重力沉降

合集下载

重力沉降的原理及应用

重力沉降的原理及应用

重力沉降的原理及应用1. 什么是重力沉降?重力沉降是一种固体颗粒物料在液体中沉降的现象,也被称为沉降法或离心法。

这个过程是利用重力作用使颗粒物料在液体中自由沉降,并通过沉降速度的差异来实现颗粒物料的分离。

重力沉降常被应用于颗粒物料的固液分离、液固分离以及固固分离等方面。

2. 重力沉降的原理重力沉降的原理基于斯托克斯定律,即颗粒物料在液体中的沉降速度与颗粒大小、密度、液体粘度和重力加速度等因素有关。

根据斯托克斯定律可知,颗粒物料的沉降速度与颗粒直径的平方成正比,与颗粒与液体密度差和液体粘度成反比。

因此,较大直径和密度较大的颗粒沉降速度较快,而较小直径和密度较小的颗粒沉降速度较慢。

3. 重力沉降的应用重力沉降在各个领域有着广泛的应用,包括但不限于以下几个方面:3.1 固液分离重力沉降常用于固液分离过程中,例如在水处理、废水处理、生物制药、食品加工和矿业等行业。

通过调整悬浮液中颗粒物料的沉降速度,可以实现固体颗粒与液体的分离。

在水处理中,可以通过重力沉降的方法将悬浮在水中的固体颗粒从水中分离出来,提高水的净化效果。

3.2 液固分离除了固液分离,重力沉降也广泛应用于液固分离过程中。

在石油工业中,通过重力沉降可以实现原油与水、沉淀物的分离。

在制药工业中,重力沉降常用于将可溶性化合物从其溶液中分离出来,从而获得纯净的药物成分。

3.3 固固分离重力沉降还可以应用于固固分离过程中。

例如,利用重力沉降可以将不同颗粒大小的颗粒物料进行分级,从而实现颗粒的分类和分离。

在矿石选矿过程中,重力沉降可以将矿物颗粒按照密度的大小进行分类,从而达到分离和提纯的效果。

3.4 离心分离离心分离是重力沉降的一个衍生应用。

它利用离心力的作用,通过离心机来加速颗粒物料的沉降过程,从而实现更快速、更高效的分离过程。

离心分离广泛应用于生物工程、制药和化学工业中,可以用于细胞分离、蛋白质纯化和大规模物料的分离等。

4. 结语重力沉降作为一种重要的物料分离技术,具有简单、高效、经济的优点,被广泛应用于各行各业。

重力沉降原理

重力沉降原理

重力沉降原理
重力沉降原理是指地球或其他物体上的物体受到重力作用而向下沉降的现象。

根据牛顿的万有引力定律,任何两个物体之间的引力都是与它们的质量成正比,与它们之间的距离的平方成反比。

因此,一个物体在重力作用下向下沉降的速度取决于其质量和受力面积。

在地球上,当一个物体静止在地面上时,它受到的重力与支持力相等,这种状态称为平衡状态。

然而,当一个物体的支持力小于其重力时,它将开始下沉。

这种沉降的速度取决于物体的质量,较重的物体下降得更快。

另一方面,对于细粒土壤和淤泥等松软材料,重力沉降效应更为显著。

当一块土壤或淤泥受到外加应力时,其中的水分被挤压出来,导致土壤颗粒之间的接触面积增加,从而使土壤体积逐渐减小。

在这个过程中,土壤会产生沉降,使地面下沉。

重力沉降不仅在自然界中普遍存在,也会对工程建设产生影响。

例如,在厚度较大的沉积物层中建筑物的基础会随时间而发生沉降,这可能导致建筑物的不稳定。

因此,在工程设计中需要对重力沉降进行充分考虑,并采取相应的措施来保证建筑物的稳定性。

总之,重力沉降原理是由物体受到重力作用而向下沉降的现象。

它在地球和工程中都起着重要的作用,需要被深入研究和理解。

3第三章-重力沉降法解析

3第三章-重力沉降法解析
流速度 • 沉淀时间1.5~2.0小时 • 适用:小水量。
其他辐流式沉淀池
辐流式沉淀池设计要点
• 沉淀池面积按过流率计算 A=Q/u • 池深按停留时间计算 H=ut • 污泥斗坡度0.05~0.10
旋流沉砂池 利用机械力掌握水流流态与流速、加速砂粒沉淀并
使有机物随水流走
1.電機 2.主軸 3.車葉 4.固定支架 5.排水孔 6.注氣管 7.注水管
高斯美 DP系列旋流沉砂池
沉淀池
• 沉淀池分为平流式、竖流式、辐流式。 • 依据运行方式:分为间歇式、连续式 • 间歇式:进水、静置、排水 • 连续式:连续不断流入和排出 • 通常通常辐流式适合于大规模,竖流式适合于小规模,
取最大流量时水在池内的水平流速为0.1m/s, 则水流断面积A= Q/u=1/ 0.1=10〔m2〕
设计有效水深取2.5m,则池宽B=10/2.5=4〔m) 池长L =V/A=180/10=18〔m〕 取每立方污水所需曝气量为0.1m3空气,所需每小时总曝气量: q=0.1(m3 air/m3 ww) × 1(m3 ww/s)× 3600 (s/hr)=360m3
u0
Q A
q
q: 沉淀池的外表负荷或过 流率—单位时间内通过沉 淀池单位外表积的流量。
对于絮凝沉降: 颗粒间并聚变大或 ρ s增大, u也随之增大。其运动轨迹发生变化:
us L gd2 18






絮凝沉降颗粒运动轨迹
污泥区
但是,为保守起见,沉降效率依然按照:
(1x0)
x0 0
u u0
dx
沉砂池
• 去除污水中泥沙、煤渣等相对密度较大的无机颗粒 • 一般位于泵站之前或初沉池之前 • 使水泵、管道免受磨损和堵塞 • 减轻沉淀池的无机负荷 • 改善污泥的流淌性,以便于排放、输运。 • 工作原理:重力分别/离心力分别 • 设计原则与主要参数:传统设计针比照重为2.65、粒径为

重力沉降知识点总结

重力沉降知识点总结

重力沉降知识点总结一、概念重力沉降是指地下土层受力作用下的垂直变形,是地基土层由于建筑物荷载或填土荷载作用下发生的垂直位移。

在实际工程中,土层的重力沉降是一个常见的现象,它对建筑物的安全性、使用性和经济性都有着直接的影响。

二、影响因素1. 地下土层的性质:地下土层的类型、排水条件、孔隙度以及颗粒物之间的摩擦阻力等都会对重力沉降产生影响。

2. 荷载的性质:荷载的大小、分布、作用时间长短等都是影响重力沉降的重要因素。

3. 地基处理的情况:地基处理的方式和效果也是影响重力沉降的重要因素。

例如,地基处理的加固效果、有效宽度等都会对重力沉降产生影响。

4. 地下水的情况:地下水位的变化、渗流速度等也会对地基土层的重力沉降造成影响。

三、计算方法重力沉降的计算是建筑工程设计中非常重要的一部分,通常采用经验公式和有限元分析方法来进行计算。

1. 经验公式法经验公式法是一种比较简单且常用的计算方法,通常基于大量的实测数据和工程经验得出。

根据经验公式所建立的关系式,可以通过建筑物的荷载以及地基土层的性质来计算地基土层的重力沉降量。

2. 有限元分析法有限元分析法是一种较为精确的计算方法,它通常采用计算机模拟的方式,通过对地基土层的有限元模型进行数值求解,得到地基土层的重力沉降情况。

有限元分析法的计算结果更加精确,但需要考虑到更多复杂的因素,同时计算过程也更加繁琐。

四、控制措施重力沉降对建筑物的安全性和使用性都有着直接的影响,因此在工程设计和施工过程中,需要采取一定的控制措施来降低重力沉降对建筑物造成的影响。

1. 合理设计荷载:在建筑物的设计过程中,需要合理计算建筑物的荷载,并采取合理的结构设计和安排,以降低建筑物对地基土层的荷载作用。

2. 地基处理与加固:通过对地基土层进行处理和加固,可以有效地提高地基土层的承载能力和抗沉降能力,从而减少重力沉降对建筑物的影响。

3. 合理排水:地下水位的变化是影响重力沉降的重要因素,通过合理的排水设计可以减少地基土层的重力沉降。

《重力沉降》课件

《重力沉降》课件
重力沉降与生物技术结合
利用生物技术提高重力沉降的分离效果和环保性能。
感谢您的观看
THANKS
提高沉降效率的方法
增加沉降面积
通过增加沉降设备的沉降 面积,提高单位时间内处 理的物料量,从而提高沉 降效率。
优化进料方式
通过改进进料方式,减少 物料的流动阻力,降低颗 粒间的摩擦和碰撞,提高 沉降效果。
强化搅拌效果
通过加强搅拌,增加颗粒 间的碰撞和摩擦,促进颗 粒的凝聚和沉降。
新型沉降技术的研发
在土壤修复与改良中,重力沉降技术常与其他技术结合使用,如化学淋洗、植物修 复等。
04
重力沉降的影响因素
颗粒大小与密度
总结词
颗粒大小和密度是影响重力沉降的重要因素。
详细描述
颗粒的大小和密度决定了颗粒在流体中的沉降速度。一般来说,颗粒越大、密度越高,沉降速度越快 。颗粒间的相互作用也会影响沉降行为,例如颗粒间的碰撞和粘附作用。
02
重力沉降的物理模型
理想状态下的重力沉降模型
理想状态假设
假设颗粒在沉降过程中不受其他外力(如阻 力、浮力等)影响,只受重力作用。
自由沉降
颗粒在理想状态下仅受重力作用,不受其他 外力影响的沉降过程。
斯托克斯定律
在理想状态下,颗粒沉降速度与颗粒直径、 密度以及流体粘度有关,遵循斯托克斯定律 。
实际状态下的重力沉降模型
03
重力沉降的实际应用
工业废水处理
工业废水处理中的重力沉降技术主要用于去 除废水中的悬浮固体颗粒物,如颗粒物、纤 维、胶体等。
通过重力作用,这些颗粒物在废水中逐渐沉 降,与水分离,从而达到净化的目的。
工业废水处理中常用的重力沉降设备有沉淀 池、斜板沉淀池、悬浮澄清器等。

重力沉降 大气沉降距离 环评

重力沉降 大气沉降距离 环评

重力沉降与大气沉降距离在环境评价中的重要性在环境评价中,重力沉降和大气沉降距离是两个重要的概念。

它们对于评估项目对周边环境的影响以及保护生态环境具有重要意义。

本文将从重力沉降、大气沉降距离的定义和计算方法、环境评价中的应用以及相关监测与控制措施等几个方面进行阐述。

一、重力沉降的定义和计算方法1.1 重力沉降的定义重力沉降是指土地由于地下水、河湖水位变动或地下开采、钻井等引起的体积变化而产生的垂直位移。

重力沉降可能造成建筑物、道路、桥梁等结构物的变形和破坏,对周边环境和生态系统也可能产生负面的影响。

1.2 重力沉降的计算方法重力沉降的计算方法通常采用杆件法、数值模拟法和物理模型试验等多种手段。

通过对地下水位变动或地下工程开挖等引起的土体应力状态和变形规律进行分析,可以计算出重力沉降的大小和分布规律,为环境评价提供重要的参考依据。

二、大气沉降距离的定义和计算方法2.1 大气沉降距离的定义大气沉降距离是指大气中悬浮颗粒物或气态污染物由于重力作用而沉降到地表的水平距离。

大气沉降距离的大小与气象条件、颗粒物或气态污染物的性质、排放源的高度和位置等因素密切相关,对于评估大气污染物扩散范围和影响程度具有重要意义。

2.2 大气沉降距离的计算方法大气沉降距离的计算方法通常采用数值模拟法、实地监测法和统计分析法等多种手段。

通过对气象数据、污染源排放数据和大气扩散模型等进行综合分析,可以计算出不同气象条件下的大气沉降距离,为环境评价提供重要的数据支持。

三、环境评价中的应用3.1 重力沉降与大气沉降距禿的评估在环境评价中,重力沉降与大气沉降距离的评估常常是必不可少的环节。

通过对项目周边地质、水文地质、气象条件和污染源排放等数据进行综合分析,可以评估出项目对周边土地、建筑物、水体和大气环境的潜在影响程度,为环境保护和生态修复提出合理的建议和措施。

3.2 环境影响评价报告的编制根据《环境影响评价公众参与办法》的要求,环境影响评价报告中需要对项目的重力沉降和大气沉降距离进行评估和分析,并提出相应的风险评估和控制措施。

重力沉降的原理

重力沉降的原理

重力沉降的原理
重力沉降是指地面上或结构中由于重力作用而导致的土壤沉降现象。

其原理是由于土壤颗粒之间存在一定的空隙,当土壤受到外部荷载作用时,土壤颗粒会重新排列,空隙随之变小,从而使土壤体积减小,产生沉降现象。

重力沉降的主要原因包括土壤质量差异、地下水位变化、地下开挖和填筑等。

不同地层的土壤具有不同的密度、压缩性和可变性,因此在不同地层下沉的速度也会有所差异。

地下水位变化会影响土壤中的孔隙水压力分布,进而影响土壤的压实程度和沉降速度。

地下开挖和填筑活动也是造成重力沉降的重要原因。

在地下开挖过程中,土壤体会受到边坡支护或挖掘机械施加的荷载作用,引起土壤应力状态的改变,进而引发沉降。

而填筑活动中的土壤改良、加固或填土,也会改变土壤结构和物理特性,导致重力沉降的发生。

重力沉降的影响范围取决于土壤类型、厚度和荷载大小等因素。

一般来说,较松散的土壤容易发生较大的沉降,而较坚实的土壤则沉降较小。

重力沉降对工程结构的影响主要表现为地表沉降、建筑物倾斜、管道断裂等,严重时甚至会引发地面破裂和沉降区域的塌陷。

为了减缓和控制重力沉降的影响,工程中常采取一些措施,如通过土壤改良、预压处理、加固支护等方式来提高土壤的承载力和稳定性。

此外,在规划和设计阶段,需要对地质和水文条
件进行详细的调查和分析,合理选择建筑物位置和土壤处理方法,以避免重力沉降对工程造成损失。

《重力沉降法》课件

《重力沉降法》课件

重力的作用效果是 使物体向地心加速 下落
重力沉降法的定义
重力沉降法是一种 利用重力作用使悬 浮颗粒从流体中分 离出来的方法。
原理:悬浮颗粒在 重力作用下,会逐 渐下沉,而流体则 向上流动,从而实 现颗粒与流体的分 离。
应用:广泛应用于 污水处理、化工、 食品等行业。
优点:操作简单, 成本低,效率高。
过滤法:操作简单,成本低,但分离效率 低,适用于大颗粒物质
磁选法:操作简单,成本低,但分离效率 低,适用于磁性物质
05 重力沉降法的实验操作
实验前的准备
实验材料:离心管、离心机、 溶液、样品等
实验环境:无尘、无菌、温度 适宜
实验设备:离心机、天平、量 筒、滴定管等
实验步骤:样品处理、离心、 收集、分析等
重力沉降法的原理
原理:利用颗粒物在重力作用下的沉 降速度不同,实现颗粒物的分离和净 化
过程:将待处理液体与颗粒物混合, 然后让其自然沉降,颗粒物沉降速 度大于液体,从而实现分离
应用:广泛应用于污水处理、空气净 化等领域
优点:操作简单,成本低,适用于大 规模处理
重力沉降法的应用
空气污染控制: 去除空气中的颗 粒物和悬浮物
记录实验数据:包括时间、温度、 压力、浓度等
绘制图表:将实验数据绘制成图表, 如柱状图、折线图等
添加标题
添加标题
添加标题
添加标题
数据处理:使用Excel或其他软件 进行数据处理和分析
分析结果:根据实验数据和图表, 分析实验结果,得出结论
实验结果分析
颗粒大小 对沉降速 度的影响
溶液浓度 对沉降速 度的影响
设备问题:重力沉降法需要大型设备,投资成本较高
环境问题:重力沉降法在处理过程中会产生噪音和粉尘,对环境造成影响

重力沉降名词解释

重力沉降名词解释

重力沉降名词解释重力沉降是一种最普遍的地质现象,是指由于地球表面大气压力下沉,岩体在受到重力、水平应力、温度变化等自身影响力的作用下,使一部分岩层降低,体积变小,形成倾斜、缩短的地质构造。

重力沉降经常发生在受到重力作用的地区,如地质弱点、断层等处。

重力沉降的形成可以归结为三种原因:1、重力引起地质变形,一种地质变形,一种地质变形。

当地表层受到重力力作用时,部分物质会沿着重力势轴下滑,从而发生倾斜或缩短等形状转变,发生重力沉降现象。

2、水压引起地质变形,水压可产生地层变形。

当注水地层受到水压时,会发生沉降和拉伸。

如果水的分布比较均匀,地表层可能不会凹陷,而且会发生缩短。

3、温度变化引起地质变形,温度变化也是重力沉降的一个重要原因。

如果地表层的温度显著降低,则会使岩石表面膨胀而沉降。

重力沉降可以在地表现象中得到反映。

典型的表现为地表凹陷,平均沉降幅度从几毫米到几米不等。

另外,还可以看到地下水位抬升、地面湿度变化等与沉降有关的表现。

重力沉降对地质及人类有重要的影响。

由于重力沉降可能使地表发生沟壑、缩短等地质变化,引起建筑物拆卸、路面陷没等地质灾害,进一步影响人们的生产、居住环境和日常生活,甚至影响到社会经济的发展和社会安全。

因此,对于重力沉降灾害的防治也尤为重要。

一般采取的治疗方法有:一是结构性改造,如土体压实或护坡石护筑;二是抗力改造,如固结性地基处理、膨胀地基稳定剂处理等;三是灌水稳定,即在地基或填方上进行灌缩水或注入稳定剂,建立有效的稳定系统。

另外,对于重力沉降灾害区域的开发、管理和监督,也逐渐受到重视。

制定有效的安全监管法规与规章,严格管控各种开发活动,在地质弱点、断层等地实行禁区保护措施,加强工程项目的审查,完善相关制度,强力推广各种地质防灾科普知识,避免重力沉降灾害的发生。

总之,重力沉降是一种最普遍的地质现象,受到很多因素的影响而产生,而重力沉降的存在与发展也会给人类的生产、居住环境和社会安全带来重大影响,因此,对于重力沉降灾害的防治以及对重力沉降灾害区域的开发、管理和监督,我们都必须加以足够的重视。

重力沉降的原理及应用

重力沉降的原理及应用

重力沉降的原理及应用
重力沉降是一种重要的固液分离方法,其原理是利用重力对固液混合物进行分离。

根据斯托克斯定律,当颗粒直径小于0.1mm时,颗粒在液体中的降速与其直径的平方成正比,直径越大,降速越快。

因此,在重力作用下,颗粒由于密度差异而沉降速度不同,从而实现固液分离。

重力沉降可以应用于多个领域,包括水处理、污水处理、固废处理、矿业、食品加工等。

具体应用包括:
1. 污水处理:重力沉降可以用于固液分离,将污水中的悬浮物沉降下来,从而实现净化和回收利用。

常见的应用有沉淀池、沉淀池、沉积板等。

2. 固废处理:重力沉降可以用于固废处理,将固液混合物中的固体部分沉降下来,从而实现固体废弃物的分离和处理。

常见的应用有沉淀池、离心机、压滤机等。

3. 矿业:重力沉降可以用于矿石的选矿过程中,将矿石中的颗粒按照密度分离出来。

常见的应用有浮选、重选等。

4. 食品加工:重力沉降可以用于分离食品加工过程中的固液混合物,如分离果汁中的果肉、分离牛奶中的脂肪等。

常见的应用有沉淀池、离心机等。

总之,重力沉降是一种简单有效的固液分离方法,广泛应用于各个领域,对于提高生产效率、减少环境污染具有重要意义。

重力沉降及原理

重力沉降及原理

ρ ( ρs − ρ ) g 令 K =d µ2
3
K3 则 Ret = 18
当 Ret ≤ 1 时 K ≤ 3 18 ×1 = 2.62 为滞流上限
湍流时: t = Re
dut ρ
µ
ut = 1.74
d ( ρs − ρ ) g
ρ
同理可得 Ret = 1.74 K
3 2
当 Ret ≥ 103 时,K=69.1 K值在2.62~69.1之间 三. 重力沉降设备 1. 降尘室 其结构如图

dut ρ
为滞流
Vs 2500 / 3600 n= −1 = − 1 = 12 (块) −3 ut A 5.42 ×10 × 5 × 2
2. 沉降槽 用以分离悬浮液的设备
设颗粒沉降在滞流区
d 2 ( ρs − ρ ) g ut = 18µ 查20℃空气 ρ = 1.2kg / m3 , µ = 1.81×10−5 Pa ⋅ s
(1×10−6 )2 × (1800 −1.2) × 9.81 ut = = 5.42 ×10−3 (m / s) 1.81×10−5
1×10−6 × 5.42 ×1.2 = = 3.6 ×10−3 < 1 校核 Ret = 1.81×10−5 µ
第一节. 重力沉降 一. 重力沉降及原理 重力沉降: 利用分散介质与分散物质密度的差异,在重力的 作用下,使之得到分离的过程 原理: 固体颗粒在做同 一水平速度运动的 同时做向下的沉降 运动,由于密度不 同,则沉降速度不 同,密度大的先沉 降,密度小的后沉 降,因此使之分离 二. 重力沉降速度— u t 1. 球型颗粒的自由沉降 ⑴自由沉降:对于单一颗粒在粘性流体中的沉降,
2. 非球形颗粒的自由沉降 用一球形度φ s表示一般颗粒与球形颗粒的差异

重力沉降 (Gravitational Settling)

重力沉降 (Gravitational Settling)
重力沉降设备
(1)能被(100%)除去的最小颗粒直径
ut
Vs bl
d 2 m in
s
18
g
dmin
18 Vs
s g bl
, (2)最大处理量Vs Vs与bl有关,但与H无关。所以,降尘室都做成
扁平形;或以水平隔板分割成多层降尘室。
11
1.2 重力沉降设备

VS (n 1)blut 特点:结构简单,流体阻力小;但体积庞大, 分离效率低,通常分离粒度大于50μm的粗粒。
12
1.2 重力沉降设备
二、沉降槽(又称为增浓器和澄清器)
特点:适合于处理量大,浓度不高,颗粒不太细 的悬浮液,常用于污水处理。
13
化工原理
化工原理
重力沉降 (Gravitational Settling)
1.1 沉降速度 1.2 重力沉降设备
2
1.1 沉降速度 (Terminal Velocity)
一、球形颗粒的自由沉降
(Free Settling of Spherical Particles)
Fg Fb Fd ma
6
d
3s
对于非球形颗粒:
de
3
6 πVp
实验结果见下图:
4
1.1 沉降速度
5
1.1 沉降速度
对于球形颗粒(Φs=1):
层流(Stokes定律)区(10-4<Ret<1):
24 Re t
(沉降操作一般在层流区)
过渡(Allen定律)区(
1<Ret<103
):
18 .5 Re t 0.6
湍流(Newton定律)区( 103<Ret<2×105 ):
0.44

重力沉降法

重力沉降法

第三章重力沉降法第一节概述在重力作用下,使悬浮液中密度大于水的悬浮固体下沉,从而与水分离的水处理方法,称为重力沉降法。

重力沉降法的去除对象,主要是悬浮液中粒径在10um以上的可沉固体,即在2h 左右的自然沉降时间内能从水中分离出去的悬浮固体。

按照处理目的不同,重力沉降法可分为以获得澄清水位目的的沉淀(当悬浮物为絮凝产物时习称为澄清)和以获得高浓度污泥为目的的浓缩。

它既可以作为唯一的处理工序,用于只含悬浮固体的废水处理,也可以作为处理系统中的某一工序,于其它处理单元配合使用。

根据水中悬浮固体浓度的高低、固体颗粒絮凝性能(即彼此粘结、团聚的能力)的强弱,沉降可分为以下四种类型。

1.自由沉降自由沉降也称为离散沉降。

这是一种非絮凝性或弱絮凝性固体颗粒在稀悬浮液中的沉降。

由于悬浮固体浓度低,而且颗粒之间不发生聚集,因此在沉降过程中颗粒的形状、粒径和密度都保持不变,互不干扰地各自独立完成匀速沉降过程。

固体颗粒在沉沙池及初次沉淀池内的初期沉降就属于这种类型。

2.絮凝沉降这是一种絮凝性固体颗粒在稀悬浮液中的沉降。

虽然悬浮固体浓度也不高,但颗粒在沉降过程中接触碰撞时能互相聚集为较大的絮体,因而颗粒粒径和沉降速度随沉降时间的延续而增大。

颗粒在初次沉降池内的后期沉降及生化处理中污泥在二次沉淀池内的初期沉降,就属于这种类型。

3.成层沉降成层沉降也称集团沉降、区域沉降或拥挤沉降。

这是一种固体颗粒(特别是强絮凝性颗粒)在较高浓度悬浮液中的沉降。

由于悬浮固体浓度较高,颗粒彼此靠的很近,吸附力将促使所有颗粒聚集为一个整体,但各自保持不变的相对位置共同下沉。

此时,水于颗粒群体之间形成一个清晰的泥水界面,沉降过程就是这个界面随沉降历时下移的过程。

生化处理中污泥在二次沉淀池内的后期沉降和在浓缩池内的初期沉降就属于这种类型。

4.压缩(沉降)当悬浮液中的悬浮固体浓度很高时,颗粒之间便互相接触,彼此上下支承。

在上下颗粒的重力作用下,下层颗粒间隙中的水被挤出,颗粒相对位置不断靠近,颗粒群体被压缩。

重力沉降的计算

重力沉降的计算
处理方法:可先假定为颗粒球形,然后校正。
同样条件下
因此
(3) 不均匀颗粒的沉降速度
粒径不同时,大颗粒沉降速度快,小颗粒沉降速度慢。
除去所有颗粒,应以最小颗粒直径计算ut 。
颗粒分级时,以不同粒度,分别进行计算ut 。
(4) 影响沉降速度的其它因素
① 干扰沉降------颗粒沉降时彼此影响
◇ 颗粒浓度对沉降速度的影响 大量颗粒沉降,造成流体反向运动
蝶片式离心机:
用 途:分离乳浊液和从液体中分离少量极细的固体颗粒, 广泛用于润滑油脱水、牛乳脱脂、饮料澄清等。
管式超速离心机:
目的:流体与固体颗粒分离 原理:利用颗粒与流体之间的密度差, 将固体颗粒从流体中分离出来。 常用方法: (1) 重力沉降(分离较大的颗粒) 例:选矿
3.4 沉 降
(2) 离心沉降 (分离尺寸小的颗粒) 例:气体除尘
沉降时间:
设:气体旋转圈数 N,则气流运行距离
颗粒分离条件:
气体停留时间:
◆ 分离效率:
(1)总效率
(2)分级效率
两者关系:
按假设情况:
实际情况:
◆ 旋风分离器的阻力 是旋风分离器的经济指标。
③ 常见旋风分离器的形式 1)进口方式 切向进口:切向进口方式结构简单,较常用。
1-悬浮液入口管2-圆筒3-锥形筒4-第流出口5-中心溢流管6-溢流出口管
(3) 离心沉降机 ▲ 分离液-固非均相混合物 ▲ 特点:转速可以根据需要调整, 适用于分离困难的体系, ▲ 常用的离心沉降机:转鼓式离心机、蝶片式离心机等。
转鼓式离心沉降机:
1-固体2-液体
3.4.1 重力沉降速度的计算 (1)球形颗粒的自由沉降 自由沉降:容器壁和其它颗粒不影响沉降速度; 干扰沉降:实际颗粒的沉降。 匀速阶段受力分析:

重力沉降法

重力沉降法

Et
沉降时间, t (min)

0.5m

1.0m

1.5m

(m)
沉降时间, t (min)
Et-t 曲线
10 20 30 40 50 60
SS等去除率曲线
§2-3 理想沉淀池
一、Hazen和Camp提出这一概念。其假设条件是:
(1)在沉淀池各过流断面上,各点处水都以流速V作水平运动。
(2)进水中SS颗粒沿水深呈均匀分布,其水平分速等于水 的水平流速,并从竖直分速u匀还下沉;
2.设计内容 ( 1 )工艺尺寸
主要确定沉砂池的池长L、池宽B、池深H等。
池容V(有效容积):V QMAXT
池长L: H V A
水流断面A: A QMAX v
池宽B: B A H
例1:曝气沉砂池:工艺尺寸
在设计计算过程中,沉砂池的长、宽、深等工艺尺寸需同 时满足有关的长宽比和宽深比,以保证沉砂池内的流 态为推流式。
污泥区
但是,为保守起见,沉降效率依然按照:
ET (1 p0 )
P0 u dp 0 u0
进行计算。
§2-4 沉砂池
一、一般说明 1.一般位于泵站之前或初沉池之前,用以分离水中较大的
无机颗粒。以使水泵、管道免受磨损和阻塞;以减轻沉 淀池的无机负荷;改善污泥的流动性,以便于排放、输运。
2.分类: 按池内水流方向的不同,可分为平流式、竖流式、离心式、 曝气式等。
u随d 而增大。
1.絮凝沉降试验
● 装置:φ140~150mm H=2.0~2.5m 4~5个取样口,间距500mm
● 取样: C0由t=0时中间取样口采集 t1、t2、…、ti、…、tn时,同时从各取样口取水样(两份, 求平均浓度),用以确定不同时间、不同水深处残留的SS 浓度C1、C2、…、Ci、…、Cn。 ● 绘图: 例如:0.5m、1.0m、1.5m处各有一取样口,按设定的 时间序列同时取样,并计算Et。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力沉降法是水污染控制工程中的重要技术,其基本原理是利用水中悬浮颗粒在重力作用下的可沉降性能,实现固液分离。该方法主要包括四种类型:自由沉淀、絮凝沉淀、区域沉淀和压缩沉淀。自由沉淀发生在颗粒浓度不高,且沉淀过程中颗粒互不干扰的情况下,如沉砂池中的应用。絮凝沉淀则是颗粒在沉淀过程中相互絮凝,增大颗粒尺寸并加快沉降速度,这时,颗粒形成整体共同下沉,与澄清水之间形成清晰的泥水界面,这种沉淀类型在二次沉淀池与污泥浓缩池中得到应用。最后,压缩沉淀发生在颗粒浓度非常高的情况下,颗粒相互挤压成团状结构,通过上层颗粒的重力作用挤出下层颗粒间的水分,实现污泥的浓缩。这四种沉淀类型在水处理过程中各有其独特的应用场景,对于提高水质和处理效率具有重要意义。
相关文档
最新文档