柳铁一中组合高中数学竞赛同步讲义

合集下载

高中数学竞赛讲义(免费)

高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(免费)

高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义(免费)

高中数学竞赛讲义(免费)

高中数学竞赛资料 一、高中数学竞赛大纲??????全国高中数学联赛??????全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

??????全国高中数学联赛加试??????全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是: 1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程* 3.?初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章集合与简易逻辑 一、基础知识定义1一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛讲义

高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

增加一些教学大纲之外的内容,所增加的内容是:
1. 平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个
特殊点: 旁心、 费马点,欧拉线。几何不等式。 几何极值问题。几何中的变换:对称、平移、
旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。
2. 代数
周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角
例如 {有理数 }, { x x 0} 分别表示有理数集和正实数集。
定义 2 子集:对于两个集合 A 与 B,如果集合 A 中的任何一个元素都是集合 B 中的元素, 则 A 叫做 B 的子集, 记为 A B ,例如 N Z 。规定空集是任何集合的子集, 如果 A 是 B 的子集, B 也是 A 的子集,则称 A 与 B 相等。如果 A 是 B 的子集,而且 B 中存在元素不属 于 A,则 A 叫 B 的真子集。
圆,四点共圆,圆幂定理;四种命题及其关系。
6 、逻辑推理问题
抽屉原理及其简单应用; 简单的组合问题简单的逻辑推理问题, 反证法; 极端原理的简
单应用;枚举法及其简单应用。
三、高中数学竞赛基础知识
第一章 集合与简易逻辑 一、基础知识 定义 1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母
定理 1 集合的性质:对任意集合 A, B, C,有:
(1 ) A (B C ) ( A B) ( A C ); ( 2) A (B C ) ( A B) (A C ) ; (3 ) C1 A C1 B C1 ( A B); ( 4) C1 A C1 B C1 ( A B).
【证明】这里仅证( 1 )、( 3),其余由读者自己完成。

高中数学竞赛教案讲义

高中数学竞赛教案讲义

高中数学竞赛教案讲义主题:高中数学竞赛备考一、课程目标:1. 提高学生数学逻辑思维能力和解题能力;2. 增强学生对数学知识的理解和应用能力;3. 培养学生团队合作意识和竞赛意识;4. 培养学生学习数学的兴趣和信心。

二、教学内容:1. 数论知识与解题方法;2. 代数知识与解题方法;3. 几何知识与解题方法;4. 概率与统计知识与解题方法。

三、教学重点:1. 突出数学问题解题的逻辑思维;2. 突出数学知识运用的方法;3. 突出解题过程中的技巧与技法。

四、课堂教学安排:第一节课:数论知识与解题方法1. 介绍数论基础知识;2. 讲解数论解题方法;3. 练习数论题目。

第二节课:代数知识与解题方法1. 复习代数基础知识;2. 讲解代数解题方法;3. 练习代数题目。

第三节课:几何知识与解题方法1. 复习几何基础知识;2. 讲解几何解题方法;3. 练习几何题目。

第四节课:概率与统计知识与解题方法1. 介绍概率与统计基础知识;2. 讲解概率与统计解题方法;3. 练习概率与统计题目。

五、课后作业:1. 每节课的课后习题;2. 复习本节课的知识点;3. 复习前几节课的知识点;4. 组织小组讨论解题方法。

六、教学评估:1. 每节课的课堂练习成绩;2. 期中考试成绩;3. 期末考试成绩;4. 学生综合表现与进步情况。

七、教学心得与总结:数学竞赛备考是一个长期的过程,需要坚持不懈和不断努力。

教师要引导学生找到解题的方法,培养学生的数学思维和解题能力。

同时,学生也要积极主动,多加练习,不断提高自己的数学水平。

希望通过我们的共同努力,可以在数学竞赛中获得好的成绩。

高中数学竞赛讲义

高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学联赛培训讲义

高中数学联赛培训讲义

高中数学联赛培训讲义全国高中数学联赛的一试比赛纲领,完整依据整日制中学《数学教课纲领》中所规定的教课要乞降内容,即高考所规定的知识范围和方法,在方法的要求上略有提升。

第一讲 会合、函数、方程例 1. 会合 {x| -1≤ log 110<- 1, 1<x ∈ N} 的真子集个数为。

(96 年全国高中联赛 )x2【剖析】先求出所给会合的元素个数,那么真子集的个数为 2 n -1【解】【小结】运用对数运算法例和解不等式,掌握会合、真子集、换底、同底法、分数性质。

练习① . 已知会合 A = {y|2<y<3} , x =1+1 ,则 x 与 A 的关系是。

(83 年)log 1 1log 1 12 35 3② (93 年 ) 若 M ={(x,y)||tgπ y| + sin 2 π x = 0} , N ={(x,y)|x 2 + y 2 ≤ 2} ,则 |M ∩ N|=。

A. 4D. 9附: |A| 表示 A 的元素个数 (93 年) ③若非空会合A = {x|2a + 1≤ x ≤ 3a - 5} ,B = {x|3 ≤ x ≤ 22} ,则能使 A A ∩ B 建立的全部 a 的会合是 。

(98 年)1 ,则:f(98) 、 f( 101 ) 、f( 104 )例 2.f(x)( x ∈R )是以 2 为周期的偶函数, 当 x ∈ [0,1] 时,f(x)= x 1998。

(98 年全国高中联赛 )19 17 15由小到大的摆列是【剖析】利用周期函数、偶函数的性质,将函数自变量转变到区间 [0,1] ,再比大小。

【解】【小结】周期函数的性质、偶函数性质、幂函数单一性;转变思想。

练习①设 f(x) 是定义在实数集上的周期为 2 的周期函数,且是偶函数,已知当 x ∈ [2,3] 时, f(x) = x ,则当x ∈ [-2,0] 时, f(x) 的分析式是 。

(90 年)A. f(x)= x +4 B. f(x) = 2- x C. f(x) = 3- |x +1| D. f(x) =2+ |x + 1|②若 a>1, b>1,且 lg(a + b) = lga + lgb ,则 lg(a - 1) + lg(b - 1) 的值。

高中数学竞赛讲义_免费_

高中数学竞赛讲义_免费_
仅证 1
4
C1 A I C1 B = C1 ( A U B).
证明
3 , 余 读者自 完成
则 x ∈ A, 且 x ∈ B 或 x ∈C , 所 1 若 x ∈ A I (B U C ) ,
x ∈ ( A I B) 或 x ∈ ( A I C ) ,
x ∈ ( A I B) U ( A I C )
之,x ∈ ( A I B ) U ( A I C ) , 则 x ∈ ( A I B) 或 x ∈ ( A I C ) ,
k 个子集中
,否则,若 在 k 个子
A,并设 A I A1 = ∅ ,则 A1 ⊆ C1 A , 而可
集中再添加 C1 A ,
知矛盾,所
k ≥ 2 n −1
综 , k = 2 n −1
6.竞赛常用方法 例 题 定理 4 容斥原理 用 A 表示集合 A 的元素个数,则 A U B = A + B − A I B ,
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次 等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组 4 函数 次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数 5 几何 角形中的边角之间的 等关系 面 等 换 角形中的边角之间的 等关系 面 等 换 角形的心 内心 外心 垂心 心 性质 相似形的概念和性质 圆,四点共圆,圆幂定理 四种命题 关系 6 逻 推理 题 抽屉原理 简单 用 简单的组合 题简单的逻 推理 题, 证法 极端原理的简 单 用 枚举法 简单 用
A U B = A, A I C = C ,求 a, m.
解 依题设, A = {1,2} ,再 因 因
x 2 − ax + a − 1 = 0 解得 x = a − 1 或 x = 1 ,

高中数学竞赛讲义(免费)

高中数学竞赛讲义(免费)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学联赛讲义

高中数学联赛讲义

高中数学联赛培训讲义全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高。

第一讲 集合、函数、方程例1.集合{x|-1≤log x110<-21,1<x ∈N}的真子集个数为 。

(96年全国高中联赛) 【分析】先求出所给集合的元素个数,那么真子集的个数为2n -1 【解】【小结】运用对数运算法则和解不等式,掌握集合、真子集、换底、同底法、分数性质。

练习①.已知集合A ={y|2<y<3},x =31log 121+31log 151,则x 与A 的关系是 。

(83年)②(93年)若M ={(x,y)||tg πy|+sin 2πx =0},N ={(x,y)|x 2+y 2≤2},则|M ∩N|= 。

A. 4 B. 5 C. 8 D. 9 附:|A|表示A 的元素个数 (93年)③若非空集合A ={x|2a +1≤x ≤3a -5},B ={x|3≤x ≤22},则能使A A ∩B 成立的所有a 的集合是 。

(98年)例2.f(x) (x ∈R )是以2为周期的偶函数,当x ∈[0,1]时,f(x)=x 19981,则:f(1998)、 f(17101)、f(15104)由小到大的排列是 。

(98年全国高中联赛) 【分析】利用周期函数、偶函数的性质,将函数自变量转化到区间[0,1],再比大小。

【解】【小结】周期函数的性质、偶函数性质、幂函数单调性;转化思想。

练习①设f(x)是定义在实数集上的周期为2的周期函数,且是偶函数,已知当x ∈[2,3]时,f(x)=x ,则当x ∈[-2,0]时,f(x)的解析式是 。

(90年)A. f(x)=x +4B. f(x)=2-xC. f(x)=3-|x +1|D. f(x)=2+|x +1|②若a>1,b>1,且lg(a +b)=lga +lgb ,则lg(a -1)+lg(b -1)的值 。

高中数学竞赛讲义

高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

高中数学竞赛教材讲义第十八章组合讲义

高中数学竞赛教材讲义第十八章组合讲义

第十八章合一、方法与例1.抽原理。

例 1 整数 n≥4,a 1,a 2, ⋯ ,a n是区 (0,2n) 内 n 个不一样的整数,明:存在会合 {a 1,a 2, ⋯,a n}的一个子集,它的所有元素之和能被2n 整除。

[明]( 1 )若 n12n n 个不同的数属于 n-1个集合 {1,2n-1} ,{a ,a, ⋯ ,a },{2,2n-2},⋯ ,{n-1,n+1}。

由抽原理知此中必存在两个数i j(i ≠ j)属于同一会合,进而a ,aa i +a j =2n 被 2n 整除;12n},不如 a n=n,从 a1,a 2, ⋯ ,a n-1(n-1≥ 3)中随意取 3 个数 a i, a j, a k(a i,<a j<( 2)若 n∈ {a ,a , ⋯ ,aa k), a j-a i与 a k-a i中起码有一个不被n 整除,否 a k-a i=(a k-a j)+(a j-a i)≥ 2n,与 a k∈(0,2n) 矛盾,故 a1,a 2, ⋯ ,a n-1中必有两个数之差不被n 整除;不如a1与 a2之差 (a 2-a 1>0) 不被 n 整除,考 n 个数 a1,a 2,a 1+a2,a 1+a2+a3, ⋯ ,a 1+a2+⋯ +a n-1。

ⅰ)若 n 个数中有一个被n 整除,此数等于n k 奇数,k ,若 k 偶数,建立;若加上 a n=n 知建立。

ⅱ)若 n 个数中没有一个被n 整除,它除以n 的余数只好取 1,2,⋯,n-1n-1个,由抽原理知此中必有两个数除以n 的余数同样,它之差被21不被 n整除,n 整除,而 a -a 故个差必 a i , a j, a k-1中若干个数之和,同ⅰ)可知建立。

2.极端原理。

例 2 在 n×n 的方格表的每个小方格内写有一个非整数,而且在某一行和某一列的交错点假如写有0,那么行与列所填的所有数之和不小于n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柳铁一中组合高中数学竞赛同步讲义高中数学竞赛同步讲义——组合数学基础一、基础知识梳理1、集合覆盖、分类、拆分2、分类原理3、容斥原理4、加法原理5、极端原理6、抽屉原理7、平均量重叠原则8、面积的重叠原理一、基础题型例析1、抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:(1)13个人中至少有两个人出生在相同月份;(2)某校400名学生中,一定存在两名学生,他们在同一天过生日;(3)2003个人任意分成200个小组,一定存在一组,其成员数不少于11;(4)把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数. 这类存在性问题中,“存在”的含义是“至2少有一个”。

在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。

这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也称“鸽巢原理”(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。

例1.(1978年广东省数学竞赛题)已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。

证明:至少有两个点之间的距离不大于1/2.3例2 (第14届1M0试题)一个集合含有10个互不相同的两位数,试证明:这两个集合必有两个无公共元素的子集合,此两子集的各元素之和相等.例3.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一4个的整数倍。

例4.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。

5例4说明:(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为{26,27,28,29,30,31,32,33,34,35,36,37,38,39};第8个抽屉为:{40,41,42,...,60};第9个抽屉为:{61,62,63, (90)91};……那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;……(2)从前39个自然数中任取8个自然数;……(3)从前60个自然数中任取9个自然数;……(4)从前91个自然数中任取10个自然数;……上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。

例5:在坐标平面上任取五个整点(该点的横6纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点.例5说明:我们可以把整点的概念推广:如果(x1,x2,…xn)是n维(元)有序数组,且x1,x2,…xn 中的每一个数都是整数,则称(x1,x2,…xn)是一个n 维整点(整点又称格点)。

如果对所有的n 维整点按每一个xi 的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为2×2×…×2=2n个类。

这是对n 维整点的一种分类方法。

当n=37时,23=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。

这就是1971年的美国普特南数学竞赛题。

(二)抽屉原理的其它形式:定理2、把m 个元素分成n 个集合(m>n)(1)当n能整除m 时,至少有一个集合含有m/n 个元素;(2)当n不能整除m 时,则至少有一个集合含有至少[m/n]+1个元素,([m/n]表示不超过的最大整数)说明:定理2有时候也可叙述成:把m×n+1个元素放进n 个集合,则必有一个集合中至少放有m+1个元素。

例6.(1963年北京市数学竞赛题)在边长为1的正方形内任意放入九个点,求证:存在三个点,以这三个点为顶点的三角形的面积不超过1/8。

8例6.说明:以下两个题目可以看作是本例的平凡拓广:(1)在边长为2的正方形内,随意放置9个点,证明:必有3个点,以它们为顶点的三角形的面积不超过1/2。

(2)在边长为1的正方形内任意给出13个点。

求证:必有4个点,以它们为顶点的四边形的面积不超过1/4。

9例7.(北京市高中一年级数学竞赛1990年复赛试题)910瓶红、蓝墨水,排成130行,每行7瓶。

证明:不论怎样排列,红、蓝墨水瓶的颜色次序必定出现下述两种情况之一种:1.至少三行完全相同;2.至少有两组(四行),每组的两行完全相同。

10(三)抽屉原理的无限形式定理3.如果把无穷多个元素分成n个集合,那么不管怎么分,都至少存在一个集合,其中有无穷多个元素。

例8.在坐标平面上给出无限多个矩形,它们的顶点的直角坐标都具有如下形式:(0,0),(0,m),(n,0),(n,m)。

其中m,n是正整数,并且m>3,n<6,求证:在这些矩形中一定存在无限多个矩形,其中任意两个矩形必有一个被包含在另一个之中。

(四)抽屉原理的多次应用例9.有苹果、梨、桔子若干个,任意分成9堆,求证一定可以找到两堆,其苹果数、梨数、桔子数分别求和都是偶数。

例10.(根据1995年全国高中数学联赛试题改编)将平面上每个点以红蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为2009,并且每一个三角形的三个顶点同色。

例10.说明:(1)这里连续用了两次抽屉原理(以染色作抽屉)。

也可以一开始就取位似比为2009的9个位似点组(Ai,Bi)i=1,2,3,…,9),对4个抽屉(红,红),(红,蓝),(蓝,红),(蓝,蓝)应用抽屉原理,得出必有3个位似点属于同一抽屉,(2)从题目的证明过程中可以看出,位似比2009可以改换成另外一个任意的正整数、正实数。

(3)一般地可以证明,在这个二染色的平面上存在无数个内角为30°,60°,90°的直角三角形三顶点同色。

(4)进一步还可得到:对任何a∈R+,可得到两个相似比为a的顶点同色的相似三角形。

对于多染色的情形,还可以得出多个相似三角形的结论:用红、黄、蓝三种颜色对平面上的点染色,对任意的a,b∈R+,必存在三个三角形,它们彼此相似,相似比为1∶a∶b,且每个三角形的三顶点同色。

(五)抽屉原理的拓广形式面积重叠定理:设平面上给定r个面积分别为S1,S2,…Sr 的图形,S1+S2+…+Sr=m.将这r 个图形以任意方式移植到一个已知面积为n的平面图形F的内部,则至少有(m/n)个图形在F 中有公共点((x)表示不小于x的最小整数)。

例11、半径为19的圆C内有650个点,证明:存在内半径为2,外半径为3的圆环,它至少盖住其中的10个点平均值重叠原理1(1)若n个实数x1,x2,…xn满足x1+x2+…+xn≥A(或≤A),则至少有一个xi≥A/n(或≤A/n)。

(2)若n个实数x1,x2,…xn满足x1+x2+…+xn=A,则至少有xi、xj,满足xi≥A/n≥xj。

平均值重叠原理2(1)若n个正数x1,x2,…xn,满足x1x2…xn ≥An(或≤An),则至少有一个xi≥A(或≤A)。

(2)若n个正数x1,x2,…xn,满足x1x2…xn=An,则至少有xi、xj,满足xi≥A≥xj。

2、容斥原理容斥原理的基本形式定义:所谓容斥,是指我们计算某类物的数目时,要排斥那些不应包含在这个计数中的数目,但同时要包容那些被错误地排斥了的数目,以此补偿。

这种原理称为容斥原理(The Principle of Inclusion-exclusion),又称为包含排斥原理。

(1)加法原理加法原理:设M为非空有限集,A1,A2 ,…,An是M的两两不交的子集,且A1 ∪A2 ∪…∪An=M,那么|M|=|A1|+|A2|+…+|An|.注:i) |M|即card(M),表示集合M中元素的个数,简称为集合M的阶。

ii) 加法原理是组合数学中的一个基本的计数原理,在实际运用中可根据问题的不同背景赋予有限集M的元素不同的含义。

(2)容斥原理的基本形式定理1:|A∪B|=|A|+|B|-|A∩B|.例1、对24名科技人员进行掌握外语情况的调查,其统计资料如下:会英、日、德、法语的人数分别为13、5、10和9。

其中同时会英语、日语的人数为2;同时会英语和德语、同时会英语和法语、同时会德语和法语两种语言的人数均为4;会日语的人既不会法语也不会德语。

试求只会一种语言的人数各为多少?又同时会英、德、法语的人数为多少?例2、求1,2,3,…,100中不能被2,3,5整除的数的个数.(3)容斥原理的一般形式定理3:设A1,A2,…,An是任意有限集合,有定理4:例3、(匈牙利数学竞赛试题)由数字1、2和3组成n位数,要求n位数中1、2和3的每一个至少出现一次,求所有这种n位数的个数.例4、计算不超过120的合数和素数的个数。

例5、将与105互质的所有正整数从小到大排列,求这个数列的第1000项. 思路分析:先研究较简单情况:在(0,105]中有多少个数与105互质;而105=3×5×7……例6、如果记小于正整数n且与n互质的数的个数为φ(n),则在数论上叫函数φ(n)为欧拉函数.试求φ(n).例7、(1960-1961波兰数学竞赛试题)某人给6个不同的收信人写了6封信,并且准备了6个写有收信人地址的信封,有多少种投放信笺的方法,使每份信笺于信封上的收信人不相符?例8、(贝努力-欧拉错装信封问题)某人写了n封信及n个相应收信人地址的信封,现把所有的信一一装进信封,求所有的信全都装错信封的装法总数.例9、已知集合A、B、C满足:(1)|A|+|B|+|C|=|A ∪B∪C|,(2)|A|=|B|=100.求|A∩B∩C|的最小值.3、极端原理例1、(鸡兔同笼问题)鸡兔同笼不知数,三十六头笼中露,看足却有一百整,不知多少鸡和兔?例2、(智力游戏)一张圆桌,两人轮流往上方大小相等的硬币,只许平放,不许重叠,谁在桌上放下最后一枚硬币,谁就是最后的胜利者,你选择先下还是后下,为什么?集合理论重要性的一个侧面是它的方法论意义.我们知道,有些数学问题所涉及的各个元素的地位是不平衡的,其中的某个极端元素往往具有优于其它元素的特殊性质,能为解题提供方便,而利用这种极端性的依据之一就是下面所要介绍的有关集合的一条简单性质.最小数原理1:设M是正整数集的一个有非空子集,则M中必有最小数.最小数原理2:设M是实数集的一个有限的非空子集,则M中必有最小数.推论:设M是实数集的一个有限的非空子集,则M中必有最大数.例3、设S为整数的非空集,满足:①如果x,y ∈S,那么x-y ∈S ;②如果x∈S ,那么kx ∈S,k ∈Z. 求证:在S中存在一个整数d,使得S由d的所有倍数组成.例4、若干人聚会,其中某些人彼此认识.已知:若某两人在聚会者中有相同数目的熟人,则他俩便没有共同的熟人,证明:若聚会者中有人至少有20 个熟人,则必然也有人恰好有20 个熟人.例5、在平面上任给2n个点,其中任意三点不共线,并把其中n个点染成红色,n个点染成蓝色.求证:可以一红一蓝地把它们连成n条线段,使这些线段互不相交.例6、一次10名选手参加的循环赛中无平局,胜者得1 分,负者得O分.证明:各选手得分的平方和不超过285 .例7、某地区网球俱乐部有20 名成员,举行14 场单打比赛,每人至少上场一次.求证:必有 6 场比赛,其12 个参赛者各不相同.例8、(第24届莫斯科数学奥林匹克)在平面上有100个点,其中任何两点的距离都不超过1,并且任何3点为顶点都构成钝角三角形。

相关文档
最新文档