第三讲 牛顿运动定律
高三物理第三章 牛顿运动定律知识精讲 人教版
高三物理第三章牛顿运动定律知识精讲一. 本周教学内容:第三章牛顿运动定律二. 知识要点:三. 复习指导:在前面两章对力和运动分别研究的基础上,本章研究力和运动的关系。
牛顿运动定律是动力学的基础,也是整个经典物理理论的基础。
正确地理解惯性的概念、理解物体间相互作用的规律,熟练地运用牛顿第二定律解决问题,是本章复习的重点。
本章中还涉及到许多重要的研究方法,如:在牛顿第一定律的研究中采用的理想实验法;在牛顿第二定律的研究中采用的控制变量法;运用牛顿第二定律处理问题时常用的隔离法和整体法以及单位的规定方法、单位制的创建等。
对这些方法在复习中也需要认真地体会、理解,从而提高认知的境界。
高考关于本章知识的命题年年都有,既有对本章知识的单独命题,也有与其他知识的综合命题;既有选择题、填空题,也有计算题;既有考查对牛顿运动定律的理解及应用的传统题,也有与实际生活及现代科技联系的新颖题。
新大纲对本章的要求有所降低,对牛顿第二定律只要求会用它解决单一物体(或可视为单一物体的连接体)问题。
对于超重和失重,新大纲不再把它作为一个知识点,但仍把它作为牛顿运动定律的一个应用。
四. 知识梳理:(一)牛顿第一定律1. 定律内容:一切物体总保持或,直到有迫使它改变这种状态为止。
2. 关于牛顿第一定律的理解应注意以下几点:(1)牛顿第一定律反映了物体不受外力时的运动状态。
(2)牛顿第一定律说明一切物体都有。
(3)牛顿第一定律说明力是改变物体的原因,即力是产生的原因。
3. 惯性:物体保持原来的状态或状态的性质叫做惯性。
一切物体都有惯性,惯性是物体的固有性质。
是惯性大小的唯一量度。
惯性与物体是否受力及受力大小,与物体是否运动及速度大小。
惯性的表现形式:(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动);(2)物体受到外力时,惯性表现为运动状态改变的。
惯性大,物体运动状态难以改变;惯性小,物体运动状态容易改变。
第三章 牛顿运动定律(共3节)
(1)2 s 内物块的位移大小 x 和通过的路程 L; (2)0~0.5 s 和 0.5 s~1 s 两个阶段加速度大小 a1、a2 和拉力大 小 F.
五、力学单位制 基本物理量的单位就是基本单 物理 量 长度: 位 m 、km 、cm……
位
学 力 时间: 国
质量: 际 速度: 单
A.t=2 s 时最大 C.t=8.5 s 时最大
B.t=2 s 时最小 D.t=8.5 s 时最小
根据超重、失重判断运动状态
(单选)(沈阳二中检测)如图所示,是某同学站在压力 传感器上,做下蹲—起立的动作时记录的力随时间变化的图 线,纵坐标为力(单位为牛顿),横坐标为时间.由图线可知 ( B ) A.该同学做了两次下蹲—起立的动作 B.该同学做了一次下蹲—起立的动作 C.下蹲过程中人处于失重状态 D.下蹲过程中先处于超重状态后处于失重状态
作用力和反作用力与平衡力的区别
(多选)如图所示, 用水平力 F 把一个物体紧压在竖直 墙壁上静止,下列说法中正确的是( BD ) A.水平力 F 跟墙壁对物体的弹力是一对作用力与反作用力 B.物体的重力跟墙壁对物体的静摩擦力是一对平衡力 C.水平力 F 与物体对墙壁的压力是一对作用力与反作用力 D.物体对墙壁的压力与墙壁对物体的弹力是一对作用力与 反作用力
受力情 况
合力F
合
a 运动情
况
F合= m a
三、瞬时加速度问题
分析物体在某一时刻的瞬时加速度,关键——分析瞬 时前后的受力情况及运动状态,再由牛顿第二定律求出 瞬时加速度。
有两种模型:
①弹簧(或橡皮绳):特点是形变量大,形变恢复需 要较长时间,在瞬时问题中,其弹力可以看成不变。
②刚性绳(或接触面):是一种不需要发生明显形 变就能产生弹力的物体,若剪断(或脱离)后,其中
第03章 牛顿定律
5.如图所示,一根轻质弹簧上端固定,下端挂一质 量为 m 的平盘,盘中有一个质量为 m 的物体。当盘静 止时,弹簧的长度比其自然长度伸长了 L,今向下拉盘 使弹簧再伸长△L后停止,然后松手放开。设弹簧总处 在弹性限度以内,刚刚松手时盘对物体的支持力等于 ( ) L L (B) ( m m) g (A) mg L L L L (D)(1 )(m m) g (C)(1 )mg L L
2 2 (A) a0 gtg (B) a0 3 gctg 3 2 2 (C) a0 g sin (D) a0 g cos 3 3
a
a0
[例8]、质量为 m,边长为 l 的两个正方体放置在光 滑水平面上;将一个完全相同的正方体轻轻地斜放在 两个正方体上(如图所示),设正方体是光滑的。求 释放后上方正方体和下方右侧正方体的加速度。
(答案在后)
20、如图所示,一物块静止放置在倾角为θ的斜面上, 物块与斜面之间的动摩擦因数为μ 。现斜面在水平地 面上以加速度 a 向右匀加速运动,求 a 为多少时时物 块将开始滑动?
21、如图所示,在以恒定加速度 a 行驶的车厢内,有 一长为 l、质量为 m 的均匀棒 AB 靠在光滑的后壁上, 棒与厢底面之间的摩擦因数为μ.为了使棒不滑动,棒与 竖直平面所成的夹角θ应在什么范围内?
12.如图所示,将质量为1千克的小球挂在倾角为 30°的光滑斜面上,求:(1) 当斜面以 a = g / 3 的加速 度沿水平方向向右作匀加速运动时,绳对球的拉力和 球对斜面的压力? (2) 斜面的加速度至少多大,向哪个 方向时,球对斜面压力为零? (3) 斜面的加速度至少多 大,向哪个方向时,绳的拉力为零? (下页有图和答案)
17、可看作质点的滑块质量为m,置于光滑半球面的 顶点A处(半球面固定不动),如图所示。当它由静止 开始下滑到半球面上B点时(未脱离半球面),它的加 速度的大小为 。 A
第三章牛顿运动定律
第三章牛顿运动定律第三章牛顿运动定律本章学习要求1.由伽利略的理想实验为基础得到的牛顿第一定律可知:力不是维持物体运动的原因,而是改变物体运动状态(产生加速度)的原因。
2.惯性是物体的固有属性,质量是物体惯性大小的量度。
3.牛顿第二定律F=ma反映了力和加速度之间的因果关系,加速度随力的变化而变化。
4.力的作用总是相互的。
作用力和反作用力大小相等、方向相反。
它们分别作用在两个不同的物体上。
5.涉及到力学的国际单位制的基本单位有3个,它们分别是长度单位m(米),质量单位kg (千克)和时间单位s(秒)。
6.通过科学探究来学习牛顿定律.感悟牛顿对科学的巨大贡献。
A 牛顿第一定律惯性一、学习要求理解牛顿第一定律,知道惯性是物体本身固有的属性,跟外部环境、物体的运动状态和物体的受力情况均无关。
外力作用于物体,能改变物体的运动状态,但不能改变物体的惯性。
知道伽利略的斜面实验是建立在可靠事实基础上的理想实验,它深刻揭示了物理现象的本质,是一种重要的科学研究方法。
领悟惯性在社会生活中的重要现实意义,懂得有时要利用它,有时要防止它的不利影响。
二、要点辨析1.牛顿第一定律(1)描述物体不受外力作用时的运动规律。
牛顿第一定律描述了物体不受外力作用时,物体将保持匀速直线运动状态或静止状态。
应该指出的是,从力学发展历史看,第一定律是一个独立的定律,它不仅说明了物体不受外力时的运动规律,还给出了力和惯性的涵义。
(2)阐明了力的科学涵义。
牛顿第一定律指出:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
这就是说,物体不受外力就保持不变的速度,力是使物体产生加速度的其他物体的作用。
这样就从动力学角度定性地给力下了一个定义:力是物体间的相互作用,它是改变物体运动状态,即产生加速度的原因,而不是维持物体运动的愿因。
(3)揭示了物体普遍具有的属性——惯性。
2.如何理解惯性是物体的固有属性惯性是指一切物体(包括固体、液体、气体)具有的保持其静止或匀速直线运动状态不变的特性,既是特性,则任何物体在任何情况下都具有惯性,惯性是物体所固有的属性,所以惯性既不能被克服,也不能被消除,同一物体的惯性不会因它的运动状态的改变而改变,牛顿关于惯性定义还作了这样的叙述:“所谓惯性……是每个物体按其一定的量而存在于其中的一种抵抗能力,”所以物体的惯性总是以保持“原状”和“反抗”改变两种形式表现出来。
2020年强基计划高三物理专题讲解第03讲--牛顿运动定律 (核心素养提升)(解析版)
2020年强基计划物理专题讲解(核心素养提升)第3讲 牛顿运动定律知识精讲1.牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。
这是牛顿第一定律的内容。
牛顿第一定律是质点动力学的出发点。
物体保持静止状态或匀速直线运动状态的性质称为惯性。
牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。
无论是静止还是匀速直线运动状态,其速度都是不变的。
速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。
牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。
简称惯性系。
相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:(3)理解要点ma F m F a ==∑∑或①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。
在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式①牛顿第二定律反映了力的瞬时作用规律。
物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。
①当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。
这个结论称为力的独立作用原理。
①牛顿第二定律阐述了物体的质量是惯性大小的量度,公式反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。
牛顿运动定律第三讲:水平面上的连接体问题接触连接、绳连体、弹簧连体等课件--名师微课堂
小试身手
(2011年天津高考卷第2题) 如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对 静止地向右做匀减速直线运动,运动过程中B受到的摩擦力(
B
A【例题】
【解析】设两球做圆运动的角速度为ω,则对A、 B两球整体研究有:
Fa=2m(L+L/2)ω² ①
如图,A、B两球质量均为m, 对B球研究有: 通过 a 、 b 两段长均为 L 的轻绳相 Fb=m(2L)ω² ② 连,它们一起绕绳 a的一端O点在 由① ②两式得:Fa :Fb=3:2. 光滑水平面上做匀速圆周运动 .求 【思考】如果单独研究A球①式应该如何写? a、b两段轻绳拉力Fa与Fb之比. FN B O a Ab O a A b B Fa 2mg
四、本节课小结
对于水平面上的连接体问题,一般竖直方向平衡(除非竖直 方向上有加速度,存在超重、失重问题),主要是分情况看水平
水平面上的连接体问题
一、接触连接问题
【例题】
如图质量为m和M的两物体, 相互靠近放在水平面上,它们与地 面间的摩擦因数均为 μ. 现给 m 施加 向右的水平力 F ,使 m 与 M 以加速 度为a一起向右加速运动 .求在此过 程中m与M之间的相互作用力大小.
F m M
方法点拨
对连接体问题,一般先考虑用整体法判断、计算加速度,然后用
方法点拨
弹簧连接与接触连接、绳连接不同,它既可以拉,也可以支撑(这一点和 杆连接很相似),所以遇见弹簧连接问题,必须仔细审题,看弹簧是压缩还是
小试身手
(2011年山东高考卷第19题) 如图所示,将两相同的木块a、b置于粗糙的水平地面上,中间用一 轻弹簧连接,两侧用细绳固系于墙壁。开始时a、b均静止。弹簧处于伸 长状态,两细绳均有拉力,a所受摩擦力fa ≠0,b所受摩擦力fb =0,现将 右侧细绳剪断,则剪断瞬间( ) A. fa大小不变 C. fb仍然为零 B. fa方向改变 D. fb方向向右
第三章 牛顿运动定律(课件)
1. 牛顿运动定律及牛顿定律 的应用Ⅱ 2. 超重和失重Ⅰ 3. 单位制:要知道中学物理 中涉及的国际单位制的基 本单位和其他物理量的单位 .包括小时、分、升、电 子伏特(eV) Ⅰ 说明:知道国际单位制中规 定的单位符号 4. 实验四:验证牛顿运动定 律
备考导读
1. 牛顿运动定律是经典物理学中 最基本、最重要的规律,也是高 考命题的热点.正确理解理解惯 性的概念,理解力和运动的关系, 并能熟练地应用牛顿第二定律分 析和计算问题是高考的考查重 点. 2. 近几年高考对牛顿运动定律的 考查侧重于单个物体的分析和计 算.在今后的高考命题中常结合 弹簧及实际问题进行考查.综合 性问题的考查趋向于解决生活、 科技、工业生产等诸多问题,同 时注意与电场、磁场的联系.
A. 采用了大功率的发动机后,某些一 级方程式赛车的速度甚至能超过某些老 式螺旋桨飞机的速度. 这表明可以通过 科学进步使小质量的物体获得大惯性
B. 射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不 透,这表明它的惯性小了 C. 货运列车运行到不同的车站时,经常要摘下或加挂一些车厢, 这些会改变它的惯性 D. 摩托车转弯时,车手一方面要控制适当的速度,另一方面要 将身体稍微向里倾斜,通过调控人和车的惯性达到行驶目的
牛顿第一定律
1. 牛顿第一定律导出了力的概念 力是改变物体运动状态的原因(运动状态指物体的速度).又根据加
速度定义a=
Δv Δt
,有速度变化就一定有加速度,所以可以说力是物
体产生加速度的原因(不能说“力是产生速度的原因”、也不能说“力 是维持速度的原因”).
2. 牛顿第一定律导出了惯性的概念
一切物体都有保持原有运动状态的性质,这就是惯性.
A. 系好安全带可以减小惯性
第三章 牛顿运动定律(讲义)
第1节牛顿第一定律牛顿第三定律一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.2.表现:物体不受外力作用时,其惯性表现在保持静止或匀速直线运动状态;物体受外力作用时其惯性表现在反抗运动状态的改变.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上.2.表达式:F=-F′.[自我诊断]1.判断正误(1)物体不受外力时一定处于静止状态.(×)(2)惯性即惯性定律.(×)(3)运动的物体惯性大,静止的物体惯性小.(×)(4)两个大小相等、方向相反、作用在同一直线上的力一定是相互作用力.(×)(5)作用力与反作用力的关系不随运动状态的变化而变化.(√)(6)人走在松软土地上下陷时,人对地面的压力大于地面对人的支持力.(×)2.(多选)关于牛顿第三定律,下列说法正确的是()A.对重力、弹力、摩擦力等都适用B.当相互作用的两个物体相距很远时不适用C.当相互作用的两个物体做加速运动时不适用D.相互作用的两个物体没有直接接触时也适用3.关于惯性,下列说法中正确的是()A.磁悬浮列车能高速行驶是因为列车浮起后惯性小了B.卫星内的仪器由于完全失重惯性消失了C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远D.月球上物体的重力只有在地球上的1/6,但是惯性没有变化4.一个榔头敲在一块玻璃上把玻璃打碎了.对于这一现象,下列说法正确的是()A.榔头敲玻璃的力大于玻璃对榔头的作用力,所以玻璃才碎裂B.榔头受到的力大于玻璃受到的力,只是由于榔头能够承受比玻璃更大的力才没有碎裂C.榔头和玻璃之间的作用力应该是等大的,只是由于榔头能够承受比玻璃更大的力才没有碎裂D.因为不清楚榔头和玻璃的其他受力情况,所以无法判断它们之间的相互作用力的大小考点一对牛顿第一定律的理解1.指出了物体的一种固有属性牛顿第一定律揭示了物体所具有的一个固有属性——惯性,即物体总保持原有运动状态不变的一种性质.2.揭示了力的本质牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.3.揭示了不受力作用时物体的运动状态牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力作用但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.1.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.在一次交通事故中,一辆载有30吨“工”字形钢材的载重汽车由于避让横穿马路的摩托车而紧急制动,结果车厢上的钢材向前冲出,压扁驾驶室.关于这起事故原因的物理分析正确的是() A.由于车厢上的钢材有惯性,在汽车制动时,钢材继续向前运动,压扁驾驶室B.由于汽车紧急制动,使其惯性减小,而钢材惯性较大,所以继续向前运动C.由于车厢上的钢材所受阻力太小,不足以克服其惯性,所以继续向前运动D.由于汽车制动前的速度太大,汽车的惯性比钢材的惯性大,在汽车制动后,钢材继续向前运动牛顿第一定律的“三点注意”(1)牛顿第一定律不能用实验直接验证,而是通过伽利略斜面实验等大量事实推理得出的.(2)牛顿第一定律并非牛顿第二定律的特例,而是不受任何外力的理想化情况.(3)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来.考点二对牛顿第三定律的理解1.作用力与反作用力的“三同、三异、三无关”2.应用牛顿第三定律时应注意的问题(1)定律中的“总是”二字说明对于任何物体,在任何条件下牛顿第三定律都是成立的.(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失,则另一个必然同时产生或消失.(3)作用力、反作用力不同于平衡力1.(2016·吉林实验中学二模)两人的拔河比赛正在进行中,两人均保持恒定拉力且不松手,而脚下开始移动.下列说法正确的是()A.两人对绳的拉力大小相等、方向相反,是一对作用力和反作用力B.两人对绳的拉力是一对平衡力C.拔河的胜利与否取决于谁的力量大D.拔河的胜利与否取决于地面对人的摩擦力大小2. 物体静止于一斜面上,如图所示,则下列说法正确的是()A.物体对斜面的压力和斜面对物体的支持力是一对平衡力B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C.物体所受的重力和斜面对物体的作用力是一对作用力和反作用力D.物体所受的重力可以分解为沿斜面向下的力和对斜面的压力3. 如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态时,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10 m/s2)解析:正确认识作用力和反作用力的“两点技巧”(1)抓住特点:无论物体的运动状态、力的作用效果如何,作用力和反作用力总是等大、反向、共线的.(2)明确力的作用点:要区别作用力和反作用力与平衡力,最直观的方法是看作用点的位置,一对平衡力的作用点在同一物体上,作用力和反作用力的作用点在两个物体上.课时规范训练[基础巩固题组]1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展,利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是() A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小2.(多选)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反3.(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法符合历史事实的是()A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质4.(多选)用手托着一块砖,开始静止不动,当手突然向上加速运动时,砖对手的压力() A.一定小于手对砖的支持力B.一定等于手对砖的支持力C.一定大于手对砖的支持力D.一定大于砖的重力5.如图所示,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利6.(多选)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车的运动情况,下列叙述正确的是()A.小车匀速向左运动B.小车可能突然向左加速C.小车可能突然向左减速D.小车可能突然向右减速7.图为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为()A.(M+m)g B.(M+m)g-maC.(M+m)g+ma D.(M-m)g[综合应用题组]8.某人乘坐列车时发现,车厢的双层玻璃窗内积水了.列车进站过程中,他发现水面的形状如图中的()9.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为()A.人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已D.人跳起后直到落地,在水平方向上始终具有和车相同的速度10.(多选)如图所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止.关于小球与列车的运动,下列说法正确的是()A.若小球向前滚动,则磁悬浮列车在加速前进B.若小球向后滚动,则磁悬浮列车在加速前进C.磁悬浮列车急刹车时,小球向前滚动D.磁悬浮列车急刹车时,小球向后滚动11.(多选)抖空竹是人们喜爱的一项体育活动.最早的空竹是两个如同车轮的竹筒,中间加一个转轴,由于外形对称,其重心在中间位置,初玩者能很好地找到支撑点而使之平衡.随着制作技术的发展,如图所示的不对称的空竹也受到人们的欢迎,现在的空竹大多是塑料制成的,也有天然竹木制成的.关于抖空竹,在空气阻力不可忽略的情况下,下列说法中正确的是() A.空竹启动前用绳子拉住提起,要保证支持力和重力在同一条直线上B.空竹的转动是依靠绳子的拉动,绳子与转轴之间的摩擦力越小越好C.空竹抛起后由于惯性而继续向上运动,在空中受重力和惯性作用D.空竹从抛起到接住,转速会减小,表演时还要继续牵拉绳子使其加速转动12.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法中正确的是()A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮13.如图所示,用细线将A物体悬挂在顶板上,B物体放在水平地面上.A、B间有一劲度系数为100 N/m的轻弹簧,此时弹簧伸长了2 cm.已知A、B两物体的重力分别是3 N和5 N.则细线的拉力及B对地面的压力分别是()A.8 N和0B.5 N和7 NC.5 N和3 N D.7 N和7 N14. 一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为F f,则此时箱对地面的压力大小为()A.Mg+F f B.Mg-F fC.Mg+mg D.Mg-mg第2节牛顿第二定律两类动力学问题一、牛顿第二定律1.内容:物体加速度的大小跟它受到作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.动力学的两类基本问题(1)由受力情况确定物体的运动情况.(2)由运动情况确定物体的受力情况.2.解决两类基本问题的思路:以加速度为桥梁,由运动学公式和牛顿第二定律列方程求解.三、力学单位制1.单位制由基本单位和导出单位共同组成.2.力学单位制中的基本单位有米、千克、秒(s).3.导出单位有牛顿、米/秒、米/秒2等.[自我诊断]1.判断正误(1)牛顿第二定律表达式F=ma在任何情况下都适用.(×)(2)物体所受合外力大,其加速度一定大.(×)(3)对静止在光滑水平面上的物体施加一个水平力,当力刚作用瞬间,物体立即获得加速度.(√)(4)物体由于做加速运动,所以才受合外力作用.(×)(5)F =ma 是矢量式,a 的方向与F 的方向相同,与速度方向无关.(√)(6)物体所受合外力减小,加速度一定减小,而速度不一定减小.(√)(7)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系.(√)2.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为( )A .m 2·kg·s -4·A -1B .m 2·kg·s -3·A -1C .m 2·kg·s -2·A -1D .m 2·kg·s -1·A -13.如图甲、乙所示,两车都在光滑的水平面上,小车的质量都是M ,人的质量都是m ,甲图人推车、乙图人拉绳(绳与轮的质量和摩擦均不计)的力都是F ,对于甲、乙两图中车的加速度大小说法正确的是( )A .甲图中车的加速度大小为F MB .甲图中车的加速度大小为F M +m C .乙图中车的加速度大小为2F M +mD .乙图中车的加速度大小为F M 4.如图所示,在光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬间A 和B 的加速度大小分别为a 1、a 2,则( )A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2a C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=m 1m 2a 考点一 对牛顿第二定律的理解1.牛顿第二定律的“五性”2.力、加速度、速度间的关系(1)加速度与力有瞬时对应关系,加速度随力的变化而变化.(2)速度的改变需经历一定的时间,不能突变;加速度可以突变.1.(2016·高考全国乙卷)(多选)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变2.(多选)一物体重为50 N ,与水平桌面间的动摩擦因数为0.2,现加上如图所示的水平力F 1和F 2,若F 2=15 N 时物体做匀加速直线运动,则F 1的值可能是(g =10 m/s 2)( )A .3 NB .25 NC .30 ND .50 N3.(2017·湖南师范大学附中月考)(多选) 如图所示,固定在水平面上的光滑斜面的倾角为θ,其顶端装有光滑小滑轮,绕过滑轮的轻绳一端连接一物块B ,另一端被人拉着,且人、滑轮间的轻绳平行于斜面.人的质量为M ,B 物块的质量为m ,重力加速度为g ,当人拉着绳子以大小为a 1的加速度沿斜面向上运动时,B 物块运动的加速度大小为a 2,则下列说法正确的是( )A .物块一定向上加速运动B .人能够沿斜面向上加速运动,必须满足m >M sin θC .若a 2=0,则a 1一定等于mg -Mg sin θMD .若a 1=a 2,则a 1可能等于mg -Mg sin θM +m考点二 牛顿第二定律瞬时性的理解1.两种模型:牛顿第二定律F =ma ,其核心是加速度与合外力的瞬时对应关系,两者总是同时产生,同时消失、同时变化,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路⇒求瞬时加速度1.(2017·山东大学附中检测)如图所示,A 、B 两小球分别连在轻线两端,B 球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2B .g 2和0 C.g 2和m A m B ·g 2 D.m A m B·g 2和g 2 2.如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0B.233g C .g D.33g3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上.并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g在求解瞬时性加速度问题时的“两点注意”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度和位移的变化需要一个积累的过程,不会发生突变.考点三 动力学的两类基本问题1.求解两类问题的思路,可用下面的框图来表示:2.分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.考向1:由受力情况求运动情况[典例1]如图所示,工人用绳索拉铸件,铸件的质量是20 kg,铸件与地面间的动摩擦因数是0.25.工人用80 N的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4 s后松手.(g=10 m/s2)求:(1)松手前铸件的加速度;(2)松手后铸件还能前进的距离.解析1.(2017·黑龙江齐齐哈尔质检)一个原来静止在光滑平面上的物体,质量是7 kg,在14 N的恒力作用下运动,则5 s末的速度及5 s内通过的路程为()A.8 m/s25 m B.2 m/s25 mC.10 m/s25 m D.10 m/s12.5 m2.(2016·高考江苏卷)(多选)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中() A.桌布对鱼缸摩擦力的方向向左B.鱼缸在桌布上的滑动时间和在桌面上的相等C.若猫增大拉力,鱼缸受到的摩擦力将增大D.若猫减小拉力,鱼缸有可能滑出桌面3.(2017·江西抚州五校第二次联考)一质量m=5 kg的滑块在F=15 N的水平拉力作用下,由静止开始做匀加速直线运动,若滑块与水平面间的动摩擦因数μ=0.2,g取10 m/s2,问:(1)滑块在力F作用下经5 s,通过的位移是多大?(2)5 s末撤去拉力F,滑块还能滑行多远?解析:考向2:由运动情况求受力情况[典例2](2017·山东威海模拟)有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10 m/s2)求:(1)座椅在自由下落结束时刻的速度是多大?(2)座椅在匀减速阶段的时间是多少?(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?解析4.(2017·湖北襄阳模拟)在欢庆节日的时候,人们会在夜晚燃放美丽的焰火.按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4 s末到达离地面100 m的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直射出时的初速度是v0,上升过程中所受的平均阻力大小始终是自身重力的k倍,那么v0和k分别等于(重力加速度g取10 m/s2)()A.25 m/s,1.25 B.40 m/s,0.25C.50 m/s,0.25 D.80 m/s,1.255.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车到完全停止需要的时间为 5 s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()A.450 N B.400 N C.350 N D.300 N(1)解决动力学基本问题时对力的处理方法①合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.②正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.(2)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.课时规范训练[基础巩固题组]1.物块A 放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g =10 m/s 2,则物块A 沿此斜面下滑的加速度大小为( )A .5 3 m/s 2B .3 3 m/s 2C .(5-3) m/s 2 D.1033 m/s 22.(多选)如图所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(取g =10 m/s 2)( )A .物体经10 s 速度减为零B .物体经2 s 速度减为零C .物体速度减为零后将保持静止D .物体速度减为零后将向右运动3.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连.当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a 2.则有( )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 24.如图所示,质量分别为m 、2m 的小球A 、B ,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F ,此时突然剪断细线.在线断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( )A.2F 3,2F 3m +gB.F 3,2F 3m +gC.2F 3,F 3m +gD.F 3,F 3m +g5.(多选)如图所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( )A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB .B 球的受力情况未变,瞬时加速度为零C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零6.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以a =2.5 m/s 2匀加速下滑.如。
第三章 牛顿运动定律讲义(学生版)
第三章牛顿运动定律知识网络图第一讲牛顿第一定律牛顿第三定律知识串讲知识点一、牛顿第一定律1.内容:一切物体总保持状态或状态,除非作用在它上面的力迫使它改变这种运动状态2.意义:(1)指出力不是物体运动的原因,而是物体运动状态的原因,即力是产生的原因。
(2)指出了一切物体都有,因此牛顿第一定律又称。
3.惯性:(1)定义:物体具有保持原来状态或状态的性质。
(2)性质:惯性是一切物体都具有的性质,是物体的属性,与物体的运动情况和受力情况。
(3)量度:是物体惯性大小的唯一量度,大的物体惯性大,小的物体惯性小。
知识点二牛顿第三定律1.内容:两个物体之间的作用力和反作用力总是,,作用在。
2.意义:建立了相互作用物体之间的联系及的相互依赖关系。
考点1 对牛顿第一定律的理解与应用1.牛顿第一定律:牛顿第一定律不是实验定律,它是在可靠的实验事实(如伽利略斜面实验)基础上采用科学的逻辑推理得出的结论;物体不受外力是牛顿第一定律的理想条件,其实际意义是物体受到的合外力为零。
2.惯性:惯性是物体保持原来运动状态的性质,与物体是否受力、是否运动及所处的位置无关,物体的惯性只与其质量有关,物体的质量越大其惯性越大。
3.惯性的两种表现形式(1)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来。
(2)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
典例精讲例1.(多选)关于牛顿第一定律的理解正确的是()A.牛顿第一定律反映了物体不受外力的作用时的运动规律B.不受外力作用时,物体的运动状态保持不变C.在水平地面上滑动的木块最终停下来,是由于没有外力维持木块运动的结果D.奔跑的运动员遇到障碍而被绊倒,这是因为他受到外力作用迫使他改变原来的运动状态例2.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。
早期物理学家关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动例3.(多选)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗。
第三章牛顿运动定律
A.这是两只完全相同的弹簧测力计 B.弹力的大小与弹簧的形变量成正比 C.作用力与反作用力大小相等、方向相反 D.力是改变物体运动状态的原因
工具
必修1 第三章 牛顿运动定律
栏目导引
4. (2012·宁国市模拟)理想实验有时能更深刻地
反映自然规律、伽利略设想了一个理想实验如 图所示,其中有一个是经验事实,其余是推 论.
A.上拉过程中,人受到两个力的作用 B.上拉过程中,单杠对人的作用力大于人对 单杠的作用力 C.下放过程中,单杠对人的作用力小于人对 单杠的作用力 D.下放过程中,在某瞬间人可能只受到一个 力的作用
AD
工具
必修1 第三章 牛顿运动定律
栏目导引
2-1:(2012·广州高三检测)物体静止在一固定在 水平地面上的斜面上,下列说法正确的是( B ) A.物体对斜面的压力和斜面对物体的支持力是 一对平衡力 B.物体对斜面的摩擦力和斜面对物体的摩擦力 是一对作用力和反作用力 C.物体所受重力和斜面对物体的支持力是一对 作用力和反作用力
2.意义 (1)揭示力不是_维__持___物体运动的原因,而是 _改__变___物体运动状态的原因,即力是产生_加__速__度__ 的原因. (2)揭示了一切物体都有__惯__性__,因此牛顿第一定 律又称__惯__性__定__律__.
工具
必修1 第三章 牛顿运动定律
栏目导引
3.
工具
必修1 第三章 牛顿运动定律
在上述的设想步骤中,有的属于可靠的事实,有的 则是理想化的推论,下列关于事实和推论的分类正
确的是( B )
A.①是事实,②③④是推论 B.②是事实,①③④是推论 C.③是事实,①②④是推论 D.④是事实,①②③是推论
工具
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由两式解得
Ta mg sin
Tb mg ctg
(2)m球水平合力提供向左加速运动的动力,即
F F
由此得
y
0,Tay Ta sin mg,Ta
mg sinθ
③ ③
x
ma,Tax Tb Ta cos Tb ma
Tb Tax ma Ta · cos θ ma 即 Tb mg· cot θ ma
分析: 物体从A到B的过程,分为二个阶段,一个突变点。
加速阶段,弹力小于重力,N<G,物体所受的合力向下,但 加速度数值逐渐减小,故物体作加速度值减小的加速运动,速度仍 逐渐增大。
到N=G(突变点)时,速度达到最大。 随着弹簧的继续压缩,物体进入减速阶段,N>G,物体所受 的合力向上,且逐渐增大,但速度方向仍向下,故作加速度值增大 的减速运动,速度逐渐减小,到B点速度为零,但此时向上的合力 最大。 所以物体从B点到A点的过程中,先作加速度值减小的加速运动 ,速度逐步增大,到加速度等于零时,速度达到最大;而后随着弹 力N的继续增大,物体作加速度值逐步增大的减速运动,速度逐渐 减小,到A点时速度最小,但向上的加速度却最大,即受的合力最 大。
答:在题设三种情况下,ac绳的张力分别为
mg ma sin θ ; b c绳 的 张 力 分 别 为 m g· co t θ 、 m g· co t θ
mg 、 和 sinθ sinθ
ma 和 ( mg
mg
m a ) · co t θ 。
说明:1.在物体受多个力时,正交分解法是研究牛顿动力学问题 的最基本的方法。正交坐标轴通常取三种:水平x轴与竖直y轴,斜 面x轴与斜面垂线方向的y轴,半径方向的x轴与切线方向的y轴;然 后, x 、 y 轴 分 别 列 牛 顿 方 程 , 即 F x m a x , F y m a y 。 沿
当 a ≥ a 0 时 , 对 小 球 的 受 力 情 况 分 析 的 结 果 可 画 出 图 (2 )
据牛顿第二定律得 Tcosα-mg=0, Tsinα=ma. 联立求解,得绳子的张力
T=m g a .
2 2
力学中的许多问题,存在着临界情况,正确地找寻这些 临界情况给出的隐含条件是十分重要的.在本题中,认 定隐含条件为N=0,就可借此建立方程求解.
但相对地面的参照物却做加速运动,会用通过变换参照系统的 办法求解,即在以地面为参照的系统里建立动力学方程求解。)
(5) (6)
临界状态问题。 其它问题。
三.典型例题
牛顿运动定律的应用
例1 一物体从某一高度自由落下,落在直立于地面的轻弹
簧上,如图所示。在A点,物体开始与弹簧接触,到B点时 ,物体速度为零,然后被弹回。下列说法中正确的是: (A)物体从A下降到B的过程中,动能不断变小。 (B)物体从B点上升到A的过程中,动能不断变大。 (C)物体从A下降到B,以及从B上升到A的过程中,速 率都是先增大,后减小。 (D)物体在B点时,所受合力为零。
解:选取直角坐标系,设当斜面体对小球的支持力N=
0 时 , 斜 面 体 向 右 运 动 的 加 速 度 为 a 0 , 据 牛 顿 第 二 定 律 Σ Fx = m a x , Σ Fy = 0 , 建 立 方 程 有
T sin θ - m g = 0 , T co s θ = m a 0 .
所以,
3.由①、⑤两式对比以及②、⑥两式对比可以看出,只要把①、 ②两式中的g改成(g+a)即为⑤、⑥两式。这表示:在竖直方向有 加速度a的系统内,用“等效重力”G'=mg'=m(g+a)的观点处 理超重(a>0)或失重(a<0)状态下的动力学(以及运动学)问 题时,可把加速状态下的非惯性系统的动力学问题当作超重或失重 状态下的“惯性系统”中的“静力学”问题(即“平衡状态”下 “合力”为零)来处理,其效果完全相同。
2
A、B的共同加速度
a= F mA m B = 15 23 m / s = 3m / s
2 2
说明:在许多情况中,当研究对象的外部或内部条 件超过某一临界值时,它的运动状态将发生“突变”, 这个临界值就是临界条件,而题目往往不会直接告诉你 物体处于何种状态.解决这类问题的方法一般先是求出 某一物理量的临界值,再将题设条件和临界值进行比较, 从而判断出物体所处的状态,再运用相应的物理规律解 决问题.
2.由①、③两式以及②、④两式对应比较可见,当m水平向左加速 运动时,ac绳张力不变,而bc绳张力变小;即bc绳的张紧程度有所 减小(有一个“可以忽略”的回缩)。由①、⑤两式以及②、⑥两 式对应比较可见,当m竖直向上加速运动时,ac绳与bc绳的张力都 相应地增大了一个比例,即两根弹性绳的张紧程度都有所增大(有 忽略 一个“可以 ” 的 进 一 步 伸 长 ) 。 但 是 , 由 于 两 根 弹 性 绳 的 劲 度 系 数 k a 、 k b 都 相当大,因此形变量的变化都极小,称为“不易伸缩”。
④
(3)m球竖直向上加速运动时,由竖直方向的合力提供产生加速度 的动力,即
F
y
ma,Tay mg ma
Ta · sin θ mg ma Ta mg ma sin θ ⑤
F
x
0,Tax Tb ⑥
Tb Ta · cos θ mg ma · cot θ
绳 张 力 T b 、 斜 向 左 上 方 的 ac 绳 张 力 T a 。 三 力 的 合 力 决 定 小 球 的 运 动 状
将 Ta 沿 水 平 、 竖 直 两 个 方 向 正 交 分 解 得
Tax Ta · cos θ Tay Ta · sin θ
解:(1)m球处于平衡状态,即
Tay Ta sin mg Tax Ta cos Tb ① ②
个 质 量 为 m 的 小 球 , 如 图 所 示 , 求 下 列 情 况 时 两 绳 张 力 Ta 、 T b 的 大 小 :
(1)箱子水平向右匀速运动; (2)箱子以加速度a水平向左运动; (3)箱子以加速度a竖直向上运动。(三次运动过程中,小球与 箱子的相对位置保持不变)
分析:小球m始终受3个力:竖直向下的重力mg、水平向右的bc 态。
aA= a B= F fm mA fm mB = 12 3 = 15 12 2
2
m / s =15m / s .
2
2
m / s =4m / s
2
从结果看,物体B的加速度竟然大于物体A的加速度,这显 然是不合理的.原来A、B之间பைடு நூலகம்否产生相对滑动,不能根
据 F是 否 大 于 fm 来 判 断 (只 有 当 B物 体 不 动 时 , 才 可 以 这 样 判
解(1)设在匀变速运动阶段,弹簧压缩量在起始时刻为
x 0 , 终 止 时 刻 为 x 1 , 以 A 为 对 象 , 起 始 时 刻 k x 0 + m g= m a,
得 x0=
m(a g) k
.
①
终止时刻,B对A支持力N=0,此刻有
kx 1 +mg=m·
a m g 3 k
速 度 的 最 大 值 由 最 大 静 摩 擦 力 决 定 , a= = 4m / s
2
fm m
B
12 = 3 m / s
2
A、B刚要发生相对滑动时,A、B间恰好为最大静摩
擦 力 , 这 时 A、 B的 加 速 度 相 同 恰 为 a m , 对 AB整 体 而 言 , 这 个 加 速 度 是 由 F0 提 供 的 , 利 用 牛 顿 第 二 定 律 可 求 出 临 界 水 平
例5.如图(甲)所示,一根质量可以忽略不计的轻弹 簧,劲度系数为k,下面悬挂一个质量为m的砝码A, 手拿一块质量为M的木板B,用木板B托住A往上压缩弹 簧,如图(乙)所示.此时如果突然撤去木板B,则A向 下运动的加速度为a(a>g),现用手控制使B以加速度 a/3向下作匀加速直线运动. (1)求砝码A作匀加速直线运动的时间. (2)求出这段运动过程的起始和终止时刻手对木板B的 作用力的表达式,并说明已知的各物理量间满足怎样 的关系,上述两个时刻手对木板的作用力的方向相 反.
分析:B托住A使弹簧被压缩,撤去B瞬间,因弹簧弹力F来 不及改变,弹力F和物体重力方向都向下,因而产生
向 下 加 速 度 a. 当 用 手 控 制 B 向 下 以 维 持 B, A以 0. 1 3 1 3 a作 匀 加 速 运 动 时 , 能
a作 匀 加 速 运 动 的 时 间 对 应 着 B 对 A 支 持 力 N ≥
拉 力 F 0 , F 0 = (m A + m B )a m = (2 + 3 ) × 4 N = 2 0 N , 根 据 题 意 当 F = 1 5 N 时 , 由 于 F < F0 , 所 以 A 、 B 仍 保 持 相 对 静 止 , 但 这 时 它 们 之 间 的 加 速 度 应 小 于 4m / s , 故 由 牛 顿 第 二 定 律 求 出
牛顿定律的应用
牛顿
从力与运动的关系方面分: (1) 已知力求运动。 (2) 已知运动求力。
F m a vt v0 t 或 vt v0
2 2
2s
从解题方法方面分
(1) 物体受多个互成角度的力时,用正交分解法分别沿 X轴及Y轴列出动力学方程求解。 (2) 当研究对象是两个物体的问题时,会用隔离受力 分析的方法或综合受力分析的方法列出动力学方程求 解。 (3) 对复杂物理过程,按时间顺序划分阶段的方法。 (4) 超重或失重问题。(当物体相对运动参照物是静止的,
a 0 = gco t θ .
当 a < a 0时,存有斜面对小球的
支持力 N ,
选择x轴与斜面平行y轴与斜面垂直的直角坐标系
T-mgsinθ=ma cos, mgcosθ-N=ma sinθ. 解得此种情况下绳子的拉力 T=mgsinθ+macosθ.