⨯+⨯-⨯⨯==≈++++-⨯,所以,7.24 1.551c y kt =-=-⨯=,则41y t =+. 所以y 关于x 的回归方程是41y x=+. (3)由(2)得41z y x x x=+=++,[)4,x ∈+∞, 任取1x 、24x ≥,且12x x >,即124x x >≥,可得()()()21121212121212124444411x x z z x x x x x x x x x x x x -⎛⎫⎛⎫⎛⎫-=++-++=-+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()1212124x x x x x x --=,因为124x x >≥,则120x x ->,1216>x x ,所以,12z z >,所以,函数41z x x =++在区间[)4,+∞上单调递增,则min 44164z =++=. 【一隅三反】1.(2020·江苏省如皋中学高二月考)某种新产品投放市场一段时间后,经过调研获得了时间x (天数)与销售单价y (元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).表中10111,10i i i i w w w x ===∑.(1)根据散点图判断y a bx =+,与dy c x=+哪一个更适合作价格y 关于时间x 的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y 关于x 的回归方程. (3)若该产品的日销售量()g x (件)与时间x 的函数关系为()()100120g x x N x-=+∈,求该产品投放市场第几天的销售额最高?最高为多少元?附:对于一组数据()()()()112233,,,,,,...,,n n u v u v u v u v ,其回归直线vu αβ=+的斜率和截距的最小二乘法估计分别为121()(),()nii i nii vv u u v u u u βαβ==--==--∑∑.【答案】(1)dy c x =+更适合作价格y 关于时间x 的回归方程;(2)120(1)y x=+;(3)第10天,最高销售额为2420元;【解析】(1)根据散点图知dy c x=+更适合作价格y 关于时间x 的回归方程类型; (2)令1w x=,则y c dw =+, 而1011021()()18.4200.92()iii ii w w yy d w w ==--===-∑∑, 37.8200.8920c y dw =-=-⨯=,即有120(1)y x=+;(3)由题意结合(2)知:日销售额为1100()()20(1)(120)f x y g x x x=⋅=+-, ∴2110015()20(1)(120)400(6)f x x x x x=+-=+-, 若1t x =,令221121()655()1020h t t t t =+-=--+, ∴110t =时,max 1121()()1020h t h ==,即10x =天,max 121()(10)400242020f x f ==⨯=元, 所以该产品投放市场第10天的销售额最高,最高销售额为2420元.2.(2021·江苏苏州市)我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金.现该企业为了了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,研究了“十二五”和“十三五”规划发展期间近10年年研发资金投入额i x 和年盈利额i y 的数据.通过对比分析,建立了两个函数模型:①2y x αβ=+,②x t y e λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.令2i i u x >,()ln 1,2,,10i i v y i ==⋅⋅⋅,经计算得如下数据:(1)请从相关系数的角度,分析哪一个模型拟合程度更好?(2)(ⅰ)根据(1)的选择及表中数据,建立y 关于x 的回归方程;(系数精确到0.01)(ⅱ)若希望2021年盈利额y 为250亿元,请预测2021年的研发资金投入额x 为多少亿元?(结果精确到0.01)附:①相关系数()()niix x y y r --=∑,回归直线ˆˆˆya bx =+中:121()()ˆ()niii nii x x yy b x x ==--=-∑∑,ˆˆay bx =- ②参考数据:ln 20.693≈,ln5 1.609≈. 【答案】(1)模型x ty eλ+=的拟合程度更好;(2)(ⅰ)0.180.56ˆx ye +=;(ⅱ)27.56.【解析】(1)设{}i u 和{}i y 的相关系数为1r ,{}i x 和{}i v 的相关系数为2r ,由题意,()()101130.8715iiu u y y r --===≈∑,()()102120.9213iix x v v r --===≈∑,则12r r <,因此从相关系数的角度,模型x ty e λ+=的拟合程度更好.(2)(ⅰ)先建立v 关于x 的线性回归方程,由x ty eλ+=,得ln y t x λ=+,即v t x λ=+,()()()101102112ˆ65iii ii x x v v x x λ==--==-∑∑, 12ˆˆ 5.36260.5665tv x λ=-=-⨯=, 所以v 关于x 的线性回归方程为ˆ0.180.56vx =+, 所以ˆln 0.180.56yx =+,则0.180.56ˆx y e +=.(ⅱ)2021年盈利额250y =(亿元), 所以0.180.56250x e +=,则0.180.56ln 250x +=, 因为ln 2503ln5ln 23 1.6090.693 5.52=+≈⨯+=, 所以 5.520.5627.560.18x -≈≈.所以2021年的研发资金投入量约为27.56亿元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修三回归分析经典题型(带答案)
数学必修三回归分析经典题型
1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模
型为93.7319.7ˆ+=x y
用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D
【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D
2.对有线性相关关系的两个变量建立的线性回归方程$y =$a +b $x ,关于回归系数b
$,下面叙述正确的是________. ①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①
【解析】由b
$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.
3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若10
1
i i x =∑=18,则10
1
i i y =∑=
________. 【答案】254
【解析】由10
1i i x =∑=18,得x =1.8.
因为点(x ,y )在直线$y =3x +20上,则y =25.4. 所以10
1i i y =∑=25.4×10=254.
4.下表是某厂1~4月份用水量(单位:百吨)的一组数据:
由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.25
【解析】x =2.5,y =3.5, ∵回归直线方程过定点(x ,y ), ∴3.5=-0.7×2.5+a. ∴a =5.25.
5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =
b
$x +$a ,那么下列说法正确的是________. ①直线$y =b
$x +$a 必经过点(x ,y ); ②直线$y =b
$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;
③直线$y =b
$x +$a 的斜率为1
2
21
n
i i
i n
i
i x y
nx y x
nx
==--∑∑;
④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$2
1
()n
i i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差. 【答案】①③④
【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.
6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185
【解析】设父亲身高为x cm ,儿子身高为y cm ,则
x =173,y =176,b
$=2099
++=1, $a
=y -b $ x =176-1×173=3, ∴$y =x +3,当x =182时,$y =185.
7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:
(1)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程; (2)估计使用年限为10年时,维修费用为多少? (参考:①3.1120.765.655.548.332.22=⨯+⨯+⨯+⨯+⨯ ②x b y a x
n x y
x n y
x b n i i n
i i
i -=--=
∑∑==,1
2
2
1

【答案】解:(1)0.08 1.23y x =+线性回归方程为
(2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求出,x y ,然后利用公式
x b y a x
n x
y x n y
x b n
i i
n
i i
i -=--=
∑∑==,1
2
2
1,a y bx =-,可求出回归直线y ax b =+方程.
(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.
解:(1)45
65432=++++=x Θ
55
0.75.65.58.32.2=++++=y
90654322
22225
12=++++=∑=i i x Θ又
23.180
905453.112=-⨯⨯-=∴b
08.0423.15=⨯-=-=x b y a 又 x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到: 38.121023.108.0=⨯+=y
∴估计使用年限为10年时,维修费用为12.38万元.。

相关文档
最新文档