沉降分离原理及方法

沉降分离原理及方法
沉降分离原理及方法

第二节 沉降分离原理及方法

3.2.1 重力沉降

一、球形颗粒的自由沉降

工业上沉降操作所处理的颗粒甚小,因而颗粒与流体间的接触表面相对甚大,故阻力速度增长很快,可在短暂时间内与颗粒所受到的净重力达到平衡,所以重力沉降过程中,加速度阶段常可忽略不计。

ma F F F d b g =-- 2

2

u A

F d ρζ=

或a d u d g d g d s s ρπρπ

ζρπ

ρπ

3

2

2

3

3

62

466=???

? ??--

当颗粒开始沉降的瞬间:0=u 因为0=d F a 最大

↑u ↑d F ↓a

当0=a

t u u =——沉降速度“终端速度”

推导得

()ρζ

ρρ34-=

s t gd u

0=a

()ρρπρπ

ζ-=???

? ??s g d u d 3

2

2

62

4 式中:

t u ——球形颗粒的自由沉降速度,[]s m ;

d

——颗粒直径,[]m ; s ρ——颗粒密度,[]3m kg ;

ρ——流体密度,[]3m kg ;

g ——重力加速度[]

2s m ;

ζ——阻力系数,

无因次, ()et s R f .φζ= s φ——球形度 p

s s s

=

φ

综合实验结果,上式为表面光滑的球形颗粒在流体中的自由沉降公式。 滞留区 1Re 104

<<-t

Re

24=ζ ()μρρ182g d u s t -= 斯托

克斯公式

过渡区 3

10Re 1<

.0Re

5.18=ζ ()27.0

6.0Re t s t

g d u ρρρ-= 艾仑公式

湍流区 53

102Re 10?<

ρρg

d u s t -=74.1 牛顿

公式

μ

ρ

t t du =

Re

该计算公式(自由沉降公式)有两个条件:

1.容器的尺寸要远远大于颗粒尺寸(譬如100倍以上)否则器壁会对颗粒的沉降有显著的阻滞作用,(自由沉降—是指任一颗粒的沉降不因流体中存在其他颗粒而受到干扰。自由沉降发生在流体中颗粒稀松的情况下,否则颗粒之间便会发生相互影响,使沉降的速度不同于自由沉降速度,这时的沉降称为干扰沉降。干扰沉降多发生在液态非均相系的沉降过程中。)

2.颗粒不可过分细微,否则由于流体分子的碰撞将使颗粒发生布朗运动。 二、非球形颗粒的自由沉降

p

s s s =

φ 球面积公式24R S π=球

R —半径;

S —与颗粒体积相等的一个圆球的表面积;

p S —颗粒的表面积[]2

m

p e V d =3

6

π

p V -颗粒体积[]

3m ;

p V de π

6

3

=

de —颗粒当量直径[]m 。

三、沉降速度的计算

1、试差法见讲义例题,计算t u

t t e R u →以判断流型后选计算式,先确定流型→求出t u →计算出f e R →检验t e R 是否符合假设。

2、摩擦数群法

使ζ及t e R 坐标之一变成t u 的已知数群

()

ρζρρ34-=

s t gd u 解得()2

34t

s u g d ρρρζ-= 又μ

ρ

t t du e R =

令ζ与t e R 相乘可消去2t u ()2

3

234μρρρζg d e R s t

-=

查2

t e R ~~~t R 图 求ρ

μ

ζd e R u e R e R t t t t =→→查2

另也可用1

-t e R ζ 消去颗粒直径d

1-t e R ζ~~~=

→de e R t t

t u e R ρμ

四、重力沉降设备 1、降尘室:

令 l —降尘室长度[m];

H —降尘室高度[m];

b —降尘室宽度[m];

u t

—颗粒沉降速度[m/s];

u —气体在降尘室内水平通过的速度[m/s]; 颗粒沉降时间:t

t u H =

θ, 气体通过时间:u

l =

θ 颗粒被分离出来的条件:t θθ

t

u H u l ≥ 令:

V

S

-()

又称为降尘室生产能力积流量降尘室处理含尘气体体,。

气体水平流速:Hb

V u s =

,代入t u H

u l ≥

∴ t s

blu V ≤

bl

V u s t ≥

注意;1、

t u 按需要完全分离下来的最小颗粒计算。

2、u 应保证气体流动雷诺准数处于滞流区。 2、悬浮液的沉聚过程

悬浮液的沉聚过程;属重力沉降,在沉降槽中进行。固体颗粒在液体中的沉降过程,大多属于干扰沉降。比固体颗粒在气体中自由沉降阻力大。随着沉聚过程的进行,A,D两区逐渐扩大,B区这时逐渐缩小至消失。在沉降开始后的一段时间内,A,B两区之间的界面以等速向下移动,直至B区消失时与C区的上界面重合为止。此阶段中AB界面向下移动的速度即为该浓度悬浮液中颗粒的表观沉降速度0u 。表观沉降速度0u 不同于颗粒的沉降速度

t u ,因为它是颗粒相对于器壁的速度,而不是颗粒相对于流体的速度。

等浓度B区消失后,AC界面以逐渐变小的速度下降,直至C区消失,此时在清液区与沉聚区之间形成一层清晰的界面,即达到“临界沉降点”,此后便属于沉聚区的压紧过程。D区又称为压紧区,压紧过程所需时间往往占沉聚过程的绝大部分。

通过间歇沉降实验,可以获得表观沉降速度0u 与悬浮液浓度及沉渣浓度与压紧时间的二组对应关系数据,作为沉降槽设计的依据。

运动与静止的相对性:自然界中所有物质都是运动的,我们平时所说的运动与静止都是相对于不动的物体(参照物)而说的,物体相对于参照物发生位置的变化叫运动,不发生位置变化的叫静止,由于参照物不同,观察同一物体的运动状态也不同。因此运动与静止只有相对的意义。

3、 沉降槽的构造与操作

沉降槽分为间歇式和连续式两种:

(1) 间歇式;需处理的悬浮液料浆送入槽内,静置足够时间后,即由上部抽出清液而由底

口排出稠厚的沉渣。

(2) 连续式:d (沉降槽的直径几米至几百米)。

底流:排出的稠浆称为底流。 4、 连续沉降槽的计算 (1) 沉降槽的面积

以加料口为界,加料口以上为澄清区,以下为增浓区。清液上行至溢流口流出,颗粒与液体一块下行至增浓区,进行沉聚过程。

若进入连续沉降槽,料浆体积流量为[

]

s m Q 3

,其中固相体积分率为f e ,底流中固相体积分率为c e 则:底流中固相体积流量f e Q .=,??

?固

液Q Q

e f 固相体积流量

=

(因为稳定

操作,各个不同深度处浓度是恒定的,所以料浆中固相体积流量必须等于底流中固相体积流量。化工生产是稳定的,各个车间工段的设备均是稳定的。即: 料浆中固相体积流量必须等于底流中固相体积流量)。 底流中体积流量c

f e e Q .=

底流中??

?固相

液相 底流的体积流量

底流中固相体积流量

=

c e

令增稠段各个横截面必须有一个总体下行速度u u 总体???液

总体下行即: 指底流相对于

器壁的流速,c

f u Ae e Q u .=

A u u —底流体积流量[]s m 3

c u Ae u —底流固相体

积流量[

]

s m 3

在增稠段内任取一个水平截面,设该截面上,固相体积分率为e

A

A AH H A V V e ’

=== Ae A =‘

H —该水平面截面厚度[]m ,'A —是增

稠段内固相截面积[]

2

m

,A —是增稠段固液总截面积[]2

m

?

??

? ??+=0u Ae Qe Ae Qe c f f t f u A Qe '

= 0u u u u t += 表观沉降速度

—0u 举例: 顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度,u u 是底流总体相对于管壁的速度,表观沉降速度是颗粒相对于容器壁面0u ,即在静止流体中沉降速度。

()0u u Ae Qe u f += 代入c

f u Ae e Q u .=

整理得 0A e u e e Q e Qe c

f f +=

方程两边同除e u 0移项整理得,???

?

??-=

c f e e u Qe A 1

10 3333331

1m m m m m m e

e c 固相水固相底流固相料浆体积=-=???

? ?

?- 311m e

e Qe c

f 溢流出水总体积=???

? ?

?- 30m Au 溢流出水总体积= 如设容器壁为参照物,则水向上的流速即为0u 料浆=底流+溢流水

① 若悬浮液中固相浓度以单位体积内的固相质量C 表示时,???

?

??-=

c

f e e u Qe A 1

10变为 ???

?

??-=???

? ??-=

c c

s s f c

c u w e e u Qe A 1

11

100ρρ c —任一横截面上的固相浓度,

()

3m kg 固(悬浮液)

c c —沉渣中(底渣)固相浓度,

()

3

m kg 固(底流)

()()固悬浮液单位

kg m c 31 , e c s ρ1

1= 单位3

3

3

1

1增稠段任一截面体积米固体体积米

(固)米公斤(固)? s

ρ—固体密度

[]

3

m kg

c

s e ρ1

单位

底流米公斤(固)

(底流)

米(固)米(固)米公斤(固)333

31

11=? c

c 1

单位

底流米公斤(固)

(底流)

米(固)米(固)米公斤(固)333

31

11=?

②若悬浮液中固相浓度以固液质量比的形式表示时:

)1

1(0C

C C u w A -=

ρρ X —任一截面上固液质量比液)

固)

((kg kg ;C X —沉渣中固液质量比液)

固)((kg kg

ρ—悬浮液密度[])()(3液液m kg )11(0C

X X u w A -=

ρ

X 1单位)()(固液kg kg C ρ单位)

()()

()()()

(3

3固液固固液液kg kg m kg m kg =

求取最大横截面A 值后,乘以安全系数作为沉降槽的实际横截面积。对于直径5m 以上的沉降槽,安全系数为1.5,对于直径30m 以上的沉降槽,安全系数为1.2 。 (2 ) 沉降槽的高度

沉渣压紧时间往往比料浆达到临界沉降所经历时间长,故用依据压紧时间来决定沉降槽高度 r c

s

x w w

Ah θρ

ρ)(

+

= 质量守恒

因为稳定操作压紧区的高度h 是恒定的,既是恒定、压紧区的容积必等于底流排出沉渣体积。

液相质量流量固相质量液相质量

固相质量流量=?=C X w 或 )1(C S S r X A w h ρρρθ+= (3) h —压紧区的高度m ;

A —横截面积2

m ; w —底流中间相质量流量,

S

kg ;

C X — 底流中间固、液相质量比,液)

固)((kg kg ;

[]m h h h )2~1(75.0'+?+=

'h —沉降槽总高度[]m 。

(通常要附加约75%的压紧区的高度作为安全余量 75.0?h ,沉降槽的总高度则等于压紧区高度加上其它区域的高度,后者可取1~2m)。

3.2.2 离心沉降

mg F g = 重力场强度g 可视为常数,其方向指向地心。离心力R m R

m

F C 22

ωυ=-

化工 R u m F T C 2= R

u T

2—惯性离心力场强度 ↑T u (切线速度)或↓R ↑C F

一、惯性离心力作用下的沉降速度

中心→外(径向)c

F 向心力F ←→0阻力F ←;颗粒直径d ,密度s ρ,流体密度

ρ,切向速度

T u

作用在颗粒上的力????

??

???===2466222

32

3r T T S

C u d

F R u d F R u d F ρπζρπρπ阻向阻力向心力惯性离心力

r u —颗粒与流体在径向上的相对速度???

?

?

?

???

====24662233u d

F g

d F g d mg F d b s g ρπζρπρπ阻力:浮力:重力:等速是r u 则被称为重力沉降速度。

这三个力达到平衡时,颗粒在径向上相对与流体的速度r u 被称为离心沉降速度。 (1)、作用在小球上的力属于惯性离心力;

(2)、流体对颗粒的向心力。密度为ρ的流体作匀速圆周运动,有一个向心力,这个力阻止小球向外运动; (3)、阻力,假定流体不动,颗粒由内向外运动,受到流体的阻力。

[]kg J u h

f

2

2

/ζ=; []??

?

???=?22

/2

m N P u p a f

或ρζ

;

阻力2

4

2

2

/r f

f u d

p A h ρπ

ζ

=?= r u —颗粒与流体在径向上的相对运动速度。

02

4662

22323

=--r T T s

u d R u d R u d ρπζρπρπ

解得: ()R

u d u T

s r

2

34-

-=

ζρρρ

1、离心沉降速度r u 与重力沉降速度t u 的异同 (1)相似之处: 公式形式相似; (2)相异之处:①方向 t u 向下 r u 向外

②大小 t u 不变(恒量)r u 变量 ↓R ↑r u

如110

4

<<-e R r

e R 24

=ζ代入()R

u d u T

s r 2

34-

-=ζρρρ,()???

?

?

?-=R u d u T

s r 2

218μρρ μ

ρ

r r du =

Re 参看前式: ()μ

ρρ182g

d u s r -=

2、分离因数c K (同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值为:

c T

t r K gR

u u u ==2

分因数是离心设备的重要指标)。 一、旋风分离器的结构与操作原理

旋风分离器是利用惯性离心力的作用从气流中分离出含有尘粒的设备。除尘颗粒直径

m d μ5≥以上的颗粒,不适宜粘性,湿性、及腐蚀性粉尘。颗粒被抛向管壁,动能变静压能、

变成热能,最后沿壁面落入灰斗。

含尘气体由圆筒上部的进气管切向进入,受器壁的约束而向下作螺旋运动。在惯性离心力作用下,颗粒被抛向器壁而与气体分离,再沿壁面落至锥底的排灰口。净化后的气体在中心轴附近由下向上作螺旋运动,最后由顶部排气管排出。

三、旋风分离器的性能

1、临界粒径:是指在旋风分离器中能被完全分离下来的最小颗粒直径。

临界粒径是判断分离效率高低的重要依据。 2、临界粒径推导的条件、假设:

(1)气体作螺旋等速运动,切向速度T u 等于进口气速i u ; (2)颗粒穿过厚度为B 的气流层沉降分离; (3)颗粒作滞流自由沉降。

因s ρρ《,m R R =,(m R R 取平均值旋转半径),根据条件1、3

()???

? ?

?-=R u d u T

s r 2

218μρρ 式可简为:m i s r R u d u μρ1822= T i u u = 用m i R u 2

惯性离心加

速度代替重力加速度g

根据条件2,颗粒到达器壁所需沉降时间为:

2218i

s m r t u d B

R u B ρμθ==

令气流的有效旋转圈数为e N ,(指真正起分离颗粒离心作用的圈数)。它在器内运行的距离便是e m N R π2,则停留时间为:i

e

m u N R πθ2=

i t u u = (条件1) 若某种尺寸的颗粒所需的沉降时间t θ恰等于停留时间θ,该颗粒就是理论上能被完全分离下来的最小颗粒,以c d 代表这种颗粒的直径,即临界粒径。则

i e

m i s m u N R u d B R πρμ2182

2=

解得:s

i e c u N B

d ρπμ9=

3、注意点 (1)4

D

B =

(D 圆筒直径) ↑B ↑D ↑c d ↓p η 所以,气体处理量大时,常常将若干个旋风分离器并联使用,以维持较高的除尘效率。 (2) 推导上式时,(1)、(2)两项假设与实际情况差距较大,但因这个公式非常简单,

只要定出合适的e N 值,可以使用。e N 的数值一般为0.3~5.0,但对标准型旋风分离器可取5=e N 。

4、分离效率

(1)总效率0η:进入旋风分离器的全部颗粒中被分离下来的质量分率,即1

2

10c c c -=

η 1c ——旋风分离器进口气体含尘浓度 []

3m g

2c ——旋风分离器出口气体含尘浓度 []

3m g

优点:易测定

缺点:不能表明旋风分离器对各种尺寸粒子的分离效果。

(2) 分效率(粒级效率)p η:按各种粒度分别表明其被分离下来的质量分率。 把气体中所含颗粒的尺寸范围等分成n 个小段,则其中第i 个小段范围内的颗粒(平均粒径为i d )的粒级效率定义为:i

i

i pi c c c 121-=

η

式中:i c 1—进口气体中粒径在第i 小段范围内的颗粒的浓度[m

g 3

/

]。

i c 2—出口气体中粒径在第i 小段范围内的颗粒的浓度[m g 3/]。

(3)

η

p

d

i

对应关系曲线称粒级效率曲线,可以实测。

(4)分割粒径

d

50

: 粒级效率恰为50%的颗粒直径。

)

(27

.050ρμρ

-≈S

i

u d D

D -设备直径[m], μρ和是气体的密度与粘度。

利用

η

p

d

d

50

曲线估算旋风分离器的效率。

注意:①标准旋风分离器 ②同一型式而且比例尺寸相同。

(5)总效率与分效率的关系

η

ηpi n

i i

x ∑==1

式中

x i

-颗粒直径在第i 小段范围内的颗粒占全部颗粒的质量分率。

5、压强降 ??

?=?局部阻力

摩擦阻力

22u p ρζ

ζ—阻力系数为常数,对标准型旋风分离器0.8=ζ,旋风分离器的压强降一般为2000~500a P

一般颗粒密度大,粒径大、进口气速高及粒尘浓度高都有利于分离。但进口气速过高则涡流加剧反而不利于分离。旋风分离器的进口气速一般在s m 25~10范围内。

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

空气分离的几种方法

绪 论 一、空气分离的几种方法 1、 低温法(经典,传统的空气分离方法) 压缩 膨胀 低温法的核心 2、 吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特 定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要 求或寿命影响大。 3、 膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 2O 穿透膜的速度比2N 快约4-5倍,但这种分离方法生产能力更低, 纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、 低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、 获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、 溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、 低温工质的一些性质:(空气 、O 、N 、Ar ) 5、 液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、 气体分离(结合设备) 三、空分的应用领域 1、 钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、 煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、 化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、 造纸:漂白剂; 5、 国防工业:氢氧发动机、火箭燃料; 6、 机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油;

第一章 空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革: 第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质; 第二代:石头蓄冷除杂质,空气透平膨胀低压循环; 第三代:可逆式换热器; 第四代:分子筛纯化; 第五代:,规整填料,增压透平膨胀机的低压循环; 第六代:内压缩流程,规整填料,全精馏无氢制氩; ○全低压工艺流程:只生产气体产品,基本上不产液体产品; ○内压缩流程:化工类:5~8MPa :临界状态以上,超临界; 钢铁类:3.0 MPa ,临界状态以下; 二、各部分的功用 净化系统 压缩 冷却 纯化 分馏 (制冷系统,换热系统,精馏系统) 液体:贮存及汽化系统; 气体:压送系统; ○净化系统:除尘过滤,去除灰尘和机械杂质; ○压缩气体:对气体作功,提高能量、具备制冷能力; (热力学第二定律) ○预冷:对气体预冷,降低能耗,提高经济性 有预冷的一次节流循环比无预冷的一次节流循环经济,增加了制冷循环,减轻 了换热器的工作负担,使产品的冷量得到充分的利用; ○纯化:防爆、提纯; 吸附能力及吸附顺序为:2222CO H C O H >>; ○精馏:空气分离 换热系统:实现能量传递,提高经济性,低温操作条件; 制冷系统:①维持冷量平衡 ②液化空气 膨胀机 h W ?+ 方法 节流阀 h ? 膨胀机制冷量效率高:膨胀功W ; 冷损:跑冷损失 Q1 复热不足冷损 Q2 生产液体产品带走的冷量Q3 321Q Q Q Q ++≥ 第一节 净化系统

微生物菌种的分离和纯化方法

从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。在分子生物学的研究及应用中,不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”,防止其他微生物的混入。 1、用固体培养基分离和纯化 单个微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体,称为菌落。当固体培养基表面众多菌落连成一片时,便成为菌苔。不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,可以成为对该微生物进行分类、鉴定的重要依据。大多数细菌、酵母菌、以及许多真菌和单细胞藻类能在固体培养基上形成孤立的菌落,采用适宜的平板分离法很容易得到纯培养。所谓平板,即培养平板的简称,它是指固体培养基倒入无菌平皿,冷却凝固后,盛固体培养基的平皿。这方法包括将单个微生物分离和固定在固体培养基表面或里面。固体培养基用琼脂或其它凝胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成菌落,形成的菌落便于移植。最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。这种由Kock建立的采用平板分离微生物纯培养的技术简便易行,100多年来一直是各种菌种分离的最常用手段。1.1 稀释倒平板法 首先把微生物悬液作一系列的稀释(如1:10、1:100、1:1000、1:10000),然后分别取不同稀释液少许,与已熔化并冷却至50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。 1.2 涂布平板法 因为将微生物悬液先加到较烫的培养基中再倒平板易造成某些热敏感菌的死亡,且采用稀释倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,因此在微生物学研究中常用的纯种分离方法是涂布平板法。其做法是先将已熔化的培养基倒入无菌平皿,

(完整)误差分离方法总结,推荐文档

2.误差分离方法的研究 目标: 分析比较几种常用的误差分离方法,对其进行仿真对比,分析比较各分离精度的高低,并找到一种适应高速高精度的静动态回转误差分离方法。 如图2.1所示,对主轴的回转误差进行测量时,一般在主轴的端面装卡一个高精度的标准球作为主轴上一点位置变化参照物。由于标准球的表面不可能完全光滑并且不能保证主轴轴线过标准球球心,所以使测量结果中包括三类误差:主轴的径向回转误差、标准球的圆度误差、标准球的安装偏心误差。 图2.1主轴径向回转误差测量简图 对于高精度的主轴测量,混入的圆度误差和安装偏心误差甚至会掩盖掉微小的回转误差,所以在亚微米、纳米级的主轴回转误差测量中,混入的误差不能忽略,必须采取有效的办法从采集的数据中把它们分离出来,才能得到精确的主轴回转误差值。 误差分离是指从所测信号中分离并去除由测量系统引入的影响测量精度的信号分量,从而得到所要测量的准确信号。误差分离技术最初应用于圆度误差的测量,是指从传感器测得的信号中分离并除去圆度仪的主轴回转误差对测量结果的影响。随着高精度圆度测量技术的发展,误差分离技术也得到了不断的发展,并引入到主轴回转误差的测量中。在主轴回转误差的测量中,误差分离技术则要从传感器测得的信号中分离并除去被测件的形状误差、安装偏心误差,从而得到 精确主轴的回转误差信号。主轴回转误差测量的误差分离技术与圆度测量误差分离技术相比,保留和去除的信号正好相反,但它们实质工作却是相同的,都是对混入了主轴回转误差和形状误差信号进行处理。 国内外学者已经提出了很多误差分离的方法,各种方法有不同的优缺点和适 用场合。概括起来讲,应用的较多的主要有反向法、多点法、多步法等。其它的很多误差分离方法都是建立在这三种误差分离方法基础之上的。 2.1反向法 图2.2为反向法测量的基本原理图。T为从传感器测头,其测得的信号△ T( 9) 在去除了偏心误差之后包括两部分,主轴的回转误差R(9)标准球的圆度误差 S( 9。)

沉降分离原理及方法---精品资料

第二节 沉降分离原理及方法 3.2.1 重力沉降 一、球形颗粒的自由沉降 工业上沉降操作所处理的颗粒甚小,因而颗粒与流体间的接触表面相对甚大,故阻力速度增长很快,可在短暂时间内与颗粒所受到的净重力达到平衡,所以重力沉降过程中,加速度阶段常可忽略不计。 ma F F F d b g =-- 2 2 u A F d ρζ= 或a d u d g d g d s s ρπρπ ζρπ ρπ 3 22 3 3 62466=??? ? ??-- 当颗粒开始沉降的瞬间:0=u 因为0=d F a 最大 ↑u ↑d F ↓a 当0=a t u u =——沉降速度“终端速度” 推导得 ()ρζ ρρ34-= s t gd u 0=a ()ρρπρπ ζ-=???? ??s g d u d 3 22 6 24 式中: t u ——球形颗粒的自由沉降速度,[]s m ;

d ——颗粒直径,[]m ; s ρ——颗粒密度,[]3m kg ; ——流体密度,[ ] 3 m kg ; g ——重力加速度[] 2s m ; ζ——阻力系数, 无因次, ()et s R f .φζ= s φ——球形度 p s s s =φ 综合实验结果,上式为表面光滑的球形颗粒在流体中的自由沉降公式。 滞留区 1Re 104 <<-t Re 24=ζ ()μρρ182g d u s t -= 斯托 克斯公式 过渡区 3 10Re 1<

空分车间生产工艺与原理

空分车间生产基本工艺与原理 1、空分综述 1.1、空气及空气分离 空气存在于我们地球表面,属典型的多组分混合物,主要成分有氮气、氧气及惰性气体,按体积含量计,氧气占20.95%、氮气占78.09%、氩占0.932%,此外还有微量的氢、氖、氦、氪、氙、氡,以及不定量的水蒸汽及二氧化碳。在标准状况下,空气液化温度为87.7K。 空气分离是指把空气通过一定的方法分离出氧气、氮气和惰性气体的过程。 目前分离的方法主要有深冷法、变压吸附法、膜分离法,它们各有自己的优缺点。变压吸附法、膜分离法主要用于低纯度、小型空分设备;焦炉煤气制合成氨项目用产品气量大且纯度要求高,故采用深冷法。 深冷法基本原理是:将空气液化后,根据各组份沸点不同,通过精馏将各组分进行分离。空气分离的主要产品为氧气及部分氮气。 1.2、空分装置简介 1.2.1.装置特点 我公司选用了由开封黄河制氧厂生产的第六代空分装置,流程上采用全低压、外压缩,不提氩的结构。主要特点: ⑴采用带自动反吹的自洁式空气过滤器,保证了运行周期及运行效果; ⑵预冷系统利用多余的污氮气及氮气对水进行冷却,降低冷水机组热负荷,减小冷水机组功率选型,不但节能且充分利用了富余气体干基吸湿

潜热; ⑶采用分子筛吸附,大大简化空气净化工艺,延长了切换周期,减少加工空气切换损失。利用分子筛所具有的选择性高吸附率,提高了净化效果,减少碳氢化合物、氮氧化物及二氧化碳进入液氧的量,确保主冷的安全同时延长装置大加温周期; ⑷采用增压机制动的透平膨胀机,提高单位气体制冷量,减少膨胀空气对上塔精馏段的影响,优化了精馏操作; ⑸分馏塔下塔采用高效塔板,上塔采用规整填料,降低精馏塔操作压力,提高了塔板和填料的精馏效率,保证了氧的提取率、降低制氧单耗; ⑹设置液氧贮槽及汽化系统,加大主冷液氧排放量,杜绝碳氢化合物、氮氧化物及二氧化碳在液氧中析出,最大限度保证主冷安全。液氧汽化系统为空分装置短停时系统用氧提供了方便,确保后工段工艺连续,减少后工段开停车损失; ⑺装置采用DCS集散控制系统,使操作更加方便和稳定。 1.2.2.装置主要参数 空分装置型号为KDON—4500/6000,其主要参数: ⑴空压机:≥25000Nm3/h,出口压力:0.6MPa(G); ⑵氧气:产量≥4500 Nm3/h,纯度99.6%,出界区压力:3.0 MPa(G); ⑶氮气:≥6000 Nm3/h,纯度99.99%,出界区压力0.8 MPa(G); ⑷仪表空气≥3000 Nm3/h,露点≤-40℃,出界区压力≥0.8MPa(G)。 1.2.3.装置设计运行要求 ⑴操作弹性 本装置可在不外加任何设备的情况下,能以设计氧产量的75~105%变

磁珠法分离纯化DNA原理及其步骤

磁珠法分离纯化DNA原理及其步骤 日期:2012-05-22 来源:互联网 标签:核酸纯化核酸分离磁珠法纯化DNA 摘要: 磁珠法纯化DNA主要是利用利息交换吸附材料吸附核酸,从而将核酸和蛋白质等其细胞中其他物质分离。本文主要概述了磁珠法纯化DNA原理、核酸分离与纯化的原则、核酸分离与纯化的步骤。 欢度大力神杯之夏,参与BRAND竞猜活动,获赠BRAND产品! GeneCopoeia:qPCR mix免费试用体验活动开始! 磁珠法纯化DNA主要是利用利息交换吸附材料吸附核酸,从而将核酸和蛋白质等其细胞中其他物质分离。本文主要概述了磁珠法纯化DNA原理、核酸分离与纯化的原则、核酸分离与纯化的步骤。 磁珠法纯化DNA原理 磁珠法核酸纯化技术采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸发生吸附反应。硅磁(Magnetic Silica Particle)就是指磁珠微珠表面包裹一层硅材料,来吸附核酸,其纯化原理类型于玻璃奶的纯化方式。离心磁珠是指磁珠微珠表面包裹了一层可发生离心交换的材料(如DEAE,COOH)等,从而达到吸附核酸目的。不同性质的磁珠微珠所对应的纯化原理是不一致。使用磁珠法来纯化核酸的最大优点就是自动化。磁珠在磁场条件下可以发生聚集或分散,从而可彻底摆脱离心等所需的手工操作流程。Omega拥有全面的磁珠法核酸分离试剂盒,基于这种技术的试剂盒,名称前都有’Mag-Bind’。 核酸分离与纯化的原则 核酸在细胞中总是与各种蛋白质结合在一起的。核酸的分离主要是指将核酸与蛋白质、多糖、脂肪等生物大分子物质分开。在分离核酸时应遵循以下原则:保证核酸分子一级结构的完整性:排除其他分子污染。 核酸分离与纯化的步骤 大多数核酸分离与纯化的方法一般都包括了细胞裂解、酶处理、核酸与其他生物大分子物质分离、核酸纯化等几个主要步骤。每一步骤又可由多种不同的方法单独或联合实现。 1. 细胞裂解:核酸必须从细胞或其他生物物质中释放出来。细胞裂解可通过机械作用、化学作用、酶作用等方法实现。 (1) 机械作用:包括低渗裂解、超声裂解、微波裂解、冻融裂解和颗粒破碎等物理裂解方法。这些方法用机械力使细胞破碎,但机械力也可引起核酸链的断裂,因而不适用于高分子量长链核酸的分离。有报道超声裂解法提取的核酸片段长度从< 500bp ~> 20kb 之间,而颗粒匀浆法提取的核酸一般< 10kb。

重力沉降规律及设备

重力沉降规律及其设备 摘要:介绍了重力沉降的规律以及重力沉降的四种类型,对一些常用的重力沉降设备进行了总结。 关键词:重力沉降规律;设备 1.重力沉降 利用分散介质与分散物密度的差异,在重力作用下,使之得到分离的过程。重力沉降原理:固体颗粒在做同一水平运动的同时做向下的沉降运动,由于颗粒密度的不同,导致沉降速度不同。密度大的先沉降,密度小的后沉降,因此使之分离。沉降类型有自由沉降、絮凝沉降、成层沉降和压缩沉降。 1.1自由沉降 废水中的悬浮固体浓度不高,而且凝聚性时发生自由沉降。固体颗粒不改变形状和尺寸,不互相粘和,各自独立地完成沉降过程。发生自由沉降的颗粒的沉降速度在经过一定的沉降时间后保持不变,现象是水从上到下逐步变清。在沉砂池和初沉池的初期沉降类型是自由沉降。 1.2絮凝沉降 固体浓度也不高(ss为50-100mg/L),但具有凝聚性时发生絮凝沉降。在发生絮凝沉降的过程中,颗粒互相碰撞、粘合,结合成较大的絮凝体而沉降;沉降的过程中颗粒尺寸不断变化;颗粒的沉降速度是变化的。水是逐步变清的,但可观察到颗粒的絮凝现象。在初沉池的后期和二沉池的初期沉降类型为絮凝沉降。 1.3成层沉降 废水中的悬浮颗粒物的浓度提高到一定程度时(ss大于500mg/L)发生成层沉降。沉降过程中每个颗粒的沉降将受到其周围颗粒存在的干扰,沉降有所降低,在聚合力的作用下,颗粒群结合成为一个整体,各自保持相对不变的位置共同下沉。可观察到水与颗粒群之间有明显的分界面,沉降的过程实际上是该界面下沉的过程。在二沉池的后期和浓缩池的初期发生成层沉降。 1.4压缩沉降 废水中悬浮物的浓度很高时发生压缩沉降。沉降时固体颗粒互相接触,互相支撑,在上层颗粒的重力作用下,下层颗粒间隙中的液体被挤出界面,固体颗粒群被浓缩。颗粒群与水之间有明显的界面,但颗粒群部分比成层沉降时密集,界

分离纯化(1)

1.生物药物:是利用生物体、生物组织或其成分,综合应用生物化学、微生物免疫学、和药 学等的原理与方法制造的一大类用于预防、治疗、诊断的制品。 2.生物制品:主要指菌苗、毒素、应变原与血液制品等。 3.合成与部分合成生物药物:以天然药物为分子母体,经化学或生物学方法修饰改造合成 的生物药物。 4.基因药物:以基因物质(RNA或DNA及其衍生物)作为治疗的药物基础,包括基因治 疗用的重组目的DNA片段、重组疫苗、反义药物和核酶等。 5.反义药物:以人工合成的十至几十个反义寡核苷酸序列与模板DNA或mRNA互补形成 稳定的双键结构,抑制靶基因的转录和mRNA的翻译,从而起到抗肿瘤和抗病毒的作用。 6.疫苗:使用病毒或立克次氏体,接种于动物、鸡胚或组织培养后,加以处理制成,可分 为弱毒疫苗和死毒疫苗。 7.类毒素:使用细菌产生的外毒素加入甲醛处理后,使之变为无毒性但仍旧有免疫原性的 制剂。 8.细胞破碎:采用一定的方法,在一定程度上破坏细胞壁和细胞膜,设法使胞内产物最大 程度的释放到液相当中,破碎后的细胞浆液经固液分离除去细胞碎片后,再采用不同的分离手段进一步纯化。 9.过滤:在外力的作用下,悬浮液中的液体通过多孔介质的孔道而固体颗粒被截留下来, 从而实现固液分离的操作。 10.料液:在溶剂萃取中,被提取的溶液被称为料液。 溶质:在溶剂萃取中,欲提取的物质被称为溶质。 萃取剂:用以进行萃取的溶剂。 11.反萃取:将萃取液与反萃取剂(一般为水溶液)相接触,使某种被萃取的有机相溶质转 入水相的过程。 12.萃取液:含溶质的萃取剂溶液。 萃余液:被萃取出溶质以后的溶液。 13.双水相萃取:又称水溶液两相分配技术,它利用物质在互不相溶的两水相间分配系数的 差异来进行萃取的方法。 14.临界胶束浓度(CMC):是胶束形成时所需表现活性剂的最低浓度。 15.正常胶束:将表面活性剂溶于水中,当其浓度超过临界胶束浓度时,表面活性剂就会在 水溶液中聚集在一起而形成聚集体,通常情况下,这种聚集体是水溶液中的胶束,被称为正常胶束。 16.反胶束:将表面活性剂溶于非极性的有机溶剂中,并使其浓度超过临界胶束浓度,便会 在有机溶剂内形成聚集体,这种聚集体被称为反胶束。 17.超临界流体:在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界 点的状态。 18.超临界流体萃取技术:是利用处于临界压力和临界温度以上的一些溶剂流体所具有(特 异增加物质溶解能力)来进行分离纯化的技术。 19.固相析出技术:通过加入某种试剂或改变溶液条件,使生化产物以固体形式(沉淀和结 晶)从溶液中沉降析出的分离纯化技术称为固相析出技术。 20.盐析法;是利用各种生物分子在浓盐溶液中溶解度的差异,通过向溶液中引入一定数量的 中性盐,使目的物或杂蛋白以沉淀析出,达到纯化目的的方法。 21.有机溶剂沉淀:向水溶液中加入一定量亲水性的有机溶剂,降低溶质的溶解度,使其沉 淀析出的分离纯化方法。 22.凝胶层析:又称分子筛层析,是将样品混合物通过一定孔径的凝胶固定相,由于各组分 流经体积的差异,使不同分子量的祖坟的一份力的层析方法。 23.类分离(组分离):将分子量极为悬殊的两类物质分开的方法。 24.分级分离:将分子量相差不大的大分子物质加一分离的方法。 25.离子交换法:利用溶液中带电粒子与离子交换剂之间结合力的差异进行物质分离的操作 方法。 26.有效粒径:指筛分树脂时,10%体积的树脂颗粒通过,而90%体积的树脂颗粒保留的筛 孔直径。 27.均一系数:指能通过60%体积(筛上体积40%)树脂的筛孔直径与能通过10%体积(筛 上体积90%)的树脂的筛孔直径之比。均一系数越接近1,表明树脂颗粒越均匀,在文献上常常见到用筛目数表示树脂粒度。 28.树脂再生:使用过的树脂重新获得使用性能的处理过程。 29.转型:树脂去除后,为了发挥其交换能力,按照使用要求人为地赋予平衡离子的过程。 30.毒化:指树脂失去交换性能后,不能用一般的再生手段重获交换能力的现象。 31.洗脱:离子交换完成后,将树脂所吸附的物质释放出来重新转入溶液的过程。

误差的分离与补偿

误差的分离与补偿 一、误差的分离 误差分离是指从所测信号中分离并去除由测量系统引入的影响测量精度的信号分量,从而得到所要测量的准确信号。常见的基本的误差分离方法有以下四种: 1、反向法 反向法是将被测件进行两次安装与测量,两次安装测量的位置关系刚好相反。反向法是一种完全的误差分离方法,能简单。但是,反向法要求系统的重复性好,所要求的相位。达到很高的分离精度,并且需要的实验设备并且要转测头和标准球,转后不易保证对准。 2、三点法 多点法最常见的是三点法。图2.3为其测量原理图 图1三点测量法的原理图 三点法适应于动态回转误差的测量但是需要同时使用三个传感器,对硬件要求高,而且三个传感器需要互成一定的角度进行安装,对安装提出了很高要求,几乎很少被使用。 3、多步法 多步法又叫全周等角多步转位法。如图2.4所示,固定一个传感器在被测球的一个位置,然后旋转标准球,使其匀速转动,传感器整周均匀的采集数据,每个数据包括主轴的回转误差和标准球的圆度误差。 图2.3 多步法测量的原理图 多步法的优点是只使用一个传感器,因此不需要保证几个传感器安装的相对

位置;缺点是需要工件多次转位安装,各组数据测量也是不连续的,因此它更加需要主轴具有良好的重复性和系统状态的一致性。 2.4 数理统计法 数理统计法是基于多步法提出的误差分离方法。采用先行消除数量级较小的主轴回转误差,得到误差相当小、精确度相当高的主轴圆度误差,再用传感器采集数据减去高精确度的主轴圆度误差从而得到主轴的回转误差。 图2.4 数理统计法的测量原理图 二、误差补偿 随着科学技术的发展,在工业的各个行业对机器精度的要求都越来越高,从而对机器的零件等的要求也越来越高。随着数控设备的普及应用,提高各种数控机床的精度成为必然趋势。提高机床的精度有两种方法:一种是通过提高零件的设计、制造和装备水平来消除可能的误差源,称为误差防止法,该方法的一方面主要受到加工母机精度的制约,另一方面零件质量的提高导致加工成本的膨胀,致使该方法的使用受到一定限制。另一种叫误差补偿法,通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的软升级。 误差补偿方法很多很杂,根据误差的来源不同有这不同的方法,同时对于不同的仪器也有这不同的,故不好一一列举。故在这对误差补偿过程进行分析,误差补偿最重要的过程是对误差进行建模、测量、并最终进行补偿。这些过程中涉及到的一些技术会对误差补偿的开展效果具有重要的影响,因此成为误差补偿的关键技术。 (1)误差建模技术 对误差进行建模是进行误差补偿的重要前提,误差的建模可以分为误差综合建模和误差元素建模。误差建模技术的关键在于寻找更为有效的建模方法将机床存在的误差通过所建模型准确的反应出来。 (2)误差测量技术 因为运动学模型是基于机床的各个独立误差成分来计算最终的位置和方向误差的,因而,需要对误差成分进行精确和有效的测量和识别。误差测量方法可以分为直接误差测量和间接误差识别。一般来讲,直接误差测量更为精确,其测量原理更简单,但比较耗时。而间接误差测量则是一种快速、有效的测量机床误差分量的方法。误差测量技术的关键在于建立精度和效率间的平衡,在不牺牲精度需要的情况下,尽可能的提高误差测量方法的效率。 (3)误差的补偿实施技术

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

误差分离理论.

误差分离理论 《制造工程中的精密技术》 1.误差分离的一般方程 假设1 在布置传感器时均需使某一或一些被测误差量,在传感器中的反映可以借助于测量系统配置的几何特征,表述为该被测误差量在测量空间中的“时延”。同时该被测误差量本身是或者认为使之是周期性的,时不变的,以使得该误差量在所有测量传感器中的反映,仅为测量空间的“时延”或者“相位”不同,也就是说该误差量在所有传感器中的反映是完全相关的。 假设2 根据几何量测量的Abbe原理,传感器的测量方向应在被测误差量的延长线上,因此该误差量在传感器中的传递是1:1的。 假设3 其他诸项误差量则通过处理测量系统的几何关系,使之加权后反映到不同位置的测量传感器中。一般这些误差量在诸传感器中的反映,不能表述为误差量在测量空间的时延或相移。这些误差量可以是确定的,也可以是随机性的。 总之,所有被测量或将被分离的误差量,都将通过测量系统的几何关系映射为传感器的输出信号。这种由测量系统几何参数决定的映射关系,在此称之为误差映射关系或误差映射矩阵。 设在线误差测量和分离系统中的某一被测误差量,在诸传感器中的输出满足假 设1、2描述的特性。其余的有限个被测误差量满足假设3描述的特征。 设测量系统中安装一个或m个测量传感器,且其在测量空间的位置为别为: 则应用一个传感器进行m次移位测量后,或应用m个传感器进行一次测量后可得传感器的输出矩阵方程: 式中——被测误差量的误差映射矩阵,为阶单位矩阵。 ——满足假设1、2的被测误差量经系列时延后的序列构成的列向量。 ——满足假设3的k个被测误差量构成的列向量。 ——由测量机构几何参数决定的k个误差量的阶误差映射矩阵。

《生物分离与纯化技术》授课教案

《生物分离与纯化技术》授课教案 第一章绪论 教学目的:熟悉生物物质的概念、种类和来源;了解分离纯化技术及其基本原理;熟悉分离纯化工艺的优化、放大和验证工作;掌握分离纯化的特点与一般步骤;了解生物分离纯化技术的发展历史;熟悉生物分离纯化技术的发展趋势。 教学重点:生物物质的概念、种类和来源;分离纯化工艺的优化、放大和验证工作;分离纯化的特点与一般步骤;生物分离纯化技术的发展趋势。 教学难点:分离纯化技术及其基本原理;分离纯化工艺的优化、放大和验证工作。教学课时:4 学时 教学方法:多媒体教学 教学内容: 第一节生物分离与纯化的概念与原理 一、生物物质的概念、种类和来源 1. 生物物质:氨基酸及其衍生物类、活性多肽类、蛋白质、酶类、核酸及其降解 物、糖、脂类、动物器官或组织制剂、小动物制剂、菌体制剂 2. 生物物质来源:动物器官与组织、植物器官与组织、微生物及其代谢产物、细胞培养产物、血液、分泌物及其代谢物 二、生物分离纯化概念 指从发酵液、动植物细胞培养液、酶反应液或动植物组织细胞与体液等中分离、纯化生物产品的过程。 三、生物分离纯化技术

生物技术 上游:基因工程、细胞工程、酶工程、发酵工程及组织工程;下游:生物产品的回收——生物分离与纯化技术,主要包括离心技术、细胞破碎技术、萃取技术、固相析出技术、色谱技术和膜分离技术等。 四、分离纯化基本原理 有效识别混合物中不同组分间物理、化学和生物学性质的差别,利用能够识别这些差别的分离介质或扩大这些差别的分离设备来实现组分间的分离或目标产物的纯化。

第二节分离纯化策略 一、生物分离纯化技术的特点 1. 环境复杂、分离纯化困难 2. 含量低、工艺复杂

动态测量误差分离与修正(精)

动态测量误差分离与修正技术 一、动态测量 动态测量的概念是在19世纪80年代提出的。随着科学技术和测量技术的进一步发展,动态测量技术也越来越受到了人们的重视。关于什么是动态测量,至今仍未有一个严格的科学定义。综合目前对动态测量的认识,主要有两种观点。一是:动态测量是对确定量的瞬时值及其随时间变化的量所进行的测量,这里动态测量指的是被测量为变量的连续测量过程。二是:认为测量装置在动态下使用的测量亦即为动态测量,动态是以测量装置输出变化信号为特征的。尽管对动态测量尚无统一定义,但在测量全过程中,测量系统必须处于运动状态,这种认识是一致的。 若要对动态测量误差进行修正与评定,就要了解动态测量误差的特点,而动态测量误差又存在于动态测量过程之中,因此有必要知道动态测量的基本特点。主要包括:时变性,随机性,相关性和动态性。时变性:动态测量是以测量装置输出变化信号为特征的,因此动态测量数据总会随着时间t而变化。随机性:动态测量难免存在随机误差或干扰、噪声等,使动态测量数据具有随机性,即总表示为测量时间t的随机函数。况且,被测变量本身有时也表现为某种随机函数,如表面粗糙度即是。相关性:由于动态测量系统具有一定的动态响应特性,

其输出值不仅与该时刻的输入值有关,且和该时刻以前的测量值有关。即动态测量的相邻瞬时值之间不是相互独立的,而是具有相关性。动态性:动态测量系统在测量过程中始终处在运动状态,需用微分方程、差分方程或状态方程来描述测量系统的输入输出关系,还常用传递函数、脉冲响应函数或频率响应函数等反映该测量系统的动态特性。在动态测量数据处理及其测量误差分析与评定中也常借助系统分析,即其动态特性的分析方法。 二、动态测量误差 由于外界干扰和内部结构的不稳定的存在,运动过程中的测量系统必然会产生误差。在理想情况下,被测量与测量装置相互作用后, 含有被测信息的信号进入动态测量装置,经过理想变换,输出测量信号,再经理想变换后,就能还原成被测量真值,即: 但在实际的测量过程中,由于种种原因,一方面动态测量系统并不能达到理想的变换和,而是和,另一方面测量过程中难免存在外界扰动和噪声,则实际的测量结果为: 延用传统误差的概念,动态测量误差的定义:在动态测量过程中,动态测量结果减去被测量的真值,即:

空分原理概述

一、空气分离的几种方法 1、低温法(经典,传统的空气分离方法) 压缩膨胀液化(深冷)精馏 低温法的核心 2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。 3、膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 穿透膜的速度比快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、低温工质的一些性质:(空气、O、N、Ar) 5、液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、气体分离(结合设备) 三、空分的应用领域 1、钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、造纸:漂白剂; 5、国防工业:氢氧发动机、火箭燃料; 6、机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油; 第一章空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;

误差分离方法总结

2. 误差分离方法的研究 目标: 分析比较几种常用的误差分离方法,对其进行仿真对比,分析比较各分离精度的高低,并找到一种适应高速高精度的静动态回转误差分离方法。 如图2.1所示,对主轴的回转误差进行测量时,一般在主轴的端面装卡一个高精度的标准球作为主轴上一点位置变化参照物。由于标准球的表面不可能完全光滑并且不能保证主轴轴线过标准球球心,所以使测量结果中包括三类误差:主轴的径向回转误差、标准球的圆度误差、标准球的安装偏心误差。 图2.1 主轴径向回转误差测量简图 对于高精度的主轴测量,混入的圆度误差和安装偏心误差甚至会掩盖掉微小的回转误差,所以在亚微米、纳米级的主轴回转误差测量中,混入的误差不能忽略,必须采取有效的办法从采集的数据中把它们分离出来,才能得到精确的主轴回转误差值。 误差分离是指从所测信号中分离并去除由测量系统引入的影响测量精度的信号分量,从而得到所要测量的准确信号。误差分离技术最初应用于圆度误差的测量,是指从传感器测得的信号中分离并除去圆度仪的主轴回转误差对测量结果的影响。随着高精度圆度测量技术的发展,误差分离技术也得到了不断的发展,并引入到主轴回转误差的测量中。在主轴回转误差的测量中,误差分离技术则要从传感器测得的信号中分离并除去被测件的形状误差、安装偏心误差,从而得到精确主轴的回转误差信号。主轴回转误差测量的误差分离技术与圆度测量误差分离技术相比,保留和去除的信号正好相反,但它们实质工作却是相同的,都是对混入了主轴回转误差和形状误差信号进行处理。 国内外学者已经提出了很多误差分离的方法,各种方法有不同的优缺点和适用场合。概括起来讲,应用的较多的主要有反向法、多点法、多步法等。其它的很多误差分离方法都是建立在这三种误差分离方法基础之上的。 2.1反向法 图2.2为反向法测量的基本原理图。T为从传感器测头,其测得的信号△T(θ)在去除了偏心误差之后包括两部分,主轴的回转误差R(θ),标准球的圆度误差S(θ)。

离心沉降分离原理

離心沉降分離原理 A、概述 利用微生物、動物、或植物細胞生產有機酸、胺基酸、抗生素、特化品、酵素、甚或藥用蛋白質已經是相當成熟的生物技術。不管生產細胞的取得是經由篩選、突變、原生質融合或是基因工程,在量產時通常要給與適當的培養基及培養環境,提高細胞數量並誘導生成產物。產物生成的模式不外乎三類:(1)分泌於細胞体外醱酵液;(2)溶於細胞体內;(3)不溶性胞內包涵體(inclusion body)。下表為各種生技產品及其生產菌株表現產物的模式: 第(1)類產物:分泌於細胞体外醱酵液;有機酸產物如檸檬酸、乳酸,胺基酸產物(如味精、離胺酸,抗生素產物如青黴素、紅黴素),酵素產物(如糖化酵素、蛋 白質分解酵素等)。動物細胞表現藥用蛋白質產品如Erythropoietin 則屬第 (1) 類模式產物。 第(2)類產物:溶於細胞体內;一些分子量較大的生化物質如阿巴汀(avermectin)、勃激素(gibberellin)、過氧化氫觸媒酵素(catalase)等。將外來的基因轉殖於宿 主微生物表現時,其蛋白質產物無法排出體外,如r-DNA酵母菌B型肝炎 表面抗原(Hepatitis B surface antigen, HBsAg),亦屬於第(2)類產物。 第(3)類產物:不溶性胞內包涵體;常見於採用基因工程改造的微生物表現高等動物蛋白質的情況。轉殖於宿主微生物的結構基因(structure gene),被強力的啟動 子(promoter)推動而在短時間大量表現蛋白質產物,造成在胞內形成不溶 性胞內包涵體,如r-DNA 大腸桿菌的胰島素等。

下游產品回收的工程包括 : 菌体分離、細胞破碎及去除、粗分離、純化及白質分解酵素,必須除菌取得胞外液;如阿巴汀,必須取菌体後,再行萃取工作;如表現HBsAg 的r-DNA 酵母菌醱酵液,因為HBsAg 生產於酵母菌胞內,在打破細胞釋出產品前,醱酵液中仍含相當多之雜蛋白質宜先行移除,所以必須取菌濃縮及清洗,再行打破。 細胞菌体之分離回收方法甚多,但可以量產規模實施,連續及自動化操作的有下列幾種程序:一般過濾、膜過濾、離心沉降、及離心過濾等。本實驗僅就離心沉降做簡單的介紹。 B 、離心沉降的原理 ( principle of centrifugal sedimentation) (1) 離心機介紹 沉降(sedimentation)乃是利用菌體密度大於醱酵液密度而會沉降於底層的特性來分離菌體。但由於微生物菌体顆粒很小,沉降非常慢,故要提供離心場,來加速沉降速度,稱為離心沉降(centrifugal sedimentation)一般常用的批次離心機(或瓶式離心機,batch centrifuge)為分析及樣品製備用途,但當規模大於150公升時批次離心機已不適合使用,因此一定要以連續離心(continuous centrifugation)的設計,方能放大使用。 <連續離心機> 如下圖,常見之工業用連續離心機有(a)管碗式高速離心機(tubular bowl centrifuge );(b)固体停留盤式離心機(solid-retaining type disk centrifuge );(c)間斷式排渣盤式離心機 (intermittent ejection type disk centrifuge );(d)噴嘴式盤式離心機(nozzle type disk centrifuge)及(e)螺旋式離心機(screw type decanter)。以下說明:

相关文档
最新文档