六年级奥数估计与估算一
估算知识点归纳六年级
估算知识点归纳六年级估算是数学中一个重要的计算方法,通过估算可以快速得到接近实际值的结果。
在六年级的学习中,估算有着广泛的应用,涉及到估算四则运算、估算测量长度、估算计量容量等内容。
本文将对六年级估算的知识点进行归纳总结,并提供相应的解题思路和方法。
一、估算四则运算在进行四则运算时,可以通过估算来快速估计答案的大小,从而判断计算结果的合理性。
下面以加法和乘法为例进行说明。
1. 估算加法当两个数相加时,可以对其中的一个或两个数进行近似估算,快速得出结果的范围。
例如,计算345 + 286,可以将345近似估算为300,286近似估算为300,然后进行相加,得出结果约为600。
2. 估算乘法在进行乘法运算时,可以将待乘数和乘数分别进行估算,然后得出一个近似估算的结果。
例如,计算73 × 42,可以将73估算为70,42估算为40,然后进行相乘,得出结果约为2800。
二、估算测量长度在测量长度时,通过估算可以快速判断物体的长度范围,从而选择合适的测量工具。
以下是两种常见的估算长度的方法。
1. 估算直线长度当需要估算直线的长度时,可以通过目测和比较判断物体的长度范围。
例如,估算一张桌子的长度,可以先用手指作为参照物,估算出手指宽度大约是2厘米,然后对桌子长度进行比较,估算出桌子长度大约是8个手指宽度,即约16厘米。
2. 估算曲线长度当需要估算曲线的长度时,可以通过近似方法将曲线划分成直线段进行估算。
例如,估算一个湖泊的周长,可以选择几条相对直的边作为近似直线段,估算出每条直线段的长度,然后将这些长度相加,得出估算的周长。
三、估算计量容量估算容量涉及到实际生活中的物体容量、容器容量等。
以下是两种常见的估算容量的方法。
1. 估算物体容量当需要估算物体的容量时,可以通过目测和经验来估算物体的体积大小。
例如,估算一个篮球的容量,可以通过比较篮球和其他常见物体的体积来进行估算,例如比较篮球和一个西瓜的体积,然后根据估算结果得出篮球的容量范围。
六年级奥数教程-第04讲 估算的技巧 通用版
【六年级奥数教程】第4讲 估算的技巧在日常生活、科学研究及工程建设中,往往会遇到比较复杂的计算,许多情况下,我们没有必要也不可能算出绝对精确的结果,这时,只需估算一个大致结果就可以了,估算常常运用取近似值、放与缩等技巧进行快速、近似的计算,这是一种十分重要的计算方法.熟练掌握这种算法不仅可以帮助我们解决问题,还可以用来检验计算结果是否正确.例1 试用估算法检验下列计算是否正确.534×78=543 思维点拨 因为一个因数78小于1,所以积应小于另一个因数,而543大于534,所以计算错误.例2 某校六年级三个班举行一次数学考试,六(1)班43人,平均分是81分,六(2)班46人,平均分是83分,六(3)班43人,平均分是85分,这三个班每人的平均分是( )分.A .81B .82C .83D .85思维点拨 根据平均数的意义,三个班每人的平均分既不能低于或等于81分,也不能高于或等于85分,所以答案A ,D 都是错误的,因为六(1)班和六(3)班都是43人,若从六(3)班每个同学中取2分补给六(1)班的每个同学,平均分正好是83分,又与六(2)班的平均分相同,所以应选C .例3 计算7.8+7.98+7.998+···+7.9999999998的整数部分是多少.思维点拨 这道题有10个加数,分别是7.8,7.98,7.998,…,7.9999999998,从十分位起依次多一个9,两个9……九个9,把这十个数加起来,可以直接计算出结果,再确定整数部分是多少,但这样太烦琐了.实际上,和的整数部分只与十个数的个位、十分位、百分位上各数的和有关,而与百分位以下各位上的数的和没有太多关系,这样就可以减少计算的次数而得出和的整数部分.例4 求下式的整数部分:111112000200120022009+++⋅⋅⋅+.思维点拨 先确定分母部分最小不小于几,最大不大于几,便可确定分母部分的值的范围.若这个范围很小,就能算出该式的整数部分,因为分母部分一定比10个12000小,一定比10个12009大,从而可以得到该算式的值在200到200.9之间,从而得出该算式整数部分的确定值.例5 一个四位数66能被134整除,求这个四位数除以134的商,思维点拨 原四位数一定在6006到6996之间,容易求出商的范围,再利用整除性求出这个商.例6 3a ,7b 都是真分数,且3a +7b ≈1.38,那么a b= . 思维点拨 先用不等式估计3a +7b 的大小,列出不定方程,从而求出整数解.●课内练习1.试用估算法检验下列计算是否正确. 2054×113=20362.某校六年级三个班举行一次数学考试.五(1)班41人,平均分是82分;五(2)班44人,平均分是83分;五(3)班41人,平均分是84分,这三个班每人的数学平均分是( )分.A .82B .84C .83D .83.53.求4.5+4.65+4.665+…+4.6666666665的整数部分.4.求11111100101202109+++⋅⋅⋅+的整数部分.5.求40÷(0.40+0.41+0.42+…+0.59)的商的整数部分是多少.6.下式是用四舍五入的方法计算得到的三个真分数的和,5a 十7b 十8c ≈1.35, 那么,三个自然数a =( ),b =( ),c =( ).●课外作业1.试用估算法检验下列计算是否正确.0.865×5.43=4.63752.某车间加工一种机器零件,4人6小时能加工104个,照这样计算,10人加工260个零件,需要( )小时.A.6 B .7 C .8 D.103.设A =999999999999999910100100010000000000+++⋅⋅⋅+,求A 的整数部分.4.求2111110111229+++⋅⋅⋅+的整数部分.5.求10÷70+11÷71+12÷72+…+20÷80的整数部分.6.有一个算式359++≈1.71,,算式左边方框里都是整数,右边答案是四舍五入后的近似值.求算式中方框里的整数分别是多少.7.六(1)班共44名学生,A ,B ,C ,D ,E 五名同学竞选班长.已知A 得票最多,得23票,B 第二名,C ,D ,E 分别为三、四、五名,E 得3票,问B 最多得几票.8.三个真分数359x y z ++≈1.35,那么x ,y ,y 各是多少?9.比较两式45678÷12345和56789÷23456的大小.10.求1111100101102300+++⋅⋅⋅+的整数部分.你知道吗德国数学家高斯10岁的时候就能很快地算出1+2+3+…+100=5050.那么1+2+3+…+98+99+100+99+98+97+…+4+3+2+1=?你能很快算出来吗?宁宁能很快算出来,答案是10000,因为他记住了一个速算的方法.请看: 1+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=42…刚有公式: 1+2+3+…+(n -1)+n +(n -1)+…+3+2+1=n 2.再看上面那道题目,它的答案就是1002=10000.如果你记住了这个方法,那么你也能很快地算出这种类型的题目的答案了.第4讲估算的技巧例1 因为78<1,故结果不可能大于534,所以计算错误. 例2 选C .例3 7.8+7.98+7.998+…+7.9999999998=8-0.2+8-0.02+8-0.002+…+8-0.0002⋅⋅⋅9个“0?=8×10-0.2222⋅⋅⋅10个“2?整数部分是79.例4估算分母部分值的范围11112000200120022009+++⋅⋅⋅+<102000=1200,所以 200<111112000200120022009+++⋅⋅⋅+<200.9. 故它的整数部分是200.例5这个四位数在6006~6996之间,则6006÷134=44……110.6996÷134=52……28,所以商在44~52之间,因商的个位数字与4相乘的积的个位应是6,故商的个位数字必然是9,因此所求的商是49.例6 因为3a +7b ≈1.8, 所以1.37<3a +7b <1.39, 两边乘21,得28.77<7a +3b<29.19.因为3a ,7b 是真分数,所以a ,b 均为自然数.因此7a +3b 必是自然数,可见 7a +3b =29,2937b a -=+7b . 当b =5时,有整数解a =2,所以a b =25. ●针对性训练课内练习1.计算错误,因为113=43>1,故结果不能小于2054. 2.选C .3.忽略百分位以下各位上数的和可得到4×10+(0.5+0.6×9)+(0.05+0.06×8)=46.43,故和的整数部分是46.4.1109×10<1100+1101+…+1109<1100×10,10<1111100101109++⋅⋅⋅+<10.9,因此它的整数部分是10.5.(0.40+0.59)×20÷2=9.9,40÷9.9≈4,故商的整数部分是4.6.三个真分数的和四舍五入是1.35,说明1.345<5a +7b +8c <1.354, 化简,得376.6<56a +40b +35c<379.12.因为a ,b ,c 都是自然数,所以56a +40b +35c 的取值范围是377,378,379. 当56a +40b +35c =377时,a =2,b =4,c =3;当56a +40b +35c =378时,a ,b ,c 没有整数解;当56a +40b +35c =379时,a =4,b =3,c =1.课外作业1.错误.2.选A3.忽略千分位以下各位上数的和得到0.9×10+0.09×9+0.009×8=9.882,故A 的整数部分是9.4.111101129++⋅⋅⋅+ =393939102911281920++⋅⋅⋅+⨯⨯⨯, 于是39101920⨯⨯<111101129++⋅⋅⋅+<39101029⨯⨯,所以29239⨯<原式<192239⨯⨯,所以原式的整数部分是1.5.设原式=A ,A<10÷70+11÷70+…+20÷70=165÷70,A>10÷80+11÷80+12÷80+…+20÷80=165÷80,可知2<A<3.所以原式的整数部分是2.6.1.705<359++<1.714, 即1.705<159545⨯+⨯+⨯<1.714, 所以76.725<15×□+9×□+ 5×□<77.13,得到15×□+9×□+5×□=77,则2,3,4满足题意.7.B 最多得9票.B,C,D 三人共得票18张,B 最多得9票,最少得7票.8.因为3x ,5y ,9z是真分数,所以x,y,z 必是自然数.由题意可知, 1.345<359xyz++<1.354,所以141.225<35x +21y +15x<142.17,故35x +21y +15x =141或142,由35x +21y +15x =141,得x =3,y =1,z =1,而333x=,故不合题意.由35x +21y +15x =142,得x =2,y =2,2=2.9.45678÷12345=1+33333÷12345,56789÷23456=1+33333÷23456,可见45678÷12345>56789÷23456.10.原式=(111100101199++⋅⋅⋅+)+(111200201300++⋅⋅⋅+) <11100101100200⨯+⨯<1+200200=2. 11400100300100300+=⨯>4001200200100=⨯, 11400101299101299+=⨯>4001200200100=⨯, …11400199201199201+=⨯>4001200200100=⨯, 所以原式>1100×100+1200>1, 于是有1<原式<2,所以原式的整数部分是1.。
小学数学奥数基础教程(六年级)--19
小学数学奥数基础教程(六年级)本教程共30讲近似值与估算在计数、度量和计算过程中,得到和实际情况丝毫不差的数值叫做准确数。
但在大多数情况下,得到的是与实际情况相近的、有一定误差的数,这类近似地表示一个量的准确值的数叫做这个量的近似数或近似值。
例如,测量身高或体重,得到的就是近似数。
又如,统计全国的人口数,由于地域广人口多,统计的时间长及统计期间人口的出生与死亡,得到的也是近似数。
用位数较少的近似值代替位数较多的数时,要有一定的取舍法则。
要保留的数位右边的所有数叫做尾数,取舍尾数的主要方法有:(1)四舍五入法。
四舍,就是当尾数最高位上的数字是不大于4的数时,就把尾数舍去;五入,就是当尾数最高位上的数字是不小于5的数时,把尾数舍去后,在它的前一位加1。
例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.40。
(2)去尾法。
把尾数全部舍去。
例如:7.3964…,截取到千分位的近似值是7.396,截取到百分位的近似值是7.39。
(3)收尾法(进一法)。
把尾数舍去后,在它的前一位加上1。
例如:7.3964…,截取到千分位的近似值是7.397,截取到百分位的近似值是7.40。
表示近似值近似的程度,叫做近似数的精确度。
在上面的三种方法中,最常用的是四舍五入法。
一般地,用四舍五入法截得的近似数,截到哪一位,就说精确到哪一位。
例1有13个自然数,它们的平均值精确到小数点后一位数是26.9。
那么,精确到小数点后两位数是多少?分析与解:13个自然数之和必然是整数,因为此和不是13的整数倍,所以平均值是小数。
由题意知,26.85≤平均值<26.95,所以13个数之和必然不小于26.85的13倍,而小于26.95的13倍。
26.85×13=349.05,26.95×13=350.35。
因为在349.05与350.35之间只有一个整数350,所以13个数之和是350。
350÷13=26.923…当精确到小数点后两位数时,是26.92。
六年级数学学习技巧巧用估算解决近似计算问题
六年级数学学习技巧巧用估算解决近似计算问题数学作为一门学科,是学生们学习中十分重要的一部分。
在六年级,数学学习的难度进一步增加,其中之一就是近似计算问题。
为了解决这一问题,学生可以巧用估算技巧,以更快、更准确地得出近似的解答。
本文将介绍一些六年级数学学习技巧,着重探讨如何巧用估算解决近似计算问题。
估算是指通过粗略的计算得出近似的答案,而非进行精确的计算。
在解决近似计算问题时,估算技巧可以提高计算速度,并帮助学生更好地掌握数学运算的本质。
以下是几种常用的估算方法:一、数位估算法数位估算法是一种简便的估算方法。
以加法为例,假设有两个数要相加,我们可以将这两个数中的个位数进行相加,再将十位数相加,以此类推。
例如计算72+58,我们可以先计算个位数2+8=10,再计算十位数7+5=12,最后得出的结果是120,这是一个较为接近的估算答案。
二、舍入法舍入法是一种常用的估算方法,在进行近似计算时尤其有效。
通过舍入法,我们可以将一些较复杂的数进行简化,以便更快地估算答案。
例如,对于89.43这个数,我们可以舍弃小数点后的数字,将其近似为89。
三、分数估算法对于小数运算,有时使用分数表示会更方便估算。
学生可以将小数转换为分数,然后利用分数的特性进行估算。
例如计算0.7×0.9,我们可以将它们转换成分数7/10和9/10,相乘得到63/100,然后将63/100近似为0.6。
四、基于倍数的估算法基于倍数的估算法是一种常用的估算方法。
在处理乘法和除法问题时,我们可以使用近似的倍数进行计算。
例如,计算398×5,我们可以将398近似为400,然后进行乘法运算,得到2000。
五、利用近似数进行估算利用已知的近似数进行估算也是一种有效的方法。
例如,计算198×7,我们可以近似地使用200×7=1400进行估算。
综上所述,六年级学生在数学学习中遇到近似计算问题时,可以巧用估算技巧来提高计算效率。
六年级奥数题(一)
一、分数的巧算(一) 年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151. 12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211. 13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++. 14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…,直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=. 5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=. 6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=. 10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-=91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.一、分数的巧算(二) 年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数) 13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++. 14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=. 10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a222222=⎪⎭ ⎝-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=. 14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++=⎪⎭ ⎝+⋅⋅⋅++⨯=1999100110002 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.二、估计与估算(一)年级 班 姓名 得分 一、填空题1.有若干个小朋友,他们的年龄各不相同.将他们的年龄分别填入下式的□中,都能使不等式成立.这些小朋友最多有 个. 215<43.2.010000000009999999999100099910099109+⋅⋅⋅⋅⋅⋅+++的整数部分是 .3.10971939719297199719⨯+⋅⋅⋅+⨯+⨯+=A ,与A 最接近的整数是 .4.有24个偶数的平均数,如果保留一位小数的得数是15.9,那么保留两位小数的得数是 .5.1995003这个数,最多可以拆成 个不同的自然数相加的和.6.有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数.那么第19个数的整数部分是 .7.有一长3米的线段,第一次把这条线段三等分后去掉中间一部分,第二次再把剩下的两线段中的每一段都三等分后都去掉中间一部分,第三次再把剩下的所有线段的每一段都三等分后都去掉中间一部分.继续这一过程,这样至少连续 次后,才使剩下的所有线段的长度的和小于0.4米.8.已知199711982119811198011+⋅⋅⋅+++=S ,那么S 的整数部分是 .9.1009987654321⨯⋅⋅⋅⨯⨯⨯⨯与101相比较,较大的哪个数是 .10.某工厂有三个车间,共有75人报名参加冬季长跑,其中第一车间人数最多,第三车间人数最少.如果第一车间报名人数是第三车间报名人数的212倍,那么第二车间报名人数是第三车间报名人数的 倍.二、解答题11.已知1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数部分是 .12.四个连续自然数的倒数之和等于2019,求这四个自然数的两两乘积之和.13.用四舍五入的方法计算三个分数的和,得近似值为35.1875≈++cb a ,试求c b a ,,的值.(c b a ,,是三个自然数)14.国际象棋比赛的奖金总数为10000元,发给前五名.每一名的奖金都不一样,名次在前的钱数要比名次在后的钱数多.每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、第三名两人之和,第二名的钱数是第四、第五名两人之和,那么第三名最多能得多少元?———————————————答 案——————————————————————1. 3.依题意,得320326=<□<10,所以□=7,8,9.2. 9.原式>9999=+⋅⋅⋅++, 原式<10,所以原式的和的整数部分是9.3. 11.()97751010219719=+⋅⋅⋅++⨯=A ,因此与A 最接近的整数是11.4. 15.92设这24个偶数之和为S .由S >15.85×24=380.4和S <15.95×24=382.8,以及S 是偶数,推知S =382,所求数为92.1524382≈÷.5. 1997.若要拆成的不同自然数尽量多,应当从最小的自然数1开始,则2)1(321+=+⋅⋅⋅+++n n n ≤1995003. 所以 )1(+n n ≤3990006当1997=n 时,正好有)1(+n n ≤3990006, 所以最多可以拆成1997个不同自然数的和.6. 91.根据题设条件,这列数依次是105,85,95,90,92.5, 91.25, 91.875, …, 显然,从第六项起后面每个数的整数部分都是91,所以,第19个数的整数部分是91.7. 5.这一过程每进行一次,剩下所有线段的和等于上次剩下的322716323232323=⨯⨯⨯⨯>0.4, 813232323232323=⨯⨯⨯⨯⨯<0.4, 所以至少进行5次.8. 110.分母>11011819801=⨯,分母<11111819981=⨯, 所以110<S <111,即S 的整数部分等于110.9. 101.证9998765432,10099654321⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⨯⨯⨯=B A , 则2101100110099999854433221⎪⎭⎫ ⎝⎛==⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯B A .因为A 的前49项的对应项都小于B , A 的最后一项10099<1, 所以A <B , 再由B A ⨯=⎪⎭⎫⎝⎛2101>A ×A , 推知, 101>A .10. 761或1631.设第二和第三车间报名人数分别为a 和b ,则第一车间b b 25212=⨯,依题意,得 b a b a b 272575+=++=因为b ≤a ≤b 25,所以b 29≤b a 27+≤6b ,即b 29≤75≤6b ,所以2112≤b ≤3216,又b 为偶数,所以b =14或16.(1) 当b =14时, a =26, 761=b a ;(2) 当b =16时, a =19, 1631=b a .11. 1006915661265111512111⨯⎪⎭⎫⎝⎛⨯+⋅⋅⋅+⨯+⨯+⋅⋅⋅+++=a691566126511100151001210011100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯+=6915661265113115341235111100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯++=最后一个分数小于1,所以a 的整数部分是101.12. 设这四个连续自然数分别为a ,a +1,a +2, a +3,则 20193121111=++++++a a a a ,所以 31211112019++++++=a a a a <a a a a a 41111=+++, a <1944. 易知a =1,2,4均不合题意,故a =3,这四个自然数为3,4,5,6,其两两乘积之和为:119656454635343=⨯+⨯+⨯+⨯+⨯+⨯.13. 依题意,得 1.345≤875cb a ++<1.355,所以 376.6≤56a +40b +35c <379.4又a ,b ,c 为自然数,因此, 56a +40b +35c =377 ① 或56a +40b +35c =378 ② 或56a +40b +35c =379 ③考虑不定方程①,由奇偶分析,知c 为奇数,所以40b +35c 的个位为5, 因此56a 的个位为2,a 的个位为2或7.又a <5643656379=,故a =2, 因此8b +7c =53,易知b =4, c =3.同法可知不定方程②无解,方程③的解为a =4, b =3, c =1.14. 设第i 名的奖金为100ai 元(i =1,2,3,4,5).依题意,得 1000010010010010010054321=++++a a a a a , 且542321,a a a a a a +=+=,整理 1002332=+a a ① 所以 3223100a a +=<222523a a a =+,故2a >20, 由①易知2a 必为偶数,所以2a ≥22.故 ()23310021a a -=≤()1722310021=⨯-. 即第三名最多能得1700元.二、估计与估算(二)年级 班 姓名 得分 一、填空题1. 将六个分数215,94,12011,451,83,358分成三组,使每组的两个分数的和相等,那么与451分在同一组的那个分数是 .2. 数151311197535232129171551719212321357911131÷的十分位到十万分位的数字为 .3. 满足下式的n 最小等于 . )1(1431321211+⨯+⋅⋅⋅+⨯+⨯+⨯n n >19981949.4. 已知1101011102103101102100101+⋅⋅⋅+++=A ,则A 的整数部分是 .5. 小明计算17个自然数的平均数所得的近似值是31.3,老师指出小明少取了一位有效数字,则老师要求的平均数应该是 .6.有三十个数:,302964.1,,30364.1,30264.1,30164.1,64.1+⋅⋅⋅+++如果取每个数的整数部分,并将这些整数相加,那么其和是 .7.将奇数1,3,5,7,…,由小到大按第n 组有2n -1个奇数进行分组 (1), (3,5,7), (9,11,13,15,17), … 第一组 第二组 第三组 那么1999位于第 组的第 个数.8. 22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是 .9. 数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是 .10. 有甲、乙、丙、丁四个同学去林中采蘑菇.平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数.又知甲采的数量是乙的54,乙采的数量是丙的23倍.丁比甲多采3个蘑菇.那么,丁采蘑菇 个. 二、解答题11.两个连续自然数的平方之和等于365,又有三个连续自然数的平方之和也等于365.试找出这两个连续自然数和那三个连续自然数.12.如图所示,方格表包括A 行B 列(横向为行,纵向为列),其中依次填写了自然数1至B A ⨯ ,现知20在第3行,41在第5行,103在最后一行,试求A 和B .13.求分数1611514131211++⋅⋅⋅++++=A 的整数部分.14.甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?———————————————答 案——————————————————————1.94. 注意到451是六个分数中的最小数,因此与451在同一组的分数,必须是这六个分数中的最大数(否则,六个数不能分成三组,每组的两个分数的和相等),因此所求数为94.2. 2,5,9,5,3.设题中所述式子为B A ÷,由于题中所涉及的数太大,不太可能通过直接计算来确定前五位数(否则计算量太大),下面利用估值方法来求:因为2.05313,3.05214>÷>÷<÷<÷B A B A , 所以此数的第一位数字为2.又因为259.052331357,2597.05238.135>÷>÷<÷<÷B A B A , 所以此数的第一、二、三位数字为2,5,9. 又因为,25954.0523212135792<÷<÷B A25953.0523********1>÷>÷B A , 所以此五位数字是2,5,9,5,3.3. 40.原式左端等于111+-n ,可得不等式199********>+-n ,所以19984911<+n , 解得493839>n ,故n 最小等于40.4. 67.⎪⎭⎫ ⎝⎛+⋅⋅⋅+++++⋅⋅⋅+++=11010102101011010010)11321(A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++=1101010210101101001066所以 1016711100106611110106667=⨯+<<⨯+=A 因此, A 的整数部分为67.5. 31.29.设17个自然数的和为S ,由3.3117≈S ,得31.25≤35.3117<S. 所以531.25≤S <532.95,又S 为整数,所以S =532,则29.311753217≈=S6. 49.关键是判断从哪个数开始整数部分是2,因为2-1.64=0.36,我们就知⋅⋅⋅==33.0301031, 故先看3011,3011=⋅⋅⋅66.036.0>,这说明“分界点”是301164.1+,所以前11个数整数部分是1,后19个数整数部分为2,其和为4921911=⨯+.7. 32, 39.第n 组的最后一个奇数为自然数中的第2)12(531n n =-+⋅⋅⋅+++个奇数, 即122-n .设1999位于第n 组,则19991)1(22<--n ≤122-n . 由 223222047199919211312⨯=<<=-⨯1-知n=32. 所以1999在第32组第39312119992=-+个数.8. 29.当两个数的和不变时,两数越接近(即差越小)它们的积越大. 所以24.101.823.102.822.103.8⨯<⨯<⨯,从而30325.18324.101.822.103.823.102.824.101.8=⨯⨯<⨯⨯<⨯+⨯+⨯.52.2969.38)22.123.124.1(822.103.823.102.824.101.8=⨯=++⨯>⨯+⨯+⨯,所以22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是29.9. 0.01注意到35327322=>=,所以6992332132,2132>>,所以01.01001961321322132561010=>=⨯=⨯> 又443818025=<=⨯,所以25132,51328844<<.所以02.0501212513225132221010==⨯<⨯<. 故数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是0.01.10. 39.设丙采蘑菇数为x 个,则乙采x 23个,甲采x x 562354=⋅个,丁采⎪⎭⎫⎝⎛+356x 个,四人合采蘑菇数为:310493565623+=++++x x x x x . 依题意,得:30≤⎪⎭⎫⎝⎛+3104941x <40解得 4910117494323⨯=≤492324910157=⨯<x又x 1049必须为整数, x 为10的倍数,因此只能x =30, 从而丁采39356=+x (个).11. 用估值法,先求两个连续自然数,因为5.1822365=÷,所以在两个连续自然数中,一个的平方小于182.5,另一个的平方大于182.5.由132=169,142=196得到,这两个连续自然数是13和14.类似地,3365÷32121=,最接近32121的自然数的平方是112=121,所以这三个连续自然数应是10,11,12.经验证,符合题意.12. 依题意,得2B <20≤3B ,4B <41≤5B ,所以326≤B <10,518≤B <4110,故518≤B <10,因此, B =9.由103在最后一行,得9(A -1)<103≤9A ,所以, 9411≤A <9412,故A =12.13.⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=16111110191817151416131211A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++=16111110191817151412又因为14148171514181421=⨯<+++<⨯= 181816111110191161821=⨯<+⋅⋅⋅+++<⨯= 所以 4112212123=++<<++=A故A 的整数部分是3.14.由题目条件,甲班捐书最多,丙班最小,甲班比丙班多捐28+101=129(册). 因为丙班捐书不少于400册,所以甲班捐书在529~550册之间.甲班人数不少于11349311)776529(=+÷---(人),不多于11251311)776550(=+÷---(人),即甲班人数是50人或51人.如果甲班有50人,则甲班共捐书6+7+7+11×(50-3)=537(册),推知乙班捐书537-28=509(册),乙班有10951410)386509(=+÷⨯--(人),人数是分数,不合题意.所以甲班有51人,甲班共捐书548)351(11776=-⨯+++(册),推知乙班捐有53÷+⨯--(人),-(=548104)38628丙班有49⨯÷+-⨯-(人).-(=548)697212948三、定义新运算(一) 年级 班 姓名 得分一、填空题1.规定a ☉b =ab b a -,则2☉(5☉3)之值为 .2.规定“※”为一种运算,对任意两数a ,b ,有a ※b 32b a +=,若6※x 322=,则x =.3.设a ,b ,c ,d 是自然数,定义bc ad d c b a +>=<,,,.则<><><<,3,2,1,4,4,3,2,13, 4, 1, 2>>=<>1,4,3,2, .4.[A ]表示自然数A 的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算:]7[])22[]18([÷+= .5.规定新运算※:a ※b=3a -2b .若x ※(4※1)=7,则x= .6.两个整数a 和b ,a 除以b 的余数记为a ☆b .例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9) ☆4= .7.对于数a ,b ,c ,d 规定d c ab d c b a +->=<2,,,.如果7,5,3,1>=<x , 那么x = .8.规定:6※2=6+66=72,2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5= .9.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]= .10.假设式子b a a ⨯#表示经过计算后,a 的值变为原来a 与b 的值的积,而式子b a b -#表示经过计算后,b 的值为原来a 与b 的值的差.设开始时a =2,b =2,依次进行计算b a a ⨯#,b a b -#,b a a ⨯#,b a b -#,则计算结束时,a 与b 的和是 .二、解答题11.设a ,b ,c ,d 是自然数,对每两个数组(a ,b ),(c ,d ),我们定义运算※如下: (a ,b )※(c ,d )= (a+c ,b +d );又定义运算△如下: (a ,b )△(c ,d )= (ac+bd ,ad+bc ).试计算((1,2) ※(3,6))△((5,4)※(1,3)).12.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼).13.22264⨯⨯=222⨯⨯⨯表示成()664=f ;33333243⨯⨯⨯⨯=表示成()5243=g .试求下列的值:(1)()=128f ; (2))()16(g f =; (3)6)27()(=+g f ;(4)如果x , y 分别表示若干个2的数的乘积,试证明:)()()(y f x f y x f +=⋅.14.两个不等的自然数a 和b ,较大的数除以较小的数,余数记为a ☉b ,比如5☉2=1,7☉25=4,6☉8=2.(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x =2,而x 小于20,求x ;(3)已知(19☉x )☉19=5,而x 小于50,求x .———————————————答 案—————————————————————— 1. 120411. 5☉3=15165335=-,2☉(5☉3)=2☉12041112016121516151621516==-=.2. 8.依题意,6※326x x +=,因此322326=+x ,所以x=8.3. 280.;1421343,2,1,4;1032414,3,2,1=⨯+⨯>=<=⨯+⨯>=<.1443121,4,3,2;1014232,1,4,3=⨯+⨯>=<=⨯+⨯>=< 原式2801014141014,10,14,10=⨯+⨯>==<.4. 5.因为23218⨯=有6)12()11(=+⨯+个约数,所以[18]=6,同样可知[22]=4,[7]=2.原式52)46(=÷+=.5. 9.因为4※1=101243=⨯-⨯,所以x ※(4※1)= x ※10=3x -20.故3x -20=7,解得x =9.6. 0.89226+⨯=,26☆9=8,又428⨯=,故(26☆9)☆4=8☆4=0.7. 6.因为x x x +=+-⨯⨯>=<15312,5,3,1,所以71=+x ,故6=x .8. 86415.7※5=7+77+777+7777+77777=86415.9. 25.原式=[3△5]×[5☉7]=5×5=25.10. 14.第1次计算后,422=⨯=a ;第2次计算后,224=-=b ;第3次计算后,824=⨯=a ;第4次计算后,628=-=b .此时1468=+=+b a .11. (1,2)※(3,6)=(1+3,2+6)=(4,8),(5,4)※(1,3)=(5+1,4+3)=(6,7). 原式=(4,8)△(6,7)=(4×6+8×7,4×7+8×6)=(80,76).12. 原式=羊△羊☆羊△狼=羊☆羊△狼=羊△狼=狼.13. (1)()72)128(7==f f ;(2)()())81(342)16(44g g f f ====;(3)因为()())8(233636)27(633f f g g ===-=-=-,所以6)27()8(=+g f ; (4)令,2,2n m y x ==则n y f m x f ==)(,)(.()())()(222)(y f x f n m f f y x f n m n m +=+==⋅=⋅+.14. (1)1991☉2000=9;由5☉19=4,得(5☉19)☉19=4☉19=3;由19☉5=4,得(19☉5)☉5=4☉5=1.(2)我们不知道11和x 哪个大(注意,x ≠11),即哪个作除数,哪个作被除数,这样就要分两种情况讨论.1) x <11,这时x 除11余2, x 整除11-2=9.又x ≥3(因为x 应大于余数2),所以x =3或9.2) x >11,这时11除x 余2,这说明x 是11的倍数加2,但x <20,所以x =11+2=13.因此(2)的解为x =3,9,13.(3)这个方程比(2)又要复杂一些,但我们可以用同样的方法来解.用y 表示19☉x ,不管19作除数还是被除数,19☉x 都比19小,所以y 应小于19.方程y ☉19=5,说明y 除19余5,所以y 整除19-5=14,由于y ≥6,所以y =7,14.当y =7时,分两种情况解19☉x =7.1)x <19,此时x 除19余7,x 整除19-7=12.由于x ≥8,所以x =12.2) x >19,此时19除x 余7, x 是19的倍数加7,由于x <50,所以x =19+7=26或7219+⨯=x =45.当y =14时,分两种情况解19☉x =14.1) x <19,这时x 除19余14, x 整除19-14=5,但x 大于14,这是不可能的.2)x >19,此时19除x 余14,这就表明x 是19的倍数加14,因为x <50,所以x =19+14=33.总之,方程(19☉x )☉19=5有四个解,x =12,26,33,45.三、定义新运算(二) 年级 班 姓名 得分一、填空题1.规定:a ※b =(b+a )×b ,那么(2※3)※5= .2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= .3.定义运算“△”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的和记为a △b .例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= .4.已知a ,b 是任意有理数,我们规定: a ⊕b = a +b -1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 .5.x 为正数,<x >表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 .6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x = .7.如果1※4=1234,2※3=234,7※2=78,那么4※5= .8.我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5,符号△表示选择两数中较小数的运算,例如:5△3=3△5=3.请计算:=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∙∙25.210623799343.03323625.026176.0 .9.规定一种新运算“※”: a ※b =)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x = .10.对于任意有理数x , y ,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※○ △ △ ○3=4,x ※m=x (m ≠0),则m 的数值是 .二、解答题11.设a ,b 为自然数,定义a △b ab b a -+=22.(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4).12.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a -b ,如果a <b ,则定义a ※b= b - a .(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a ※b= b ※a ;②(a ※b )※c= a ※(b ※c ).13.设a ,b 是两个非零的数,定义a ※b ab b a +=. (1)计算(2※3)※4与2※(3※4).(2)如果已知a 是一个自然数,且a ※3=2,试求出a 的值.14.定义运算“⊙”如下:对于两个自然数a 和b ,它们的最大公约数与最小公倍数的差记为a ⊙b . 比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c 整除a 和b ,则c 也整除a ⊙b ;如果c 整除a 和a ⊙b ,则c 也整除b ;(3)已知6⊙x =27,求x 的值.———————————————答 案——————————————————————1. 100.因为2※3=(3+2)×3=15,所以(2※3)※5=15※5=(5+15)×5=100.2. 8.依题意,得305)2(=⨯-a ,解得8=a .3. 42.18△12=(18,12)+[18,12]=6+36=42.4. 98.原式]1313[4)]253()186[(4⊕⊗=-⨯⊕-+⊗=982254254]11313[4=-⨯=⊗=-+⊗=5. 11.<19>为不超过19的质数,有2,3,5,7,11,13,17,19共8个.<93>为不超过的质数,共24个,易知<1>=0,所以原式=<<19>+<93>>=<8+24>=<32>=11.6. 6.x ⊙5-5⊙x=(3 x -2×5)-(3×5-2 x )=5 x -25,由5 x -25=5,解得x=6.7. 45678.8. 21. 因为∙6.0○322617=○322617=,0.625△853323=△853323=, ∙3.0△319934=△319934=,106237○10623725.2=○4949=, 所以,原式2149318532=++=.9. 2.令x ※3=y ,则y ※4=421200,又4212002726252413532244⨯⨯⨯=⨯⨯⨯=,所以y=24,即x ※3=24.又24=432323⨯⨯=⨯,故x =2.10. 4.由题设的等式x ※y=cxy by ax -+及x ※m=x (m ≠0),得000=⋅⋅-+⋅m c bm a ,所以bm=0,又m ≠0,故b=0.因此x ※y=ax -cxy.由1※2=3,2※3=4,得⎩⎨⎧=-=-46232c a c a 解得a =5,c =1. 所以x ※y =5x -xy ,令x =1,y=m 得5-m=1,故m =4.11. (1)原式()()62585834342222=⨯-++⨯-+=;(2)原式()323222⨯-+=△4=7△4=37474722=⨯-+;(3)原式()525222⨯-+=△()19434322=⨯-+△132831319131922=⨯-+=.12. (1)原式=(4-3)※9=1※9=9-1=8;(2)因为表示a ※b 表示较大数与较小数的差,显然a ※b= b ※a 成立,即这个运算满是交换律,但一般来说并不满足结合律,例如:(3※4)※9=8,而3※(4※9)=3※(9-4)=3※5=5-3=2.13. (1)按照定义有2※36132332=+=,3※412253443=+=. 于是(2※3)※4613=※4=3127451324241361344613=+=+. 2※(3※4)=2※60012012425252421225122521225=+=+=. (2)由已知得233=+aa ① 若a ≥6,则3a ≥2,从而233>+aa 与①矛盾.因此a ≤5,对a =1,2,3,4,5这5个可能的值,一一代入①式中检查知,只有a =3符合要求.14. (1)为求12⊙21,先求出12与21的最小公倍数和最大公约数分别为84,3,因此12⊙21=84-3=81,同样道理5⊙15=15-5=10.(2)如果c 整除a 和b ,那么c 是a 和b 的公约数,则c 整除a ,b 的最大公约数,显然c 也整除a ,b 最小公倍数,所以c 整除最小公倍数与最大公约的差,即c 整除a ⊙b .如果c 整除a 和a ⊙b ,由c 整除a 推知c 整除a ,b 的最小公倍数,再由c 整除a ⊙b 推知, c 整除a ,b 的最大公约数,而这个最大公约数整除b ,所以 c 整除b .(3)由于运算“⊙”没有直接的表达式,解这个方程有一些困难,我们设法逐步缩小探索范围.因为6与x 的最小公倍数不小于27+1=28,不大于27+6=33,而28到33之间,只有30是6的倍数,可见6和x 的最小公倍数是30,因此它们的最大公约数是30-27=3.由“两个数的最小公倍数与最大公约数的积=这两个数的积”,得到x ⨯=⨯6330.所以15=x .四、工程问题(1)年级 班 姓名 得分 一、填空题1.一项工程,甲、乙两队合作20天完成,乙丙两队合作60天完成,丙丁两队合作30完成,甲丁合作 天完成?2.甲乙两队合作一项工程,计划在24天内完成.如果甲队做6天,乙队做4天,只能做完全工程的20%,两队单独做完全工程各需要 天.3.一条公路,甲队独修24天完成,乙队独修30天完成.甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.4.某市举办菊展,新建一个喷水池.单开甲管1小时可将喷水池注满,单开乙管40分钟可将水注满,两管同时齐开5210分钟后,共注水314吨.喷水池能装水吨.5.一项工作,两个师傅和三个徒弟合作需922天完成,如果三个师傅2个徒弟合作需要712天完成,如果一名师傅单独做需 天完成.6.加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有 个.7.一项建筑工程,由甲建筑队单独承建要一年半,乙建筑队单独承建要一年零三个月,现在两队合作半年,剩下的由乙队继续完成还要 个月.(假设每月实际工作天数一样)8.甲、乙、丙三人合修一围墙.甲、乙合修6天修好围墙的31,乙、丙合修2天修好余下的41,剩下的三人又合修了5天才完成.共得工资180元,按各人所完成的工作量的多少来合理分配,每人应得 元.9.原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土 方.10.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时,需要5小时才能注满水池,当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开 个进水管.二、解答题11.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙每天的工作效率相当于甲、乙二人每天工作效率之和的51;如果三人合抄只需8天就完成了,那么乙一人单独抄需多少天才能完成?12.一项工程,甲独做需10天,乙独做需15天,如果两人合作,甲的工作效率就要降低,只能完成原来的54,乙只能完成原来的109,现在要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?13.一空水池有甲、乙两根进水管和一根排水管.单开甲管需5分钟注满水池,单开乙管需10分钟注满水池,满池水如果单开排水管需6分钟流尽.某次池中没有水,打开甲管若干分钟后,发现排水管未关上,随即关上排水管,同时打开乙管,又过了同样长的时间,水池的1/4注了水.如果继续注满水池,前后一共要花多少时间?14.有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管,进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几根出水管?———————————————答 案——————————————————————1. 156********1=⎪⎭⎫ ⎝⎛-+÷(天).2. 乙的工作效率为()()40116244%201=-÷⨯-, 甲的工作效率为601401241=-. 故甲做60天完成,乙做40天完成.3. 1030124162411=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛⨯-(天).4. 104016015210314=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛÷(吨)5. 一个师傅与一个徒弟工作效率之和为:()60112371219221=+÷⎪⎪⎪⎪⎭⎫⎝⎛+, 故师傅的工作效率是101601127121=⨯-,即一名师傅单独做10天完成.6. 16841311413124=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-÷(个).7. 415161511811=÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-(月).8. 甲分得的钱为:()3356241311541311311180=+⨯⎭⎬⎫⎩⎨⎧÷⨯⎪⎭⎫ ⎝⎛--÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);丙分得的钱为:()5652631541311311180=+⨯⎭⎬⎫⎩⎨⎧÷-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛---⨯(元);乙分得的钱为:180-33-56=91(元).9. 36)624(=÷-(方).10. 进水管一小时进水量为:()()[]15124541521=-÷⨯-⨯÷; 排水管一小时排水量为:1515120151=÷⎪⎭⎫⎝⎛-⨯.故只开一进水管、一排水管池中无水,多开进水管数为5.71521=÷,取整为8 个,至少要打开9个进水管.11. 24281511811=⎥⎦⎤⎢⎣⎡÷-⎪⎭⎫ ⎝⎛+÷÷(天).12. 设两人要合作x 天,依题意得:()15078101=+-x x ,故x =5(天).13. 设注满池中41的水需x 分钟,故有23,412615126151==⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛-x x x .继续注满池中水的43411=-需要251015143=⎪⎭⎫ ⎝⎛+÷(分), 共需时间42523=+(分).14. 将每根进水管每小时的进水量看作单位1,则每根出水管每小时的排水量为2)36()3865(=-÷⨯-⨯,而池中原有水量为186265=⨯-⨯,从而要想在4.5小时内把池中水抽干,需要打开65.4182=÷+(根)出水管.四、工程问题(2)年级 班 姓名 得分一、填空题1.一项工作,甲乙两队合作9天完成,乙丙两队合作12天完成,甲丙两队合作需18天完成,现在三队合作需 天完成.2.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需要做 天.3.甲、乙两队合作20天可以完成一项工程.如果两队合作8天后,乙队再独做4天,还剩这项工程的158没有完成.甲、乙两队工作效率之比为: .4.一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成.现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了 小时.5.有批机器零件,甲单独制作需要218天,比乙单独制作多用了21天,两人合作4天后,剩下210个零件由甲单独去做,自始至终甲共制作了 零件.6.一个水池子,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能注满(这时乙管关闭).那么乙管单独灌满水池需要 小时.7.一个水池,地下水从四壁渗入,每小时渗入该水池的水量是固定的.当这个水池水满时,打开A 管,8小时可将水池排空;打开B 管,10小时可将水池排空;打开C 管,12小时可将水池排空.如果打开A 、B 两管,4小时可将水池排空,那么打开B 、C 两管,将水池排空需要 小时.8.一件工作,如果单独做,甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成.现在,甲乙二人合做2天后,剩下的继续由乙单独做,刚好在规定的日期内完成.若甲乙二人合做,完成这件工作需要 天.9.有一水池,装有甲、乙两个注水管,下面装有丙管放水.池空时,单开甲管5分钟可注满;单开乙管10分钟可注满.水池装满水后,单开丙管15分钟可将水放完.如果在池空时,将甲、乙、丙三管齐开,2分钟后关闭乙管,还要 分钟可以注满水池.10.放满一个水池的水,如果同时开放①、②、③号阀门,7.5小时可以完成;如果同时开放①、③、⑤号阀门,5小时可以完成;如果同时开放①③④号阀门,6小时可以完成;如果同时开放②④⑤号阀门,4小时可以完成.问同时开放这五个阀门, 小时可以放满这个水池.二、解答题11.师徒三人合作承包一项工程,4天能够全部完成.已知师傅单独做所需天数与两个徒弟合作所需天数相等;而师傅与乙徒弟合作所需天数的2倍与甲徒弟单独做完所需的天数相等.那么甲徒弟单独做,完成这项工程需要多少天?乙徒弟单独做,完成这项工程需要多少天?12.甲、乙、丙三人从三月一日开始合作一项工程,甲每天的工作量是乙每天工作量的3倍,乙每天的工作量是丙每天工作量的2倍.三人合作5天完成全工程的31后,甲休3天,乙休2天,丙没有休息,问这项工程是在几月几日完成的?13.一个蓄水池装了一根进水管和三根放水速度一样的出水管.单开一根进水管20分钟可注满空池.单开一根出水管,45分钟可以放完满池水.现有32池的水,如果四管齐开,多少分钟后池水还剩52?14.蓄水池有甲、丙两条进水管,和乙丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有61池水.如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后水开始溢出水池?———————————————答 案——————————————————————1. 82181121911=⎥⎦⎤⎢⎣⎡÷⎪⎭⎫ ⎝⎛++÷(天).2. 甲乙合做28天,完成任务的1274828=÷, 故甲的工作效率为()84128631271=-÷⎪⎭⎫ ⎝⎛-,乙的工作效率为1121841481=-, 于是乙还需做56112184421=÷⎪⎭⎫ ⎝⎛-(天).3. 乙的工作效率为601482011581=÷⎪⎭⎫⎝⎛⨯--,甲的工作效率为301601201=-, 甲乙工作效率之比为1:2601:301=.4. 5.41016171011=⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛⨯-(小时).5. 35702102184421218121811210=+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-+-÷(个).6. 20)46(5141211=⎭⎬⎫⎩⎨⎧-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⨯-÷(小时).7. B 管每小时排水量为81421=÷(池)水. 每小时渗水量为4011011081=÷⎪⎭⎫⎝⎛-⨯(池).C 管每小时排水量为1201312124011=÷⎪⎭⎫⎝⎛⨯+(池).从而B 、C 两管排一池水,需8.440112013811=⎪⎭⎫ ⎝⎛-+÷(小时).8. 甲与乙工作效率之比为3:2,甲独做要101235=⎪⎭⎫⎝⎛-÷(天),乙独做需10+5=15(天),甲乙合做要61511011=⎪⎭⎫⎝⎛+÷(天).9. 4151512151101511=⎪⎭⎫⎝⎛-÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+-(分钟).10. 434134161515.711=⎥⎦⎤⎢⎣⎡+÷⎪⎭⎫ ⎝⎛-++÷(小时).11. 243412411=⎪⎭⎫⎝⎛÷-÷÷(天).12. 甲的工作效率为4522616151=++⨯,乙的工作效率为13522612151=++⨯, 丙的工作效率为13512611151=++⨯.乙丙三天干了151313511352=⨯⎪⎭⎫ ⎝⎛+,甲丙二天干了1351421351452=⨯⎪⎭⎫ ⎝⎛+. 整个工作剩下13567135********=---.由甲乙丙合干还要9471351135245213567=⎪⎭⎫ ⎝⎛++÷(天), 完成此项工作共需9417947235=+++(天),即3月18日完成.13. 1620134515232=⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-(分).14. 按甲、乙、丙、丁顺序各开一小时水池中进水60761514131=-+-.这样5个周期(即20小时)后,池中有水43560761=⨯+,再开甲管注满水池需时4331431=÷⎪⎭⎫ ⎝⎛-(小时),故一共要43204320=+(小时)开始溢出.五、分数应用题(1)年级 班 姓名 得分 一、填空题1.有一个分数,它的分母比分子多4.如果把分子、分母都加上9,得到的分数约分后是97,这个分数是 .2.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 .3.商店的书包降价41后,又提价51,最后的价格是8元1角一个,那么最初是元钱一个.4.小萍今年的年龄是妈妈的31,二年前母子年龄相差24岁,四年后小萍的年龄是 .5.甲、乙、丙三人共同加工一批零件.甲比乙多加工零件20个,丙加工零件是乙加工零件的54,甲加工零件是乙丙两人加工零件总数的65.甲、乙、丙各加工零件 个.6.六一班男生的一半和女生的41共16人,女生的一半和男生的41共14人,这个班男、女生各 人.7.在4点多钟时,时钟的时针和分针在一直线上且方向相反,这时是4点 分.8.甲、乙两人各有钱若干元,已知甲的钱数是乙的4倍,当甲花去31后,又花去余下的31,如果这时甲给乙7元钱,甲、乙两人的钱数正好相等.甲原来有_____元钱.9.A 、B 、C 三根木棒插在水池中,(如图)三根捧长度和是360厘米,A 棒有43露出水面外,B 棒有4露出水面外.C 棒有2露出水面外.水池有 厘米深.。
六年级奥数专题02估计与估算
二、估计与估算(一)年级 班 姓名 得分 一、填空题1.有若干个小朋友,他们的年龄各不相同.将他们的年龄分别填入下式的□中,都能使不等式成立.这些小朋友最多有 个. 21<5<43. 2.10000000009999999999100099910099109+⋅⋅⋅⋅⋅⋅+++的整数部分是 . 3.10971939719297199719⨯+⋅⋅⋅+⨯+⨯+=A ,与A 最接近的整数是 .4.有24个偶数的平均数,如果保留一位小数的得数是15.9,那么保留两位小数的得数是 .5.1995003这个数,最多可以拆成 个不同的自然数相加的和.6.有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数.那么第19个数的整数部分是 .7.有一长3米的线段,第一次把这条线段三等分后去掉中间一部分,第二次再把剩下的两线段中的每一段都三等分后都去掉中间一部分,第三次再把剩下的所有线段的每一段都三等分后都去掉中间一部分.继续这一过程,这样至少连续 次后,才使剩下的所有线段的长度的和小于0.4米. 8.已知199711982119811198011+⋅⋅⋅+++=S ,那么S 的整数部分是 .9.1009987654321⨯⋅⋅⋅⨯⨯⨯⨯与101相比较,较大的哪个数是 .10.某工厂有三个车间,共有75人报名参加冬季长跑,其中第一车间人数最多,第三车间人数最少.如果第一车间报名人数是第三车间报名人数的212倍,那么第二车间报名人数是第三车间报名人数的 倍.二、解答题11.已知1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数部分是 .12.四个连续自然数的倒数之和等于2019,求这四个自然数的两两乘积之和.13.用四舍五入的方法计算三个分数的和,得近似值为35.1875≈++cb a ,试求c b a ,,的值.(c b a ,,是三个自然数)14.国际象棋比赛的奖金总数为10000元,发给前五名.每一名的奖金都不一样,名次在前的钱数要比名次在后的钱数多.每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、第三名两人之和,第二名的钱数是第四、第五名两人之和,那么第三名最多能得多少元?二、估计与估算(二)年级 班 姓名 得分 一、填空题1. 将六个分数215,94,12011,451,83,358分成三组,使每组的两个分数的和相等,那么与451分在同一组的那个分数是 .2. 数151311197535232129171551719212321357911131÷的十分位到十万分位的数字为 .3. 满足下式的n 最小等于 . )1(1431321211+⨯+⋅⋅⋅+⨯+⨯+⨯n n >19981949. 4. 已知1101011102103101102100101+⋅⋅⋅+++=A ,则A 的整数部分是 . 5. 小明计算17个自然数的平均数所得的近似值是31.3,老师指出小明少取了一位有效数字,则老师要求的平均数应该是 .6.有三十个数:,302964.1,,30364.1,30264.1,30164.1,64.1+⋅⋅⋅+++如果取每个数的整数部分,并将这些整数相加,那么其和是 .7.将奇数1,3,5,7,…,由小到大按第n 组有2n -1个奇数进行分组 (1), (3,5,7), (9,11,13,15,17), … 第一组 第二组 第三组 那么1999位于第 组的第 个数.8. 22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是 .9. 数10222333⨯⨯⋅⋅⋅⨯个写成小数时的前两位小数是 .10. 有甲、乙、丙、丁四个同学去林中采蘑菇.平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数.又知甲采的数量是乙的54,乙采的数量是丙的23倍.丁比甲多采3个蘑菇.那么,丁采蘑菇 个.二、解答题11.两个连续自然数的平方之和等于365,又有三个连续自然数的平方之和也等于365.试找出这两个连续自然数和那三个连续自然数.12.如图所示,方格表包括A 行B 列(横向为行,纵向为列),其中依次填写了自然数1至B A ⨯ ,现知20在第3行,41在第5行,103在最后一行,试求A 和B .13.求分数1611514131211++⋅⋅⋅++++=A 的整数部分.14.甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?———————————————答 案一——————————————————————1. 3. 依题意,得320326=<□<10,所以□=7,8,9. 2. 9.原式>109999101010++⋅⋅⋅+=个, 原式<1011110++⋅⋅⋅+=个, 所以原式的和的整数部分是9. 3. 11. ()97751010219719=+⋅⋅⋅++⨯=A ,因此与A 最接近的整数是11.4. 15.92设这24个偶数之和为S .由S >15.85×24=380.4和S <15.95×24=382.8,以及S 是偶数,推知S =382,所求数为92.1524382≈÷.5. 1997.若要拆成的不同自然数尽量多,应当从最小的自然数1开始,则2)1(321+=+⋅⋅⋅+++n n n ≤1995003. 所以 )1(+n n ≤3990006当1997=n 时,正好有)1(+n n ≤3990006, 所以最多可以拆成1997个不同自然数的和. 6. 91.根据题设条件,这列数依次是105,85,95,90,92.5, 91.25, 91.875, …, 显然,从第六项起后面每个数的整数部分都是91,所以,第19个数的整数部分是91. 7. 5.这一过程每进行一次,剩下所有线段的和等于上次剩下的322716323232323=⨯⨯⨯⨯>0.4, 813232323232323=⨯⨯⨯⨯⨯<0.4, 所以至少进行5次.8. 110.分母>11011819801=⨯,分母<11111819981=⨯, 所以110<S <111,即S 的整数部分等于110. 9.101. 证9998765432,10099654321⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⨯⨯⨯=B A , 则 2101100110099999854433221⎪⎭⎫ ⎝⎛==⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯B A .因为A 的前49项的对应项都小于B , A 的最后一项10099<1, 所以A <B , 再由B A ⨯=⎪⎭⎫⎝⎛2101>A ×A , 推知, 101>A .10. 761或1631.设第二和第三车间报名人数分别为a 和b ,则第一车间b b 25212=⨯,依题意,得b a b a b 272575+=++=因为b ≤a ≤b 25,所以b 29≤b a 27+≤6b ,即b 29≤75≤6b ,所以2112≤b ≤3216,又b 为偶数,所以b =14或16.(1) 当b =14时, a =26, 761=b a ;(2) 当b =16时, a =19, 1631=b a .11. 1006915661265111512111⨯⎪⎭⎫⎝⎛⨯+⋅⋅⋅+⨯+⨯+⋅⋅⋅+++=a691566126511100151001210011100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯+=6915661265113115341235111100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯++=最后一个分数小于1,所以a 的整数部分是101.12. 设这四个连续自然数分别为a ,a +1,a +2, a +3,则20193121111=++++++a a a a , 所以 31211112019++++++=a a a a <a a a a a 41111=+++, a <1944. 易知a =1,2,4均不合题意,故a =3,这四个自然数为3,4,5,6,其两两乘积之和为:119656454635343=⨯+⨯+⨯+⨯+⨯+⨯.13. 依题意,得 1.345≤875cb a ++<1.355, 所以 376.6≤56a +40b +35c <379.4又a ,b ,c 为自然数,因此, 56a +40b +35c =377 ① 或56a +40b +35c =378 ② 或56a +40b +35c =379 ③考虑不定方程①,由奇偶分析,知c 为奇数,所以40b +35c 的个位为5, 因此56a 的个位为2,a 的个位为2或7. 又a <5643656379=,故a =2, 因此8b +7c =53,易知b =4, c =3.同法可知不定方程②无解,方程③的解为a =4, b =3, c =1.14. 设第i 名的奖金为100ai 元(i =1,2,3,4,5).依题意,得 1000010010010010010054321=++++a a a a a , 且542321,a a a a a a +=+=,整理 1002332=+a a ① 所以 3223100a a +=<222523a a a =+,故2a >20, 由①易知2a 必为偶数,所以2a ≥22. 故 ()23310021a a -=≤()1722310021=⨯-. 即第三名最多能得1700元.———————————————答 案二——————————————————————1.94. 注意到451是六个分数中的最小数,因此与451在同一组的分数,必须是这六个分数中的最大数(否则,六个数不能分成三组,每组的两个分数的和相等),因此所求数为94.2. 2,5,9,5,3.设题中所述式子为B A ÷,由于题中所涉及的数太大,不太可能通过直接计算来确定前五位数(否则计算量太大),下面利用估值方法来求:因为2.05313,3.05214>÷>÷<÷<÷B A B A , 所以此数的第一位数字为2.又因为259.052331357,2597.05238.135>÷>÷<÷<÷B A B A , 所以此数的第一、二、三位数字为2,5,9. 又因为,25954.0523212135792<÷<÷B A 25953.0523213135791>÷>÷B A , 所以此五位数字是2,5,9,5,3. 3. 40.原式左端等于111+-n ,可得不等式199********>+-n ,所以19984911<+n , 解得493839>n ,故n 最小等于40. 4. 67.⎪⎭⎫ ⎝⎛+⋅⋅⋅+++++⋅⋅⋅+++=11010102101011010010)11321(A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++=1101010210101101001066 所以 1016711100106611110106667=⨯+<<⨯+=A 因此, A 的整数部分为67.5. 31.29.设17个自然数的和为S ,由3.3117≈S ,得31.25≤35.3117<S. 所以531.25≤S <532.95, 又S 为整数,所以S =532,则29.311753217≈=S 6. 49.关键是判断从哪个数开始整数部分是2, 因为2-1.64=0.36,我们就知⋅⋅⋅==33.0301031, 故先看3011,3011=⋅⋅⋅66.036.0>,这说明“分界点”是301164.1+,所以前11个数整数部分是1,后19个数整数部分为2,其和为4921911=⨯+.7. 32, 39.第n 组的最后一个奇数为自然数中的第2)12(531n n =-+⋅⋅⋅+++个奇数, 即122-n .设1999位于第n 组,则19991)1(22<--n ≤122-n . 由 223222047199919211312⨯=<<=-⨯1-知n=32. 所以1999在第32组第39312119992=-+个数. 8. 29.当两个数的和不变时,两数越接近(即差越小)它们的积越大. 所以24.101.823.102.822.103.8⨯<⨯<⨯,从而30325.18324.101.822.103.823.102.824.101.8=⨯⨯<⨯⨯<⨯+⨯+⨯.52.2969.38)22.123.124.1(822.103.823.102.824.101.8=⨯=++⨯>⨯+⨯+⨯,所以22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是29.9. 0.01注意到35327322=>=,所以6992332132,2132>>,所以01.01001961321322132561010=>=⨯=⨯> 又443818025=<=⨯,所以25132,51328844<<.所以02.0501212513225132221010==⨯<⨯<. 故数10222333⨯⨯⋅⋅⋅⨯个写成小数时的前两位小数是0.01.10. 39.设丙采蘑菇数为x 个,则乙采x 23个,甲采x x 562354=⋅个,丁采⎪⎭⎫⎝⎛+356x 个,四人合采蘑菇数为:310493565623+=++++x x x x x . 依题意,得:30≤⎪⎭⎫⎝⎛+3104941x <40解得 4910117494323⨯=≤492324910157=⨯<x又x 1049必须为整数, x 为10的倍数,因此只能x =30, 从而丁采39356=+x (个).11. 用估值法,先求两个连续自然数,因为5.1822365=÷,所以在两个连续自然数中,一个的平方小于182.5,另一个的平方大于182.5.由132=169,142=196得到,这两个连续自然数是13和14.类似地,3365÷32121=,最接近32121的自然数的平方是112=121,所以这三个连续自然数应是10,11,12.经验证,符合题意.12. 依题意,得2B <20≤3B ,4B <41≤5B ,所以326≤B <10,518≤B <4110,故518≤B <10,因此, B =9.由103在最后一行,得9(A -1)<103≤9A ,所以, 9411≤A <9412,故A =12.13.⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=16111110191817151416131211A ⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++=16111110191817151412 又因为14148171514181421=⨯<+++<⨯= 181816111110191161821=⨯<+⋅⋅⋅+++<⨯= 所以 4112212123=++<<++=A 故A 的整数部分是3.14.由题目条件,甲班捐书最多,丙班最小,甲班比丙班多捐28+101=129(册). 因为丙班捐书不少于400册,所以甲班捐书在529~550册之间. 甲班人数不少于11349311)776529(=+÷---(人), 不多于11251311)776550(=+÷---(人), 即甲班人数是50人或51人.如果甲班有50人,则甲班共捐书6+7+7+11×(50-3)=537(册),推知乙班捐书537-28=509(册),乙班有10951410)386509(=+÷⨯--(人), 人数是分数,不合题意.所以甲班有51人,甲班共捐书548)351(11776=-⨯+++(册), 推知乙班捐有53410)38628548(=+÷⨯---(人),丙班有4989)6724129548(=+÷⨯-⨯--(人).。
六年级下册奥数讲义-奥数方法:估算法(练习无答案)全国通用
一般的数学题都可以通过演算得出精确的答案,但在实际生活中,我们常碰到一些很难也没有必要求出精确结果的数学问题,这时便可以借助估算法求解。
所谓估算就是根据题目的数量关系,运用各种运算技巧,进行快速近似计算。
对很多数学问题,我们可以先进行初步估计,然后通过验证、调查,逐步缩小取值范围,最后求出符合要求的近似值。
估算的常用方法有直接取近似值和通过扩缩法来确定取值范围两种。
根据“一个分数,分子不变,分母变大时,分数值变小;分母变小时,分数值变大”的原理,先对C进行估算。
把算式C的每个分数的分母看成1990,对C进行扩大,再将每个分数的分母看成1999,对C进行缩小,则C 的取值介于这两个值之间,由此进一步推算出A的取值范围,从而确定它的整数部分。
解答、[例2] 有7个自然数的平均值约等于30.28,后来发现这个数小数点后的最后位数是错的,问这7个自然数的平均值应该约为多少?[例4] 已知一个整数等于4个不同的形如(m是整数)的真分数之和,求这个数,并求出满足题意的5组不同的宾分数。
思路剖析我们知道,在数论问题中,一个有限范围内的整数至多有限个,将本题所求真分数过渡到整数,便可对可能的情况逐一检验,确定问题的答案。
解答因每一真分数满足而所求的整数S是四个不同的真分数之和,因此2<S<4,推知.S=3。
于是可得如下5组不同的真分数:[例5] 已知在乘积l×2×3×…×n的尾部恰好有106个连续的零,求自然数n的最大值。
思路剖析若已知n的具体数值,求l×2×3×…×n的尾部零的个数,则容易解决。
现在的问题是知道尾部零的个数,求n的值。
用估算法解决,先对n进行大致范围的估计,然后逐次检验,确定n的值。
解答[例6】小军的两个衣袋中各有13张卡片,每张卡片上分别写着l、2、3、…、13。
从这两个口袋中各拿出1张卡片并计算2张卡片上的数的乘积,可以得到许多不相等的乘积。
六年级比较与估值(奥数拓展)-运算第5讲
比较与估值(奥数拓展)1.小数之间的大小比较在小数的末尾添上适当的“0”,使它们都变成小数位数相同的小数(如果是循环小数,就把它改写成一般写法的形式),从高位比起。
2.分数之间的大小比较常见方法:1、通分法(通分子、通分母)2、比倒数:与1相减比较法(1)真分数:与1相减,差大的分数小(2)假分数:与1相减,差大的分数大4、两数相除进行比较5、化成小数进行比较3.估值常用方法1)放缩法:为求出某数的整数部分,设法放大或缩小,将结果确定在两个接近数之间,从而估算出结果。
2)变换结构:将算式变形为便于估算的形式。
3)估值步骤(估算和式整数部分):a.找出和式中最小的项和最大的项,并找出项数。
b.令和式结果等于Ac.最小的数×个数 < A < 最大的数×个数d.求出A的整数部分。
例1、典型例题【针对练习1.1】【针对练习1.2】【针对练习1.3】例2、【针对练习2.1】【针对练习2.2】【针对练习2.3】例3、如果A=20012002.2003×20002001.2002,B=20012002.2002×20002001.2003,比较A和B大小。
关系是A_____B(填“>”=“<”).【针对练习3.1】如果M=10011002.1003×10001001.1002,N=10011002.1002×10001001.1003,那么M和N的大小关系是M____N(填“>”,“=”,“<”).A.>B.=C.<D.不确定【针对练习3.2】已知A=1798.57×634.98,B=1798.56×634.99,试比较A和B的大小关系是A____B(填“>”,“=”,“<”).A.>B.=C.<D.不确定例4、【针对练习4.2】【针对练习4.2】例5、【针对练习5.1】【针对练习5.1】比2/7大比1/3小的分数有无数多个,则分子为27的分数有多少个?【针对练习5.2】要使不等式:成立5/9 <9/□<1,方框内的最大自然数可以是多少?例6、【针对练习6.1】【针对练习6.2】【针对练习6.3】A=8.8+8.98+8.998+8.9998+8.99998,A的整数部分是________.例7、有15个正整数,去掉最大的数后平均数等于2.5,去掉最小的数后平均数等于3.0,最大数与最小数之差为______.【针对练习7.1】有30个正整数,去掉最大的数后平均数等于10.8,去掉最小的数后平均数等于12.8,最大数与最小数之差为_________.【针对练习7.2】有51个正整数,去掉最大的数后平均数等于17.8,去掉最小的数后平均数等于20.1,最大数与最小数之差为________.例8、有一道题目要求17个自然数的平均数,结果保留两位小数,冬冬的计算结果是11.28,老师说这个数百分位上的数字错了,其他数位上的数都正确,请问:正确答案是多少?【针对练习8.1】老师在黑板上写了七个自然数,让小明计算它们的平均数(保留小数点后面两位).小明计算出的答数是14.73,老师说:“除最后一位数字外其它都对了.”那么,正确的得数应是__________.【针对练习8.2】小东在计算11个整数的平均数(保留两位小数时),得数为15.33,老师说最后一位数字错了,那么正确的得数是多少?【针对练习8.3】老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数)。
小学奥数题_估计与估算
《小学奥数教程:估计与估算》专项突破(附答案详解)奥校小学数学竞赛教研中心一、单选题1.++…+的值在以下两数之间()A. 2007~2008B. 2008~2009C. 2009~2010D. 2010~20112.妈妈带了60元,买了单价是16元的葡萄3千克。
下面的行为中,估算比精确计算更有意义的是()。
A. 老板确认应该收多少钱B. 妈妈计算要找回多少钱C. 妈妈思考60元到底够不够D. 老板把金额输入收银机3.一枚1元的硬币大约重6克,照这样计算,1000枚1元的硬币大约重6千克,100万枚1元的硬币大约重6吨,1亿枚1元的硬币大约重多少吨?合适的答案是()A. 6吨B. 60吨C. 600吨4.抓一把枣称一称,6颗大约重10克,照此推算,600颗这样大的枣重1000克,6000000颗枣大约重多少千克?合适的答案是()A. 100千克B. 1000千克C. 10000千克5.估计1千克黄豆有多少粒,下列方法中()比较准确。
A. 先用手抓一把黄豆,数一数有几粒,再用手抓一抓看1千克黄豆有几把,然后用一把的粒数乘把数来估计B. 先用天平称出10克黄豆,然后数一数有多少粒,再用10克黄豆的粒数乘100C. 直接用眼睛看一看,然后估计有多少粒黄豆6.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一相当于()的面积.A. 教室地面B. 黑板面C. 课桌桌面D. 铅笔盒盒面7.一辆汽车第一小时行了52.7千米,第二小时行了60千米,第三小时行了62.5千米,估计平均每小时行了多少千米.正确的取值范围应()A. 在50~52.7之间B. 在52.7~60之间C. 在62.5~70之间8.不笔算,估计下面结果比300大的算式是()A. 17.5÷0.5B. 445.1×0.5C. 35.4×11D. 9.8×59.105.7×95.7×997.8约等于()A. 1百万B. 1千万C. 9百万二、判断题10.205×11的积约为3000。
六年级奥数-估计与估算(1-2)
六年级奥数-估计与估算(1)例1. A=12345678910111213÷31211101987654321,求 A 的小数点后前3位数字。
得它们的和大于3,至少要选多少个数? 例3. 右面的算式里,每个方框代表一个数字。
问:这6个方框中的数字的总和是多少?例4. 如果两个四位数的差等于8921,就说这两个四位数组成一个数对,那么这样的数对共有多少个,例5. 七位数175□62□的未位数字是几时,不管千位上是0~9中的哪一个数字,这个七位数都不是11的倍数?例6. 小明的两个衣服口袋中各有13张卡片,每张卡片上分别写着1,2,3,…,13。
从这两个口袋中各拿出1张卡片并计算2张卡片上的数的乘积,可以得到许多不相等的乘积。
那么,其中能被6整除的乘积共有多少个?。
如果取每个数的整数部分(例如1.64的整数部分是1,例8. 有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数,那么第19个数的整数部分是几?例9. 求下式中S 的整数部分:六年级奥数-估计与估算(2)例10. 学校组织若干人参加夏令营。
先乘车,每个人都要有座位,这样需要每辆有60个座位的汽车至少4辆。
而后乘船,需要定员为70人的船至少3条。
到达营地后分组活动,分的组数跟每组的人数恰好相等。
这个学校参加夏令营的人有多少?例11. 将自然数按如下顺序排列:1 2 6 7 15 16 …3 5 8 14 17 …4 9 13 …10 12 …11 …在这样的排列下,数字3排在第2行第1列,数字13排在第3行第3列。
问:数字168排在第几行第几列?例12. 唐老鸭与米老鼠进行万米赛跑,米老鼠每分钟跑125米,唐老鸭每分钟跑100米。
唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n次指令,米老鼠就以原来速度的n×10%倒退一分钟,然后再按原来的速度继续前进。
如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是多少次?例13. 估算:的结果是x。
14六年级奥数题:估计与估算(B)
小升初六年级奥数二、估计与估算(二)年级 班 姓名 得分 一、填空题1. 将六个分数215,94,12011,451,83,358分成三组,使每组的两个分数的和相等,那么与451分在同一组的那个分数是 .2. 数151311197535232129171551719212321357911131÷的十分位到十万分位的数字为 .3. 满足下式的n 最小等于 . )1(1431321211+⨯+⋅⋅⋅+⨯+⨯+⨯n n >19981949.4. 已知1101011102103101102100101+⋅⋅⋅+++=A ,则A 的整数部分是 .5. 小明计算17个自然数的平均数所得的近似值是31.3,老师指出小明少取了一位有效数字,则老师要求的平均数应该是 .6.有三十个数:,302964.1,,30364.1,30264.1,30164.1,64.1+⋅⋅⋅+++如果取每个数的整数部分,并将这些整数相加,那么其和是 .7.将奇数1,3,5,7,…,由小到大按第n 组有2n -1个奇数进行分组 (1), (3,5,7), (9,11,13,15,17), … 第一组 第二组 第三组 那么1999位于第 组的第 个数.8. 22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是 .9. 数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是 .10. 有甲、乙、丙、丁四个同学去林中采蘑菇.平均每人采得的蘑菇的个数的整数部分是一个十位数为3的两位数.又知甲采的数量是乙的54,乙采的数量是丙的23倍.丁比甲多采3个蘑菇.那么,丁采蘑菇 个.二、解答题11.两个连续自然数的平方之和等于365,又有三个连续自然数的平方之和也等于365.试找出这两个连续自然数和那三个连续自然数.12.如图所示,方格表包括A 行B 列(横向为行,纵向为列),其中依次填写了自然数1至B A ⨯ ,现知20在第3行,41在第5行,103在最后一行,试求A 和B .13.求分数1611514131211++⋅⋅⋅++++=A 的整数部分.14.甲、乙、丙三个班向希望工程捐赠图书.已知甲班1人捐6册,有2人各捐7册,其余人各捐11册;乙班有1人捐6册,3人各捐8册,其余人各捐10册;丙班有2人各捐4册,6人各捐7册,其余人各捐9册.已知甲班捐书总数比乙班多28册,乙班比丙班多101册.各班捐书总数都在400册与550册之间.问:每班各有多少人?———————————————答 案——————————————————————1. 94.注意到451是六个分数中的最小数,因此与451在同一组的分数,必须是这六个分数中的最大数(否则,六个数不能分成三组,每组的两个分数的和相等),因此所求数为94.2. 2,5,9,5,3.设题中所述式子为B A ÷,由于题中所涉及的数太大,不太可能通过直接计算来确定前五位数(否则计算量太大),下面利用估值方法来求:因为2.05313,3.05214>÷>÷<÷<÷B A B A , 所以此数的第一位数字为2.又因为259.052331357,2597.05238.135>÷>÷<÷<÷B A B A , 所以此数的第一、二、三位数字为2,5,9. 又因为,25954.0523212135792<÷<÷B A 25953.0523213135791>÷>÷B A , 所以此五位数字是2,5,9,5,3.3. 40.原式左端等于111+-n ,可得不等式199********>+-n ,所以19984911<+n , 解得493839>n ,故n 最小等于40.4. 67.⎪⎭⎫ ⎝⎛+⋅⋅⋅+++++⋅⋅⋅+++=11010102101011010010)11321(A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++=1101010210101101001066 所以 1016711100106611110106667=⨯+<<⨯+=A 因此, A 的整数部分为67.5. 31.29.设17个自然数的和为S ,由3.3117≈S ,得31.25≤35.3117<S. 所以531.25≤S <532.95, 又S 为整数,所以S =532,则29.311753217≈=S6. 49.关键是判断从哪个数开始整数部分是2,因为2-1.64=0.36,我们就知⋅⋅⋅==33.0301031,故先看3011,3011=⋅⋅⋅66.036.0>,这说明“分界点”是301164.1+,所以前11个数整数部分是1,后19个数整数部分为2,其和为4921911=⨯+.7. 32, 39.第n 组的最后一个奇数为自然数中的第2)12(531n n =-+⋅⋅⋅+++个奇数, 即122-n .设1999位于第n 组,则19991)1(22<--n ≤122-n . 由 223222047199919211312⨯=<<=-⨯1-知n=32. 所以1999在第32组第39312119992=-+个数.8. 29.当两个数的和不变时,两数越接近(即差越小)它们的积越大. 所以24.101.823.102.822.103.8⨯<⨯<⨯,从而30325.18324.101.822.103.823.102.824.101.8=⨯⨯<⨯⨯<⨯+⨯+⨯.52.2969.38)22.123.124.1(822.103.823.102.824.101.8=⨯=++⨯>⨯+⨯+⨯,所以22.103.823.102.824.101.8⨯+⨯+⨯的整数部分是29.9. 0.01注意到35327322=>=,所以6992332132,2132>>,所以01.01001961321322132561010=>=⨯=⨯> 又443818025=<=⨯,所以25132,51328844<<.所以02.0501212513225132221010==⨯<⨯<. 故数222⨯⋅⋅⋅⨯⨯写成小数时的前两位小数是0.01.10. 39.设丙采蘑菇数为x 个,则乙采x 23个,甲采x x 562354=⋅个,丁采⎪⎭⎫⎝⎛+356x 个,四人合采蘑菇数为:310493565623+=++++x x x x x . 依题意,得:30≤⎪⎭⎫⎝⎛+3104941x <40解得 4910117494323⨯=≤492324910157=⨯<x又x 1049必须为整数, x 为10的倍数,因此只能x =30, 从而丁采39356=+x (个).11. 用估值法,先求两个连续自然数,因为5.1822365=÷,所以在两个连续自然数中,一个的平方小于182.5,另一个的平方大于182.5.由132=169,142=196得到,这两个连续自然数是13和14.类似地,3365÷32121=,最接近32121的自然数的平方是112=121,所以这三个连续自然数应是10,11,12.经验证,符合题意.12. 依题意,得2B <20≤3B ,4B <41≤5B ,所以326≤B <10,518≤B <4110,故518≤B <10,因此, B =9.由103在最后一行,得9(A -1)<103≤9A ,所以, 9411≤A <9412,故A =12.13.⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++=16111110191817151416131211A⎪⎭⎫ ⎝⎛+⋅⋅⋅++++⎪⎭⎫ ⎝⎛++++=16111110191817151412又因为14148171514181421=⨯<+++<⨯= 181816111110191161821=⨯<+⋅⋅⋅+++<⨯=所以 4112212123=++<<++=A故A 的整数部分是3.14.由题目条件,甲班捐书最多,丙班最小,甲班比丙班多捐28+101=129(册). 因为丙班捐书不少于400册,所以甲班捐书在529~550册之间.甲班人数不少于11349311)776529(=+÷---(人),不多于11251311)776550(=+÷---(人),即甲班人数是50人或51人.如果甲班有50人,则甲班共捐书6+7+7+11×(50-3)=537(册),推知乙班捐书537-28=509(册),乙班有10951410)386509(=+÷⨯--(人),人数是分数,不合题意. 所以甲班有51人,甲班共捐书548)351(11776=-⨯+++(册),推知乙班捐有53410)38628548(=+÷⨯---(人), 丙班有4989)6724129548(=+÷⨯-⨯--(人).。
小学奥数1-3-4 比较与估算.专项练习及答案解析
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果.(2)变换结构:将原来算式或问题变形为便于估算的形式.知识点拨教学目标比较与估算模块一、两个数的大小比较【例 1】如果a=20052006,b=20062007,那么a,b中较大的数是【考点】两个数的大小比较【难度】2星【题型】填空【关键词】希望杯,五年级,一试【解析】方法一:<与1相减比较法>1-20052006=12006;1-20062007=12007.因为12006>12007,所以b较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b<;方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b大【答案】b【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<例题精讲【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是 .【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<1111 11111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111<【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
小学奥数:比较与估算.专项练习及答案解析
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小.⑵通分子:分母小的分数大.⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数)⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大;②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大.⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果.(2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】如果a=20052006,b=20062007,那么a,b中较大的数是【考点】两个数的大小比较【难度】2星【题型】填空【关键词】希望杯,五年级,一试【解析】方法一:<与1相减比较法>1-20052006=12006;1-20062007=12007.因为12006>12007,所以b较大;例题精讲知识点拨教学目标比较与估算方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b<;方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b大【答案】b【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是 .【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】 试比较1111111和111111111的大小 【考点】两个数的大小比较 【难度】3星 【题型】填空 【解析】 方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷ 1111111= 110111 ,111111111的倒数是1÷ 11111111110=11111,我们很容易看出10 1111>10 11111,所以1111111< 111111111; 方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111<【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
小学奥数-比较与估算
比较与估算教学目标本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
知识点拨一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小.⑵通分子:分母小的分数大.⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数)⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大;②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大.⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果.(2)变换结构:将原来算式或问题变形为便于估算的形式.例题精讲模块一、两个数的大小比较【例1】如果a =20052006,b =20062007,那么a ,b 中较大的数是【巩固】试比较19951998和19461949的大小【巩固】比较444443444445和555554555556的大小【例2】如果A =111111110222222221,B =444444443888888887,A 与B 中哪个数较大?【巩固】如果222221333331,222223333334A B ==,那么A 和B 中较大的数是.【巩固】试比较1111111和111111111的大小【例3】在a =20032003×2002和b =20022003×2003中,较大的数是______,比较小的数大______。
六年级上册奥数试题:第1讲 估算 全国通用(含答案)
第1讲估算知识网络在计数、度量和计算过程中,往往需要对某些量做一个大致估计,估算就是对这些量的粗略运算。
通过估算得到的与实际情况相近、有一定误差的数叫做近似数。
表示近似数近似的程度叫做近似数的精确度。
用位数较少的近似数代替位数较多的数时,要遵守一定的取舍法则。
要保留的数位右边的所有数叫做尾数。
取舍尾数主要有三种方法:(1)去尾法:把尾数全部舍去。
(2)收尾法:把尾数舍去后,在它的前一位加上1。
(3)四舍五入法:当尾数最高位上的数字是不大于4的数字时,就把尾数舍去;当尾数最高位上的数字是不小于5的数字时,把尾数舍去后,在它的前一位加1。
重点·难点本书的重点是选择恰当的方法对某个数或算式进行估算,从而确定它的取值范围。
四舍五入法和放大缩小法都是常用的解题方法。
学法指导在运用放大缩小法时,放大或缩小的幅度要适当,否则就不能得到准确的取值范围,所得的近似数也达不到题目要求的精确度。
在放缩时可以先用较大的幅度去试,如果发现太大时,再把幅度调整得小一些,重新估算,从而逐步达到目的。
经典例题[例1]已知,求x的整数部分是多少?思路剖析这道题我们可以利用通分的方法求出精确值,但这样做的计算量是巨大的。
然而题目只要求我们求出x的整数部分,并不要求我们求出精确值,因而我们可以运用“放大缩小法”,粗略地估计一下x介于哪两个数之间,再根据这两个数确定x的整数部分。
解答答:x的整数部分为90。
[例2]有7个自然数,其平均值约等于30.27,后来发现这个数小数点最后一位数是错的,问这7个自然数的平均值应该约为多少?思路剖析由于,从而有已知这7个数均为自然数,可得的结果也应为自然数,据此可求出这7个自然数的平均值。
解答设这7个自然数的和为M,则据题意有因为M表示的是7个自然数的和,因此M是整数,所以M=212。
因此这7个数的平均值应为答:这7个自然数的平均值应该约为30.27。
[例3]在下列方框里填上两个相邻的自然数使不等式成立:思路剖析本题要求填入两个连续的自然数,不难发现左边的“□”内至少是2,这是由于:据此可猜想右边的“□”内是3或4等。
估算知识点六年级
估算知识点六年级估算是数学中的一项重要技能,它可以帮助我们在实际问题中快速计算出一个近似的结果。
在六年级,我们需要学会并掌握各种估算方法,以提高我们的计算能力和问题解决能力。
本文将介绍六年级估算知识点,包括四则运算的估算、估算解决实际问题、估算小数和分数等内容。
一、四则运算的估算在进行四则运算时,我们可以利用估算来得到一个大致的结果。
例如,计算1325 + 698,我们可以先将1325估算为1300,将698估算为700,然后相加得到2000。
这样的估算方法可以帮助我们快速计算出结果,并在后续步骤中进行验证。
另外,在进行计算时,我们还可以利用近似数进行估算。
例如,计算89 × 43,我们可以将89近似为90,将43近似为40,然后相乘得到3600。
虽然结果不是完全准确的,但它能够帮助我们快速得到一个接近的估算结果。
二、估算解决实际问题估算在解决实际问题时扮演着重要的角色。
例如,当我们需要在超市购买一些商品时,我们可以利用估算来估计总价,以便我们掌握大致的花费情况。
此外,估算还可以帮助我们在时间限制下做出决策。
比如,我们需要从家到学校,可以估算出每段路程所需时间,以便我们安排好行程。
三、估算小数和分数在处理小数和分数时,估算同样发挥着重要的作用。
例如,计算0.75 + 0.25,我们可以估算0.75为1,0.25为0,然后相加得到1。
这样的估算方法在计算时可以节省时间,并得到一个接近的结果。
对于分数的估算,我们也可以采用相似的方法。
例如,计算7/8 + 1/3,我们可以将7/8估算为1,1/3估算为0,然后相加得到1。
虽然结果不是完全准确的,但它能够帮助我们快速得到一个近似的估算结果。
总结:通过本文的学习,我们了解了六年级的估算知识点,包括四则运算的估算、估算解决实际问题、估算小数和分数。
估算是数学中的一项重要技能,它能够帮助我们在实际问题中快速计算出一个近似的结果。
通过掌握估算方法,我们可以提高我们的计算能力和问题解决能力,为今后的数学学习打下坚实的基础。
六年级估算知识点总结归纳
六年级估算知识点总结归纳估算作为数学中的一种常用计算方法,对于学生提高计算速度、培养数感以及拓展思维能力都具有重要的作用。
在六年级的数学学习中,估算是一个重要的知识点。
本文将对六年级估算知识点进行总结归纳,以便同学们能够更好地理解和掌握这一部分内容。
一、估算整数的加减运算在六年级的数学学习中,我们已经掌握了整数的加减运算,估算整数的加减运算就是通过对加数、被加数、减数和被减数的估值,来近似地计算真实结果。
这种方法在实际应用中很常见,因为它可以帮助我们快速得到一个接近的答案。
例如,计算48 + 27时,我们可以将48估算为50,把27估算为30,然后进行加法运算,得到一个大约为80的结果。
这种估算方法在处理大数运算或者复杂计算时,特别有用。
二、估算小数的加减运算估算小数的加减运算与估算整数的加减运算类似,只不过我们需要对小数部分进行估值。
在进行估算时,我们可以采用舍入法、用零代替法或者简化法等不同的方法。
例如,计算2.58 + 1.43时,我们可以将2.58估算为2.6,将1.43估算为1.4,然后进行加法运算,得到一个大约为4的结果。
这种估算方法同样适用于小数的减法运算。
三、估算乘法运算估算乘法运算是通过对乘数和被乘数的估值,来近似地计算真实结果。
在估算乘法时,我们可以采用数位估值法、调整估值法或者奇偶估算法等不同的方法。
例如,计算37 ×24时,我们可以将37估算为40,将24估算为20,然后进行乘法运算,得到一个大约为800的结果。
这种估算方法在乘法运算中很实用,能够帮助我们快速得到一个大致的答案。
四、估算除法运算估算除法运算是通过对除数和被除数的估值,来近似地计算真实结果。
在估算除法时,我们可以采用约数估算法、倍数估算法或者数位估算法等不同的方法。
例如,计算156 ÷ 8时,我们可以将156估算为160,将8估算为10,然后进行除法运算,得到一个大约为16的结果。
这种估算方法在除法运算中也很常用,能够帮助我们快速得到一个近似的商。
六年级奥数常见计量单位估计
洋山小学占地约1.6公顷。
洋山小学占地约1.6公顷。
掌起镇面积60.7平方千米。
掌起镇面积60.7平方千米。
大拇指指甲大小约1平方厘米。
大拇指指甲大小约1平方厘米。
手掌大小约1平方分米。
手掌大小约1平方分米。
门板大小约1平方米。
杭州到宁波高速公路(杭甬高速公路)全长145千米。
长江全长约6300千米。
长江全长约6300千米。
世界最高峰珠穆朗玛峰高度为8848米。
世界最高峰珠穆朗玛峰高度为8848米。
杭州到宁波高速公路(杭甬高速公路)全长145千米。
门板大小约1平方米。
一瓶娃哈哈矿泉水596毫升。
一瓶娃哈哈矿泉水596毫升。
棱长1厘米的立方体体积1立方厘米。
棱长1厘米的立方体体积1立方厘米。
棱长1分米的立方体体积1立方分米。
棱长1分米的立方体体积1立方分米。
棱长1米的立方体体积1立方米。
棱长1米的立方体体积1立方米。
洋山小学占地约1.6公顷。
洋山小学占地约1.6公顷。
掌起镇面积60.7平方千米。
掌起镇面积60.7平方千米。
大拇指指甲大小约1平方厘米。
大拇指指甲大小约1平方厘米。
手掌大小约1平方分米。
手掌大小约1平方分米。
门板大小约1平方米。
杭州到宁波高速公路(杭甬高速公路)全长145千米。
长江全长约6300千米。
长江全长约6300千米。
世界最高峰珠穆朗玛峰高度为8848米。
世界最高峰珠穆朗玛峰高度为8848米。
杭州到宁波高速公路(杭甬高速公路)全长145千米。
门板大小约1平方米。
一瓶娃哈哈矿泉水596毫升。
一瓶娃哈哈矿泉水596毫升。
棱长1厘米的立方体体积1立方厘米。
棱长1厘米的立方体体积1立方厘米。
棱长1分米的立方体体积1立方分米。
棱长1分米的立方体体积1立方分米。
棱长1米的立方体体积1立方米。
棱长1米的立方体体积1立方米。
洋山小学占地约1.6公顷。
洋山小学占地约1.6公顷。
掌起镇面积60.7平方千米。
掌起镇面积60.7平方千米。
大拇指指甲大小约1平方厘米。
大拇指指甲大小约1平方厘米。
手掌大小约1平方分米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数:估计与估算(一)
年级 班 姓名 得分
一、填空题
1.有若干个小朋友,他们的年龄各不相同.将他们的年龄分别填入下式的□中,都能使不等式成立.这些小朋友最多有 个. 2154
3.
2.
010000000009999999999100099910099109+⋅⋅⋅⋅⋅⋅+++的整数部分是 .
3.1097
1939719297199719⨯+⋅⋅⋅+⨯+⨯+=A ,与A 最接近的整数是 .
4.有24个偶数的平均数,如果保留一位小数的得数是1
5.9,那么保留两位小数的得数是 .
5.这个数,最多可以拆成 个不同的自然数相加的和.
6.有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数.那么第19个数的整数部分是 .
7.有一长3米的线段,第一次把这条线段三等分后去掉中间一部分,第二次再把剩下的两线段中的每一段都三等分后都去掉中间一部分,第三次再把剩下的
所有线段的每一段都三等分后都去掉中间一部分.继续这一过程,这样至少连续 次后,才使剩下的所有线段的长度的和小于0.4米.
8.已知199711982119811198011
+⋅⋅⋅+++=S ,那么S 的整数部分是 .
9.1009987654321⨯⋅⋅⋅⨯⨯⨯⨯与10
1相比较,较大的哪个数是 .
10.某工厂有三个车间,共有75人报名参加冬季长跑,其中第一车间人数最
多,第三车间人数最少.如果第一车间报名人数是第三车间报名人数的2
12倍,那么第二车间报名人数是第三车间报名人数的 倍.
二、解答题
11.已知1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=
a ,问a 的整数部分是 .
12.四个连续自然数的倒数之和等于
2019,求这四个自然数的两两乘积之和.
13.用四舍五入的方法计算三个分数的和,得近似值为
35.18
75≈++c b a ,试求c b a ,,的值.(c b a ,,是三个自然数)
14.国际象棋比赛的奖金总数为10000元,发给前五名.每一名的奖金都不一样,名次在前的钱数要比名次在后的钱数多.每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、第三名两人之和,第二名的钱数是第四、第五名两人之和,那么第三名最多能得多少元?
———————————————答 案——————————————————————
1. 3.
依题意,得320326
=<□<10,所以□=7,8,9.
2. 9.
原式>
9
99
9=+⋅⋅⋅++,
原式<10,
所以原式的和的整数部分是9.
3. 11.
()97
751010219719=+⋅⋅⋅++⨯=A ,因此与A 最接近的整数是11.
4. 1
5.92
设这24个偶数之和为S .由S >15.85×24=380.4和S <15.95×24=382.8,以及S 是偶数,推知S =382,所求数为92.1524382≈÷.
5. 1997.
若要拆成的不同自然数尽量多,应当从最小的自然数1开始,则
2
)1(321+=+⋅⋅⋅+++n n n ≤. 所以 )1(+n n ≤
当1997=n 时,正好有)1(+n n ≤,
所以最多可以拆成1997个不同自然数的和.
6. 91.
根据题设条件,这列数依次是105,85,95,90,92.5, 91.25, 91.875, …, 显然,从第六项起后面每个数的整数部分都是91,所以,第19个数的整数部分是91.
7. 5. 这一过程每进行一次,剩下所有线段的和等于上次剩下的3
2 2716323232323=⨯⨯⨯⨯>0.4, 81
3232323232323=⨯⨯⨯⨯⨯<0.4, 所以至少进行5次.
8. 110.
分母>11011819801=⨯,分母<111
11819981=⨯, 所以110<S <111,即S 的整数部分等于110.
9. 10
1. 证99
98765432,10099654321⨯⋅⋅⋅⨯⨯⨯=⋅⋅⋅⨯⨯⨯=B A , 则 2101100110099999854433221⎪⎭
⎫ ⎝⎛==⨯⨯⋅⋅⋅⨯⨯⨯⨯=⨯B A . 因为A 的前49项的对应项都小于B , A 的最后一项
10099<1, 所以A <B , 再由B A ⨯=⎪⎭
⎫ ⎝⎛2101>A ×A , 推知, 101>A . 10. 761或16
31.
设第二和第三车间报名人数分别为a 和b ,则第一车间b b 2
5212=⨯,依题意,得 b a b a b 2
72575+=++= 因为b ≤a ≤b 25,所以b 29≤b a 27+≤6b ,即b 2
9≤75≤6b , 所以2112≤b ≤3
216,又b 为偶数,所以b =14或16. (1) 当b =14时, a =26, 7
61=b a ; (2) 当b =16时, a =19, 16
31=b a . 11. 1006915661265111512111⨯⎪⎭
⎫ ⎝⎛⨯+⋅⋅⋅+⨯+⨯+⋅⋅⋅+++=a 69
1566126511100151001210011100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯+
= 69
15661265113115341235111100⨯+⋅⋅⋅+⨯+⨯⨯+⋅⋅⋅+⨯+⨯++= 最后一个分数小于1,所以a 的整数部分是101.
12. 设这四个连续自然数分别为a ,a +1,a +2, a +3,
则 20
193121111=++++++a a a a , 所以 31211112019++++++=a a a a <a a a a a 41111=+++, a <19
44. 易知a =1,2,4均不合题意,故a =3,这四个自然数为3,4,5,6,其两两乘积之
和为:119656454635343=⨯+⨯+⨯+⨯+⨯+⨯.
13. 依题意,得 1.345≤8
75c b a ++<1.355, 所以 376.6≤56a +40b +35c <379.4
又a ,b ,c 为自然数,因此, 56a +40b +35c =377 ①
或56a +40b +35c =378 ②
或56a +40b +35c =379 ③
考虑不定方程①,由奇偶分析,知c 为奇数,所以40b +35c 的个位为5, 因此56a 的个位为2,a 的个位为2或7.
又a <56
43656379=,故a =2, 因此8b +7c =53,易知b =4, c =3.
同法可知不定方程②无解,方程③的解为a =4, b =3, c =1.
14. 设第i 名的奖金为100ai 元(i =1,2,3,4,5).
依题意,得 1000010010010010010054321=++++a a a a a , 且542321,a a a a a a +=+=,整理 1002332=+a a ① 所以 3223100a a +=<222523a a a =+,故2a >20, 由①易知2a 必为偶数,所以2a ≥22.
故 ()23310021a a -=≤()172231002
1=⨯-. 即第三名最多能得1700元.。