我国城镇居民人均消费的SPSS统计分析
spss案例数据分析

Spss期末作业关于我国城镇居民消费结构及趋势的数据分析本次分析采用的数据来源于《中国统计年鉴—2011》,我选用的是其中的第十篇章—人民生活下的城镇居民家庭基本情况的相关数据,用以研究城镇居民消费结构及其趋势。
(附数据部分截图)(A)下面是我对该数据做的相关分析。
表一给出的是基本的描述性统计图,表中显示各个变量的全部观测量的均值、标准差和观测值总数N,表2给出的是相关系数矩阵表,其中显示4个变量两两之间的pearson相关系数,以及关于相关关系等于零的假设的单侧显著性检验概率。
描述性统计量均值标准差N 食品2744.0660 1802.80584 5 衣着775.8200 555.67616 5 居住694.1920 565.48222 5 家庭设备用品及服务488.2500 343.94006 5表1 描述性统计表表2 相关系数矩阵从表2中可以看出家庭设备用品及服务与食品、衣着之间相关系数分别为0.995、0.994,反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系。
说明食品与衣着对家庭设备用品及服务条件的好转有显著的作用,此外食品与衣着之间,食品与居住之间,居住与衣着之间的相关系数分别为0.998、0.991、0.985,这说明他们之间也存在着显著的相关关系。
在这里还要提一下相关系数旁边的两个星号的意思,它表示显著性水平α为0.01时仍拒绝原假设,一个星号则表示显著性水平α为0.05时可拒绝原假设。
因此,两个星号比一个星号拒绝原假设犯错误的可能性更小。
(B)下面是做的回归分析表3给出了进入模型和被剔除的变量的信息。
从表中我们可以看出所有3个自变量都进入模型,说明我们的解释变量都是显著并且是有解释力的。
表4给出了模型整体拟合效果的概述,模型的拟合优度系数为1.000,反映了因变量于自变量之间具有高度显著的线性关系。
表里还显示了R平方以及经调整的R值估计标准误差表5给出了方差分析表我们可以看到模型的设定检验F统计量的值为411.727,显著性水平的P值为0.036。
用spss分析我国各省城镇居民消费水平差异

用spss分析我国各省城镇居民消费水平差异分析文章结构1 研究背景及意义 (1)2 研究方法 (1)3 数据来源与数据处理 (2)4. 实证分析 (3)4.1因子分析 (3)4.2 聚类分析 (8)5 结论 (11)1 研究背景及意义我国地域广阔,各省份的经济发展很不平衡,各省之间的居民消费水平差距较大。
经济快速发展的同时我国居民收入稳步增加,各省居民的消费支出也强劲增长,消费结构发生了巨大变化。
为了正确引导消费,进一步改善消费结构,提高我国城市居民的消费水平和生活的质量,有必要对全国各省居民消费结构之间的异同进行考察并做比较研究,以期发现经济水平和城市居民的消费水平之间的关系.2 研究方法本文运用多元统计分析中的主成分分析方法和聚类分析方法,将描述各省份城镇居民全年现金消费支出的八个指标压缩成两个综合指标( 称为主成分) , 这两个主成分保留了原始八个指标的绝大部分信息,在指标压缩的同时能够最大限度地反映出各省份城镇居民消费水平差异。
在综合因子基础上进行层次聚类分析,根据消费差异将全国31个省分为四类。
因子分析模型是根据变量间的相关性大小,把变量分组,利用同组内的变量之间相关性较高而不同组的变量之间相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。
因子分析的出发点是用较少的相互独立的因子变量来代替原来变量的大部分信息,可以通过下面的数学模型来表示:X1=α11F1+α12F2+…+α1m Fm+α1ε1,X2=α21F1+α222+…+α2m Fm+α2ε2,…Xp=αp1F1+αp2F2+…+αpm Fm+αpεp,其中:x1,x2,x3,…,xp 为p 个原有变量,是均值为零、标准差为1 的标准化变量;F1,F2,F3,…,Fm 为m 个因子变量,m 小于p,表示成矩阵形式为X=AF+αε,其中:F=(F1,F2,…,Fm)为因子变量或公共因子;ε=(ε1,ε2,…,εp)为特殊因子;F 与ε均为不可观测的随机变量. A=(αij)p×m 为因子载荷矩阵,αj 称为第j 个因子对第i 个变量的载荷系数. 在模型中,特殊因子起着残差的作用,被定义为彼此不相关且与公因子也不相关。
SPSS统计分析案例我国城镇居民消费结构及趋势的统计分析

SPSS统计分析案例专业:经济学姓名:000学号:00000000一、我国城镇居民现状近年来,我国宏观形势发生了重大变化,经济速度加快,居民收入稳定增加,在国家连续出台住房、、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显着变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析?第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。
我国城镇居民人均消费的SPSS统计分析报告

2013年我国城镇居民人均消费的SPSS统计分析一、搜集到的2013年我国31个城市城镇居民人均消费水平的数据数据来源:国家统计局/workspace/index?m=hgnd 二、对数据的基本分析在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节.(一)、对数据按人均消费(expend)进行降序排列操作步骤:(1):选择“数据”→“排序个案”菜单项(2):将“人均消费(expend)”选入“排序依据”列表框,选中“降序”(3):点击“确认”按钮,生成如下降序排列的数据集由数据的降序排列可以看出,全国只有上海、北京、广东等九个城市的城镇人均消费在全国城镇人均消费水平以上.(二)、作出人均收入和人均消费的直方图操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“直方图”将其拉入“图表预览使用数据实例”(3):将变量“地区”设置为x轴,将“人均收入”和“人均消费”设置为y轴(4):点击“确认”按钮,即生成如下直方图通过一个复合条形图,可以很明确的发现我国城镇居民生活水平存在很大的地区差异,地区发展很不平衡,从图中的生活消费支出和人均收入来看,北京,上海,浙江这些省市城镇居民消费水平最高,人均收入也是最高的,各省市的城镇居民消费水平差异较大,大多数省份城镇居民人均消费集中在15000元左右.(三)、对数据按照人均消费作出直方图,以统计我国农村人均消费的水平1、首先对数据分组,分组数目的确定.lg n,计算得组数为6.按照Sturges提出的经验公式来确定组数K,K=1+2lg2、确定组距组距=(最大值-最小值)/组数=(28155.00-12231.90)/6=2653.85,可近似取值为3000.00元.操作步骤:(1):选择“转换”→“可视离散化”菜单项,将“人均消费”选入“要离散的变量”列表框中,单击“继续”按钮进入主对话框.(2):单击“生成分割点”按钮,设定分割点数量为6,宽度为3000.00,可见系统会自动会填充第一个分割点的位置为12231.90,单击“应用”返回到主对话框.(3):此时可以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充.(4):将离散的变量名设定为expendNew.(5):单击“确定”按钮.3、频数分析操作步骤:(1):选择“分析”→“描述统计”→“频率”,打开频率对话框.(2):选定“expendNew”,点击“图表”,选择“条形图”点击继续.(3):点击“确认”,生成如下三张表.Statistics人均消费(已离散化)N Valid 32Missing 0Mean 3.13Median 3.00Std. Deviation 1.314Minimum 1Maximum 7Percentiles 25 2.0050 3.0075 3.75人均消费(已离散化)Frequency Percent Valid Percent Cumulative Percent Valid <= 12231.90 1 3.1 3.1 3.110 31.3 31.3 34.412231.91 -15231.9015231.91 -13 40.6 40.6 75.018231.903 9.4 9.4 84.418231.91 -21231.903 9.4 9.4 93.821231.91 -24231.9024231.91 -1 3.1 3.1 96.927231.9027231.91+ 1 3.1 3.1 100.0 Total 32 100.0 100.0由上图的频数分析可以看出,我国2013年城镇居民人均消费支出集中在第二组和第三组,大约占到百分之七十.由于在表格中不存在缺失值,因此频数分布表中的百分比和有效百分比相同.从此次分析中可以看出,我国城镇家庭居民人均消费的总体水平比较集中,大约在12000元--18000元之间,还有少数省市的消费水平处在中等阶段,而有上海、北京、浙江等一些经济较发达的地区的城镇家庭居民人均消费达到了21000元以上.三、对数据的回归分析(一)、作出人均收入与消费支出散点图,以观察他们的线性关系如何操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“散点图”将其拖入“图表预览使用数据实例”(3):将“人均收入”选定为x轴,将“人均消费”选定为y轴(4):点击“确认”生成如下散点图由散点图可以看出,人均消费Y和人均收入X大概呈一元线性关系,因此可以建立一元线性模型进行回归分析.(二)假设回归模型为Y=a+b X,其中,Y表示城镇人均消费支出,为被解释变量,X表示人均收入,为解释变量,b为回归系数.操作步骤:(1)选择“分析”→“回归”→“线性”菜单项,打开“线性回归”对话框.(2)将“人均消费”选入“因变量”列表框,将“人均收入”选入“自变量”列表框.(3)单击“确定”按钮.得到如下(1)、(2)、(3)、(4)四张表格,依次分析如下:表(1):移入/移出的变量Variables Entered/Removed bModel VariablesEnteredVariablesRemoved Method1 人均收入a. EnterVariables Entered/Removed bModel VariablesEnteredVariablesRemoved Method1 人均收入a. Entera. All requested variables entered.b. Dependent Variable: 人均消费从上表可以看出,放入模型的变量只有一个即“人均收入”,选择变量的方法为强行进入法,也就是说将所有的自变量都放入模型中,模型的因变量为“人均消费”.表(2):模型汇总Model SummaryModel R R Square Adjusted RSquareStd. Error of theEstimate1 .960a.922 .920 1106.90715a. Predictors: (Constant), 人均收入上表是对模型的简单汇总,其实就是对回归方程拟合情况的描述,通过这张表可以知道相关系数R=0.960,决定系数2R=0.922,调整决定系数2R=0.920,和回归系数的标准误=31106.90715.由于决定系数接近于1,说明模型的拟合程度较好.表(3):方差分析表ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 4.353E8 1 4.353E8 355.256 .000aResidual 36757303.474 30 1225243.449Total 4.720E8 31a. Predictors: (Constant), 人均收入b. Dependent Variable: 人均消费F=355.256,P=0.000<0.05,表明回归方程高度显著,即农民人均收入对消费有高度影响.表(4):系数Coefficients aModel Unstandardized CoefficientsStandardizedCoefficientst Sig.B Std. Error Beta1 (Constant) 1897.504 835.983 2.270 .031人均收入.599 .032 .960 18.848 .000 a. Dependent Variable: 人均消费由上表知a=1897.504,b=0.599,由此可以得出以下回归方程:人均消费Y=1897.504+0.599人均收入X上述回归方程给出了如下信息:2013年中国城镇居民人均可支配收入增加1元,人均消费支出增加0.599元.四、单样本的T检验(一):由频数分析可知,分组后,全国31个省市的城镇家庭居民平均每人生活消费支出合计,大约有23个城市都集中在第一组,数额主要12231.91——18231.90元之间,其中在15231.91 - 18231.90之间的占到了百分之四十,因此可推断,全国农村家庭居民平均每人生活消费支出的平均数应该在15000--20000元之间,假设为18000元,由于该问题涉及的是单个总体,且要进行总体均值检验,同时农村家庭居民平均每人消费的总体可近似认为服从正态分布,因此,应采用单样本t检验来分析推断全国农村家庭居民人均消费的平均值是否为18000元.分析结果如下:(二):操作步骤:1、选择“分析”→“比较均值”→“单样本天t检验”菜单项,打开“单样本t检验”对话框如下图所示:2、单击“确定”按钮.生成如下两张图表:表(1):One-Sample StatisticsN Mean Std. Deviation Std. Error Mean人均消费32 17216.6031 3902.16064 689.81106表(2):One-Sample TestTest Value = 18000t df Sig. (2-tailed)MeanDifference95% Confidence Interval of theDifferenceLower Upper人均消费-1.136 31 0.265 -783.39688 -2190.2758 623.4821 由表(1)可知样本均值为17216.6031,低于基准线18000.00,标准差3902.16064,均值标准差689.81106.由表(2)为单样本t检验的分析结果,第一行注明了用于比较的假设总体均数为18000,下面从左到右依次为t值、自由度、p值、两均数的差值、差值.根据上面的检测结果t=-1.136,p=0.256,由于p>0.05,所以不能拒绝原假设,可以认为人均消费水平在18000元.同时,可知全国城镇居民2013年人均消费在95%的置信水平下的置信区间为:(15809.7242,18623.4821).五、非参数检验——多配比样本分参数检验数据中我国城镇家庭居民人均消费包括食品、衣着、居住、家庭设备、交通及通讯、文教娱乐、医疗保健、和其他8个指标,为了比较清楚的了解这8项指标对我国城镇居民人均消费总体的影响,以及其大概的消费动向,可以利用多配比样本的非参数检验Friedman 检验对各个指标进行检验.(一):操作步骤:(1)选择“分析”→“非参数检验”→“旧对话框”→“k个相关样本”菜单项,打开如下对话框:(2):单击“确定”按钮,得到如下两张表格:表(1):RanksMean Rank食物消费8.00衣物消费 5.09居住消费 4.50家居设备 2.66交通通讯 6.38医疗保健 2.34文教娱乐 5.88其它 1.16表(2):Test Statistics aN 32Chi-Square 198.604df 7Asymp. Sig. .000a. Friedman Test(二)、结果分析检验结果中的p值小于给定水平0.05,故拒绝原假设,认为八个指标对我国城镇居民人均消费的影响是有显著差异的.由表(1)知食物消费对人均消费的影响最大,其次是交通通讯和衣物消费,而影响最小的是其它.六、因子分析在研究我国城镇居民的消费情况时收集了食物、衣物、居住等八个影响居民消费情况的因素,以期对问题能够有比较全面、完整的把握和认识.由于数据过多,在实际建模时,这些变量未必能真正发挥预期的作用,会给统计分析带来许多问题,可以表现在:计算量的问题和变量间的相关性问题.为了解决这些问题,最简单和最直接的解决方案是削减变量个数,但这又必然会导致信息丢失和信息不完整等问题的产生.为此,人们希望探索一种更有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失.因子分析正是解决这种问题的方法.(一)操作步骤(1)、选择菜单“分析”→“降维”→“因子分析”,出现因子分析对话框;(2)、把参与因子分析的样本选到变量对话框中,如下图:(3)单击“确定”按钮,得到如下11张图:图(1)原有变量的相关系数矩阵:Correlation Matrix食物消费衣物消费居住消费家居设备医疗保健交通通讯文教娱乐其它Correlatio n 食物消费1.000 .288 .656 .744 .295 .787 .782 .732衣物消费.288 1.000 .337 .517 .694 .368 .374 .634居住消费.656 .337 1.000 .676 .505 .849 .750 .771家居设备.744 .517 .676 1.000 .441 .830 .853 .767医疗保健.295 .694 .505 .441 1.000 .479 .414 .600交通通讯.787 .368 .849 .830 .479 1.000 .860 .782文教娱乐.782 .374 .750 .853 .414 .860 1.000 .831 其它.732 .634 .771 .767 .600 .782 .831 1.000从上图可以看到,大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析.图(2)巴特利特球度检验和KMO检验KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .833Bartlett's Test of Sphericity Approx. Chi-Square 233.009df 28Sig. .000由上图知,巴特利特球度检验统计量的观测值为233.009,相应的概率p为0.如果给出的显著性水平为0.05,由于概率p小于显著性水平,应拒绝零假设,认为相关系数矩阵与单位阵有显著地差异.同时,KMO值为0.833,根据Kaiser 给出了KMO度量标准可知原有变量适合进行因子分析.图(3)因子分析的初始解CommunalitiesInitial Extraction食物消费 1.000 .798衣物消费 1.000 .862居住消费 1.000 .750家居设备 1.000 .812医疗保健 1.000 .821交通通讯 1.000 .897文教娱乐 1.000 .885其它 1.000 .872Extraction Method: PrincipalComponent Analysis.由上图第二列可知,所有变量的共同度均较高,各个变量的信息丢失较少.因此,本次因子提取的总体效果较理想.图(4)因子解释原有变量总方差的情况:Total Variance ExplainedComponent Initial Eigenvalues Extraction Sums of SquaredLoadingsRotation Sums of SquaredLoadingsTotal% ofVarianceCumulative % Total% ofVarianceCumulative % Total% ofVarianceCumulative %1 5.504 68.794 68.794 5.504 68.794 68.794 4.524 56.545 56.5452 1.192 14.898 83.692 1.192 14.898 83.692 2.172 27.147 83.6923 .473 5.910 89.6024 .258 3.222 92.8245 .237 2.961 95.7856 .178 2.227 98.0127 .091 1.136 99.1478 .068 .853 100.000Extraction Method: Principal Component Analysis.上图◎第一组数据项描述了初始因子解的情况.可以看到,第一个因子解的特征根值为 5.504,解释原有八个变量总方差的68.794%,累计方差贡献率为68.794%.其余数据含义类似.在初始解中由于提取了八个因子,因此原有变量的总方差均被解释掉.◎第二组数据项描述了因子解的情况.可以看到,由于指定提取两个因子,两个因子共解释了原有变量总方差的83.692%.总体上,原有变量的信息丢失较少,因子分析效果较理想.◎第三组数据项描述了最终因子解的情况.可见,因子旋转后,累计方差比没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使得因子更容易解释.图(5)因子的碎石图:上图横坐标为因子数目,纵坐标为特征根.可以看到,第一个因子的特征根值很高,对原有变量的贡献最大;第3个以后的因子特征根都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取两个因子是合适的.图(6)因子载荷矩阵:Component Matrix aComponent1 2其它.929 .097交通通讯.921 -.222文教娱乐.909 -.241家居设备.895 -.103居住消费.854 -.143食物消费.822 -.350衣物消费.599 .710医疗保健.635 .646a. 2 components extracted.上图因子载荷矩阵是因子分析的核心内容.根据该表可以写出本案例的因子分析模型:其它=0.9291f +0.0972f 交通通讯=0.9211f -0.2222f 文教娱乐=0.9091f -0.2412f 家居设备=0.8951f -0.1032f 居住消费=0.8541f -0.1432f 食物消费=0.8221f -0.3502f 衣物消费=0.5991f +0.7102f 医疗保健=0.6351f +0.6462f 由上表知,八个变量在第一个因子上的载荷都很高,意味着他们与第一个因子的相关度高,第一个因子很重要. 图(7)旋转后的因子载荷矩阵:Rotated Component Matrix aComponent 1 2交通通讯 .915 .244 文教娱乐 .914 .222 食物消费 .889 .084 家居设备 .836 .336 居住消费 .819 .281 其它 .770 .528 衣物消费 .188 .909 医疗保健 .250.871a. Rotationconvergedin3 iterations.由上图知,交通通讯、文教娱乐、食物消费、家居设备、居住消费、其它在第一个因子上有较高的载荷,第一个因子主要解释了这几个变量;衣物消费、医疗保健在第二个因子上的载荷较高,第二个因子主要解释了这几个变量.图(8)因子旋转中的正交矩阵Component Transformation MatrixComponent 1 21 .879 .4772 -.477 .879图(9)因子协方差矩阵:Component Score Covariance MatrixComponent 1 21 1.000 .0002 .000 1.000从上表可以看出,两因子没有线性相关性,实现了因子分析的设计目标.图(10)旋转后的因子载荷图:由上图可以直观的看出,衣物消费和食物消费比较靠近两个因子坐标轴,表明如果分别用第一个因子刻画食物消费,用第二个因子刻画衣物消费,信息丢失较少,效果较好.图(11)因子得分系数矩阵:Component Score CoefficientMatrixComponent1 2食物消费.271 -.187衣物消费-.188 .576居住消费.194 -.032家居设备.184 .001医疗保健-.157 .532交通通讯.236 -.084文教娱乐.241 -.099其它.110 .152根据上表可以得到以下因子得分函数:F=0.271食物消费-0.188衣物消费+0.194居住消费+0.184家居设备-0.157医1疗设备+0.236交通通讯+0.241文教娱乐+0.110其它F=-0.187食物消费+0.576衣物消费-0.032居住消费+0.001家居设备+0.532 2医疗设备-0.084交通通讯-0.099文教娱乐+0.152其它可见计算两个因子得分变量的变量值时,食物消费和衣物消费的权重较高,但方向恰好相反,这与因子的实际含义是相吻合的.七、实验心得本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过.一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水.老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了.结合软件和书上的例子,实战一下,发现SPSS的功能相当强大.这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程.甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的.SPSS是个很神奇的工具,结合AMOS和EXCEL更是如虎添翼,相信学习了SPSS在以后的论文和数据分析中很有用.这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了.但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂.然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多.老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导.。
SPSS数据分析:我国各省城镇和农村居民人均收入数据分析

2010年我国各省城镇与农村居民人均收入数据分析学院工商管理专业班级人力资源0910学生姓名赵飞飞学号0802091033一、选题理由:在我国,城乡收入差距一直是国家和社会公众关注的热点问题。
城乡收入差距问题关系到民生,关系到社会主义和谐社会的建设和发展,关系到社会主义市场经济的发展和完善。
本次调研的数据来自国家统计局发布的2010年城镇与农村人均收入水平,目的是通过SPSS软件进行数据分析,对我国2010年城乡收入情况有一个全面细致的认识。
二、原始数据资料(2010年城乡居民人均收入)从表中可以看出,在经济平稳较快增长、社会保障进一步加强以及各项惠农政策贯彻落实到位等积极因素作用下,2010年各地区城乡居民收入继续稳定增加。
全年城镇居民和农村居民人均纯收入分别为19109 元和5919 元,增幅分别为11.3%和14.9%,2010 年农村居民实际收入增幅首次高于城镇居民实际收入增幅。
但是,一方面,不管是城镇还是农村,各省份之间的差距还比较大。
尤其像上海、北京、浙江等比较发达的省市,人均收入非常高;而像西藏、青海、甘肃这样的省份,人均收入又非常的低。
另一方面,每个省份的城乡收入差距也比较大。
三、SPSS统计数据分析城镇人均收入分为4组:第1组10000元—15000元;第2组15000元——20000元;第3组20000元——25000元;第4组25000元以上。
农村人均收入分为3组:第1组0元——5000元;第2组5000元——10000元:第3组10000元以上。
1.城镇人均收入和农村人均收入水平分布状况分析(1)城镇人均收入依据表格,2010年,全国31个省市(除港、澳、台地区)中,城镇人均收入在10000—15000元的有6个,15000—20000元的有18个,20000—25000元的有4个,25000元以上的有3个。
从以上数据可以得出,各省市城镇人均收入水平集中在15000—20000元这个区间,说明整体水平都比较高。
居民消费水平研究SPSS

课程论文我国居民消费水平研究分析班级:09经51学号:姓名:***2012年 11 月摘要:居民消费水平是指一个国家一定时期内人们在消费过程中对物质和文化生活需要的满足程度。
要刺激消费、扩大内需,必须找出影响我国居民消费水平的关键因素,才能对症下药。
本文结合居民消费水平的影响因素和居民消费水平的历史及现状列出了五个相关因素(国内生产总值GDP、城镇和农村居民可支配收入、人口自然增长率以及居民消费价格指数),运用SPSS 17.0软件进行三个方面的分析:描述性分析、因子分析、回归分析。
本案例的研究目地是分析我国居民消费水平的影响因素,为更好的提高居民消费水平提供科学的依据。
关键字:居民消费水平 SPSS分析扩大内需刺激消费引言居民消费水平是按国民收入或国内生产总值的使用总量中用于居民消费的总额除以年平均人口计算的,它反映一个国家或一个地区居民的一般消费水平。
居民消费水平是GDP 中一个重要组成部分,是拉动经济增长的三驾马车之一,一直是经济学家关注的焦点和研究的热门领域。
在改革开放以来,居民消费水平提高的较快,消费结构也有了很大的改善,因此对其进行分析有较强的经济意义。
分析目地、分析思路与数据选取本案例的研究目地是分析我国居民消费水平的影响因素,为更好的提高居民消费水平提供科学的依据。
分析思路主要如下,首先利用描述性分析对居民消费水平、国内生产总值GDP、城镇和农村居民可支配收入、人口自然增长率以及居民消费价格指数进行基础性的描述,以便对我国居民消费水平和其主要影响因素有一个直观的印象,然后利用因子分析提取对我国居民消费水平影响较为显著的因素,分析我国居民消费水平的影响的因素,最后利用回归分析方法确定这些因素对我国居民消费水平的影响方向和强弱。
在现实生活中,影响消费的因素很多,例如收入水平、商品价格水平、利率水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、制度、风俗习惯等等。
我国城镇居民消费结构的SPSS分析

我国城镇居民消费结构的SPSS分析11级国贸(1)班张子昂学号:1104111027摘要:近年来,我国城镇居民的整体消费水平逐渐提高,但各地区间的消费结构仍存在较大差别。
本文对我国2009 年城镇居民消费结构进行实证分析,简述数据选取、实证方法的变革与演进等,系统分析消费结构的特点及产生原因,为国家制定消费政策及后续研究提供相应参考性意见。
关键词:消费结构;相关分析;因子分析;政策建议1 前言随着我国经济的快速发展,城镇居民的收入不断增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,我国各地区城镇居民的消费支出呈现出强劲增长的势头,消费结构发生了巨大的变化,结构不合理的现象也得到了一定程度的调整。
但是,由于各地区的经济发展不平衡及原有经济基础的差异,各地区的消费结构仍存在着明显差别。
为了进一步改善消费结构,正确引导消费,提高我国城市居民的消费水平和生活质量,有必要考察我国各地区城镇居民的消费结构之间的异同并进行比较研究,以期发现特点和规律,从宏观上把握各地区城镇居民的消费现状和不同地区消费水平的差异,为提高我国各地区消费水平和谐增长提供决策依据。
正确把握城镇居民消费结构,了解消费需求变动的规律,不仅在理论分析中有重要的地位,而且对于提高城镇居民的消费质量和档次有着重要的现实意义。
2 数据分析这些指标基本上可以从中国统计年鉴上取得,且反应了城镇经济发展情况和居民消费水平,其原始数据如表1、表2 。
表1 平均每人消费性支出 (元)从图中可以看出,平均可支配性收入是呈现逐步上升趋势的,从1990年的150.16元上升到2009年的17174.65元。
在平均每人消费支出中,也和可支配性收入呈现正相关的关系,随着可支配性收入的稳步增加,平均每人消费性支出(元),从1990年的1278.89元,1995年3537.57元,2000年4998.00元,2008年11242.8元,2009年12264.55元。
基于SPSS的全国城镇居民消费水平差异分析

基于SPSS的全国城镇居民消费水平差异分析【摘要】本研究基于SPSS对全国城镇居民消费水平差异进行分析。
在分析了研究背景、研究目的和研究意义。
在通过样本选取与特征分析、消费水平测算方法、城镇居民消费水平差异分析、城市间消费水平差异分析和影响城镇居民消费水平的因素分析,揭示了消费水平的差异和影响因素。
结论部分总结了消费水平差异的存在、影响城镇居民消费水平的主要因素以及提升消费水平的建议。
通过本研究可以更好地了解城镇居民的消费行为,为相关政策制定提供参考和建议。
【关键词】基于SPSS、全国、城镇居民、消费水平、差异分析、样本选取、消费水平测算方法、城市间消费水平差异、影响因素、消费水平差异存在、影响因素、提升建议。
1. 引言1.1 研究背景城镇居民消费水平差异一直是经济学研究的热点之一,对于了解和分析城镇居民消费行为具有重要意义。
随着我国经济的快速发展和城市化进程的加速推进,城镇居民的消费水平也在不断提升,呈现出明显的地区差异和阶层差异。
为了更好地了解这些差异的产生原因,探讨如何有效提升城镇居民的消费水平,本研究将基于SPSS软件对全国各城镇居民的消费水平进行差异分析。
在全国范围内,不同城市之间的消费水平存在着显著差异。
这种差异既可能是由于城市自身的社会经济发展水平和人口结构差异所导致,也可能受到政府政策和市场环境的影响。
通过对全国城市间消费水平的差异进行分析,可以帮助我们更好地理解城市发展的不平衡性,为政府制定相关政策提供参考依据。
通过本研究对城镇居民消费水平的差异进行深入分析,可以为促进消费升级、推动经济增长提供重要的参考依据。
本研究还将探讨影响城镇居民消费水平的主要因素,为提升城镇居民的消费水平提出相应的建议和对策,为我国经济可持续发展提供有益的借鉴。
1.2 研究目的本研究的目的在于通过基于SPSS的全国城镇居民消费水平差异分析,探讨不同城市之间消费水平的差异和影响因素。
具体目的包括:一是了解我国不同城镇居民的消费水平现状,揭示不同城市居民消费水平的特点和差异;二是探讨影响城镇居民消费水平的因素,分析不同因素对消费水平的影响程度,为提升城镇居民消费水平提供理论基础和政策建议。
我国居民人均消费结构研究 基于SPSS软件分析

引言
引言
消费结构是指人们在一定时期内对各类商品和服务的消费支出比例。随着经 济的发展和人民生活水平的提高,我国居民消费结构发生了显著变化。这种变化 对于人们生活质量的提高和经济社会的发展具有重要影响。本次演示通过利用 SPSS软件,对我国居民人均消费结构的演变进行分析,以揭示其内在规律和特点。
文献综述
结论
结论
本次演示基于SPSS软件分析,揭示了2006年至2016年间我国居民人均消费结 构的变化趋势。总体来看,消费结构在不断优化,但同时也存在一些问题,如食 品类支出占比下降、不同地区和收入层次居民消费结构差异等。政策制定者应这 些问题,进一步优化消费结构,促进经济社会可持续发展。
参考内容
摘要
我国居民人均消费结构研究 基于SPSS软件分析
01 摘要
03 文献综述
目录
02 引言 04 研究方法
目录
05 结果与讨论
07 参考内容
06 结论
摘要
摘要
本次演示利用SPSS软件,对2006年至2016年间我国居民人均消费结构的变化 进行了深入研究。研究发现,这一时期内居民消费结构发生了显著变化,呈现出 不同商品和服务消费项目的增长趋势。本次演示旨在揭示消费结构变化对人们生 活的影响,为政策制定者提供有价值的参考依据。
文献综述
已有研究表明,我国居民人均消费结构在不同时期表现出不同的特点。早期 研究主要采用定性描述和简单统计方法,分析了不同收入水平对消费结构的影响。 随着数据的丰富和研究方法的改进,学者们开始运用多元统计分析、模型拟合等 方法,对消费结构问题进行深入研究。然而,大多数研究集中在国家或地区层面, 针对我国居民人均消费结构的变化研究尚不充分。
结果与讨论
关于居民消费水平的SPSS分析——陈诚

关于居民消费水平的SPSS统计分析姓名:陈诚学号:1133016专业:信息与计算科学1班年级:11级理学院【摘要】:近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
正确地分析消费水平,有利于国家政策的制定和生活消费品的提供,也有利于人民生活质量的提高。
本次研究采用SPSS统计分析软件,对中国改革开放后历年的消费水平情况进行分析,探讨收入水平与消费支出间的关系,对城镇居民和农村居民消费情况进行比较,并采用K-均值聚类法按城镇居民和农村居民各四项指标对全国31个省市自治区进行聚类分析,研究不同地区间的消费水平差异。
【关键词】:描述性统计、K-均值聚类法、城镇和农村居民目录●选题背景 (01)选题背景 (01)原始数据 (01)分析数据集介绍 (05)●分析过程 (05)城镇农村居民消费与收入的关系 (05)历年城市农村消费情况比较 (07)各地区间消费支出的比较与分析 (08)●结论 (10)●参考资料及附录 (11)一.选题背景(一).选题背景众所周知,我们经常听到:改革开放以来,中国经济迅猛发展。
宏观经济指标全线飘红,人民生活水平全面提升和经济大国地位总体确立,是改革开放30年在经济发展方面取得的辉煌成就。
第一,在经济增长方面,破天荒地实现了长期、持续、快速、平稳增长。
第二,居民收入水平的迅速提高。
这是居民消费水平提高的来源。
第三,居民消费水平迅速提高。
在全国在刚刚公布的十二五规划建议中,首次提出了居民收入增长要与经济增长同步,劳动报酬要与劳动生产率提高保持同步。
这意味着未来五年,我国将采取有力措施合理调整分配收入,居民收入增长将进一步加快。
从统计数据看,近年来我国居民收入并未随经济的增长而同步提高,尤其是居民收入差距仍然较大,在一定程度上已影响到经济的可持续发展。
SPSS在城镇居民人均支出分析中的应用

SPSS在城镇居民人均支出分析中的应用作者:崔红芳来源:《农村经济与科技》2019年第14期[摘要]SPSS作为一个专业的统计分析软件,适用于经济、管理等方面的研究。
文章运用SPSS软件,通过采用2018年我国31省、市、自治区城镇居民人均支出数据,利用回归分析方法,对我国城镇居民人均支出进行分析,得出我国城镇居民的人均支出情况,以期反映消费水平与结构上的差异,为政府制定更加合理的引导性政策提供有效依据。
[关键词]SPSS软件;回归分析;人均支出[中图分类号]F323.89 [文献标识码]A通过经济的快速发展,我国城镇居民人均支出的结构也发生了很大的转变,人均消费支出的增加能实现经济又好又快的发展。
城鎮居民消费支出主要包括食品烟酒、衣着、居住、生活用品及服务、交通通信其他用品及服务等方面,文章使用SPSS统计软件通过对31个省份的城镇居民消费相关的原始数据(数据来源于《2018中国统计年鉴》),选取了四种典型的消费支出作为代表来分析城镇居民的消费结构。
1 回归分析当涉及一个自变量时,称为一元回归,例如,在分析家庭收入对消费支出的影响时,我们要预测一定水平家庭收入条件下的消费支出是多少,这时消费支出应该作为因变量,而用来预测消费支出的变量只选用家庭收入一项,这时建立的回归模型是一元回归模型。
同时,若因变量Y与自变量X之间为线性关系,则称为一元线性回归。
相对于具有线性关系的两个变量来说,可用一个线性方程来表示它们之间的关系。
像这样表示因变量Y如何依赖于自变量X和误差项的方程称为回归模型,而对只表达一个自变量的简单线性回归模型,可简写为:Y = β0 + β1X + ε。
通过对城镇居民人均消费支出Y与居民人均收入X进行一元线性回归分析。
被解释变量即因变量:城镇居民人均生活消费支出是Y;解释变量即自变量:城镇居民人均收入是X,城镇居民食品消费支出是X1,衣着消费支出是X2,家庭设备及用品消费支出是X3,医疗保健消费支出是X4。
应用SPSS分析居民消费

我国各地区城镇居民消费支出结构的因子分析一.实验数据描述X1-食品 X2-衣鞋 X3- 家庭设备 X4-医疗保健 X5-交通与通讯 X6-文教娱乐 X7-居住 X8-杂项商品与服务2012年我国各省市城镇居民家庭平均每人全年消费性支出数据地区 1x2x3x4x5x6x7x8x北京 2959.19 730.79 749.41 513.34 467.87 1141.82 478.42 457.64 天津 2459.77 495.47 697.33 302.87 284.19 735.97 570.84 305.08 河北 1495.63 515.90 362.37 285.32 272.95 540.58 364.91 188.63 山西 1406.33 477.77 290.15 208.57 201.50 414.72 281.84 212.10 内蒙古 1303.97 524.29 254.83 192.17 249.81 463.09 287.87 192.96 辽宁 1730.84 553.90 246.91 279.81 239.18 445.20 330.24 163.86 吉林 1561.86 492.42 200.49 218.36 220.69 459.62 360.48 147.76 黑龙江 1410.11 510.71 211.88 277.11 224.65 376.82 317.61 152.85 上海 3712.31 550.74 893.37 346.93 527.00 1034.98 720.33 462.03 江苏 2207.58 449.37 572.40 211.92 302.09 585.23 429.77 252.54 浙江 2629.16 557.32 689.73 435.69 514.66 795.87 575.76 323.36 安徽 1844.78 430.29 271.28 126.33 250.56 513.18 314.00 151.39 福建 2709.46 428.11 334.12 160.77 405.14 461.67 535.13 232.29 江西 1563.78 303.65 233.81 107.90 209.70 393.99 509.39 160.12 山东 1675.75 613.32 550.71 219.79 272.59 599.43 371.62 211.84 河南 1427.65 431.79 288.55 208.14 217.00 337.76 421.31 165.32 湖北 1783.43 511.88 282.84 201.01 237.60 617.74 523.52 182.52 湖南 1942.23 512.27 401.39 206.06 321.29 697.22 492.60 226.45 广东 3055.17 353.23 564.56 356.27 811.88 873.06 1082.82 420.81 广西 2033.87 300.82 338.65 157.78 329.06 621.74 587.02 218.27 海南 2057.86 186.44 202.72 171.79 329.65 477.17 312.93 279.19 重庆 2303.29 589.99 516.21 236.55 403.92 730.05 438.41 225.80 四川 1974.28 507.76 344.79 203.21 240.24 575.10 430.36 223.46 贵州 1673.82 437.75 461.61 153.32 254.66 445.59 346.11 191.48 云南 2194.25 537.01 369.07 249.54 290.84 561.91 407.70 330.95 西藏 2646.61 839.70 204.44 209.11 379.30 371.04 269.59 389.33 陕西 1472.95 390.89 447.95 259.51 230.61 490.90 469.10 191.34 甘肃1525.57472.98328.90219.86206.65449.69249.66228.19青海1654.69 437.77 258.78 303.00 244.93 479.53 288.56 236.51宁夏1375.46 480.89 273.84 317.32 251.08 424.75 228.73 195.93新疆1608.82 536.05 432.46 235.82 250.28 541.30 344.85 214.40二、实验操作步骤Step01:打开数据文件,进入SPSS Statistics数据编辑器窗口,在菜单栏中依次单击“分析”│“降维”│“因子分析”选项卡,将“X1”、“X2”……“X8”变量选入“变量”列表。
SPSS统计分析案例(我国城镇居民

SPSS统计分析案例一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。
居民消费水平研究SPSS

居民消费水平研究SPSS居民消费水平是指居民在一定时间内用于购买和消费商品和服务的总量。
它反映了一个国家或地区的居民在经济发展和日常生活水平方面的表现。
在SPSS中,我们可以利用统计方法对居民消费水平进行研究和分析以了解人们的消费行为和态度。
一、数据收集和准备在研究居民消费水平前,首先需要收集和准备相关数据。
可以通过问卷调查、社会统计和其他方法获取数据。
假设我们已经收集到了一份关于居民消费行为的数据,其中包括消费金额、消费种类、消费时间和地点等信息。
这些数据需要整理、清洗和分类,以便后续的分析和处理。
二、描述性统计分析在SPSS中,我们可以使用描述性统计方法对消费数据进行分析,了解其基本特征和分布情况。
常见的描述性统计指标包括中位数、众数、平均数、标准差和四分位数等。
以消费金额为例,我们可以计算其平均值、中位数和众数,以反映人均消费水平和消费偏好。
同时,我们还可以绘制直方图和箱线图,以展示其分布情况和异常值情况。
三、相关性分析居民消费水平受到多种因素的影响,如个人收入、社会文化、市场竞争等。
在SPSS中,我们可以利用相关性分析方法研究不同变量之间的相关性,了解它们之间的关系和影响。
以个人收入和消费金额为例,我们可以计算它们之间的相关系数,以了解收入增加是否会对消费水平产生影响。
同时,我们还可以绘制散点图,以展示它们之间的分布和趋势。
四、回归分析回归分析是一种常用的统计方法,可以研究自变量对因变量的影响,并预测未来的趋势和变化。
在SPSS中,我们可以使用回归分析方法探索居民消费水平的影响因素,找出主要的驱动因素和预测未来的趋势。
以个人收入、社会文化和市场竞争为自变量,消费金额为因变量,我们可以建立一个多元回归模型,并进行参数估计和显著性检验。
通过分析模型的方差分析表和残差图,我们可以评估模型拟合效果和可信度,并进行预测和决策。
综上所述,居民消费水平是一个复杂的经济现象,需要综合运用不同的统计方法进行研究和分析。
SPSS统计分析分析案例

SPSS统计分析案例一、我国城镇居民现状近年来,我国宏观经济形势发生了重大变化,经济发展速度加快,居民收入稳定增加,在国家连续出台住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济政策的影响下,全国居民的消费支出也强劲增长,消费结构发生了显著变化,消费结构不合理现象得到了一定程度的改善。
本文通过相关数据分析总结出了我国城镇居民消费呈现富裕型、娱乐教育文化服务类消费攀升的趋势特点。
二、我国居民消费结构的横向分析第一,食品消费支出比重随收入增加呈现出明显的下降趋势,这与恩格尔定律的表述一致。
但最低收入户与最高收入恩格尔系数相差太过悬殊,城镇最低收入户刚刚解决了温饱问题,而最高收入户的生活水平按照恩格尔系数的评价标准早已达到了富裕型,甚至接近最富裕型。
第二,衣着消费支出比重随收入增加缓慢上升,到高收入户又有所下降,但各收入组支出比重相差不大。
衣着支出比重没有更多的递增且最高收入户的支出比重有所下降,这些都符合恩格尔定律关于衣着消费的引申。
随着收入的增加,衣着支出比重呈现先上升后下降的走势。
事实上,在当前的价格水平和服装业的发展水平下,城镇居民的穿着是有一定限度的,而且居民对衣着的需求也不是无限膨胀的,即使收入水平继续提高,也不需要将更大的比例用于购买服饰用品了。
第三,家庭设备用品及服务、交通通讯、娱乐教育文化服务和杂项商品与服务的支出比重呈逐组上升趋势,说明居民的生活水平随收入的增加而不断提高和改善。
第四,医疗保健支出比重随收入水平提高呈现一种两端高、中间低的走势。
这是因为医疗保健支出作为生活必须支出,不论居民生活水平高低,都要将一定比例的收入用于维持自身健康,而且由于医疗制度改革,加重了个人负担的同时,也减小了旧制度可能造成的不同行业、不同体制下居民医疗保健支出的差别,因而不同收入等级的居民在医疗保健支出比重上差别不大。
第五,居住支出比重基本上呈先上升后下降的趋势,这与我国居民消费能级不断提升,住宅商品正在越来越成为城镇居民关注的热点是相吻合的,同时与恩格尔定律的引申也是一致的。
SPSS论文-各地区城镇居民家庭人均消费性支出分析

SPSS论文题目:各地区城镇居民家庭人均消费性支出分析摘要:我国各地区的经济发展水平存在着较大的差异。
本文运用SPSS软件分析方法对我国各地区城镇居民消费性支出进行分析研究,研究表明:各地区城镇居民消费性支出的差异主要是由两方面引起的,首先是地区的经济发展水平,我国东部、中部和西部地区的消费水平存着较大差异;其次是由地区气候因素引起的消费倾向,我国南北地区明显有别。
关键字:SPSS,消费支出,分析数据:我国地域辽阔,各地区的经济发展很不平衡,各地区城镇间的消费性支出存在着较大的差异,而且由于多种因素的影响,这种差异呈现加速扩大的态势。
如何客观、准确、有效地分析这些差异,具有重要的理论和实践意义。
消费性支出的指标有许多,如果直接从诸多指标来分析各地区的差异,那未分析的结果很可能将是繁杂和不得要领的,很难给出直观有效的结论。
如果仅用消费性总支出这个指标,则显得太粗糙,丢失的有用信息太多,不能较充分地反映各地区的消费差异。
那么,如何能使得所作的分析研究即不繁杂又不损失太多的信息呢?这正是本文所要解决的问题。
居民消费支出:是指城乡居民个人和家庭用于生活消费以及集体用于个人消费的全部支出。
包括购买商品支出以及享受文化服务和生活服务等非商品支出。
对于农村居民来说,还包括用于生活消费的自给性产品支出。
集体用于个人的消费指集体向个人提供的物品和劳务的支出;不包括各种非消费性的支出。
其形式是通过居民平均每人全年消费支出指标来综合反映城乡居民生活消费水平。
消费支出特点明显:食品价格上涨使恩格尔系数有所回升;居住支出快速增长;家庭设备消费较快增长;汽车消费热点突出;义务教育负担减轻;衣着和医疗保健支出低速增长。
Descriptive Statistics此表描述了所统计的数据。
Statistics上述数据为用SPSS软件所作出的均值、方差、标准、峰度、偏度差等等数据,还有运用SPSS软件的回归分析、单一样本T检验所得到的数据和曲线图。
我国城镇居民人均消费的SPSS统计分析报告

(2):单击“生成分割点”按钮,设定分割点数量为6,宽度为3000.00,可见系统会自动会填充第一个分割点的位置为12231.90,单击“应用”返回到主对话框.
(3):此时可以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充.
(1):操作步骤:
(1)选择“分析”→“非参数检验”→“旧对话框”→“k个相关样本”菜单项,打开如下对话框:
(2):单击“确定”按钮,得到如下两表格:
表(1):
Ranks
Mean Rank
食物消费
8.00
衣物消费
5.09
居住消费
4.50
家居设备
2.66
交通通讯
6.38
医疗保健
2.34
文教娱乐
5.88
表(3):方差分析表
ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
4.353E8
1
4.353E8
355.256
.000a
Residual
36757303.474
30
1225243.449
Total
4.720E8
31
a. Predictors: (Constant), 人均收入
-783.39688
-2190.2758
623.4821
由表(1)可知样本均值为17216.6031,低于基准线18000.00,标准差3902.16064,均值标准差689.81106.
基于SPSS软件分析城市居民的消费结构

基于SPSS软件分析城市居民的消费结构消费结构指一国在一定时期内用于生活消费的各种消费资料的比例关系,以及各种消费方式、消费形式、居民各阶层、各地区消费水平之间的比例关系的总和。
利用spss软件将31个省聚成五类,对五类城市居民在各个领域的消费支出情况进行分析,发现我国城市居民消费结构大致是以食品、家庭设备及用品、医疗保健为主体。
然而要想提高和改变人民的生活水平,还应加强文教娱乐消费,使消费结构变得合理化、科学化。
标签:消费结构;spss软件;因子分析;聚类分析1数据的因子分析从中国统计年鉴找出2013年全国各省人均城镇居民消费支出的具体数据,然后利用spss分析数据,求出KMO,结果如表1。
Bartlett的df值为28,P值文教娱乐>食品>家庭设备及用品>居住>其它;第二个因子主要反映衣着和医疗保障方面的差异情况。
最后得出31个省的综合因子得分F:F=0.56545×F1+0.27147×F2算出的各省各因子及综合因子的得分和排名,具体见表7。
表7中,因子得分情况的正负表示该城市与平均水平的相对位置。
中有9个F1为正的城市,这9个城市的经济发展水平较发达,其中上海、广东、北京具有较高的消费水平,同时这三个城市也是经济较发达的城市,这说明城市的经济发展水平较高时,居民的消费理念也较高,而一些经济滞后的省份,像黑龙江、西藏、新疆等,消费水平较低。
由此得出居民在食品、交通通信、文教娱乐、居住、生活用品及服务、其他6各方面与经济发展水平密切相关。
F2的排名中北京、天津分为位于第1和第4,但是上海、广东位于第14和26,所以衣着和医疗保健与经济发展有一定的关系,但这两个指标还与其它因素紧密相关。
仅有10个F值为正数的省,这表明各个省的城市居民的消费水平发展差异较大、不均衡。
其中,北京、上海、广东等地区的城市居民消费水平较高,青海、江西、贵州等地的消费水平较低。
城镇居民人居可支配收入与人均旅游花费SPSS分析

摘要: spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中城镇居民家庭人均可支配收入与人均旅游花费的关系,,通过运用SPSS分析方法对我国城镇居民家庭人均可支配收入与人均旅游花费进行分析, 以便能够更好地了解人们的旅游消费行为。
关键词:城镇居民家庭人均可支配收入人均旅游花费线性回归分析一、城镇居民家庭人均可支配收入与人均旅游花费的关系分析中国旅游业自改革开放以后,已进入旅游市场发育的第二阶段——大众化的旅游阶段。
2006年,国家旅游局在“十一五”规划中明确提出,全面发展国内旅游,积极发展入境旅游,规范发展出境旅游。
旅游业作为新兴的产业对于国民经济的发展起着十分重要的作用,而人均旅游花费是旅游业发展状况的指标。
我国旅游业的基础设施建设、开发和管理水平也不同程度的影响着人均旅游花费。
随着旅游业基础设施建设的不断完善、管理水平的不断提高,肯定能吸引更多地人去旅游,加大了人均旅游花费。
但是影响人均旅游花费水平的最重要因素是城镇居民家庭人均可支配收入。
随着市场经济的稳定繁荣和改革开放的深入发展,我国的人均可支配收入的大幅度增长,人们的生活水平有了大幅度的提高,这种提高不仅表现在物质生活质量的提高,也表现在物质需求向精神需求的转变。
城镇居民是国内旅游的主体市场,在旅游消费层次和消费总量上都居于主体地位,研究城镇居民旅游消费的影响因素,对于有效地引导旅游需求,开拓我国国内旅游市场将有一定的实践意义和指导意义。
本文拟以国内旅游消费市场中的主力——城镇居民为对象,对其国内旅游消费及其影响因素———经济收入进行定量分析与探讨,探讨当前我国城乡居民国内旅游消费规律和国内旅游消费水平,并分别从不同角度对我国国内旅游发展提出对策。
本文就针对城乡居民这一细分市场,以定量和定性相结合的方法,综合参照相关学科的理论成果,研究我国经济收入与旅游消费的关系。
二、数据来源说明表1 1995~2009年城镇居民家庭人均可支配收入和人均旅游花费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年我国城镇居民人均消费的SPSS统计分析一、搜集到的2013年我国31个城市城镇居民人均消费水平的数据数据来源:国家统计局/workspace/index?m=hgnd 二、对数据的基本分析在数据文件建立好后,通常还需要对待分析的数据进行必要的预加工处理,这是数据分析过程中不可缺少的一个关键环节.(一)、对数据按人均消费(expend)进行降序排列操作步骤:(1):选择“数据”→“排序个案”菜单项(2):将“人均消费(expend)”选入“排序依据”列表框,选中“降序”(3):点击“确认”按钮,生成如下降序排列的数据集由数据的降序排列可以看出,全国只有上海、北京、广东等九个城市的城镇人均消费在全国城镇人均消费水平以上.(二)、作出人均收入和人均消费的直方图操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“直方图”将其拉入“图表预览使用数据实例”(3):将变量“地区”设置为x轴,将“人均收入”和“人均消费”设置为y轴(4):点击“确认”按钮,即生成如下直方图通过一个复合条形图,可以很明确的发现我国城镇居民生活水平存在很大的地区差异,地区发展很不平衡,从图中的生活消费支出和人均收入来看,北京,上海,浙江这些省市城镇居民消费水平最高,人均收入也是最高的,各省市的城镇居民消费水平差异较大,大多数省份城镇居民人均消费集中在15000元左右. (三)、对数据按照人均消费作出直方图,以统计我国农村人均消费的水平 1、首先对数据分组,分组数目的确定. 按照Sturges 提出的经验公式来确定组数K,K=1+2lg lg n,计算得组数为6. 2、确定组距组距=(最大值-最小值)/组数=(28155.00-12231.90)/6=2653.85,可近似取值为3000.00元.操作步骤:(1):选择“转换”→“可视离散化”菜单项,将“人均消费”选入“要离散的变量”列表框中,单击“继续”按钮进入主对话框. (2):单击“生成分割点”按钮,设定分割点数量为6,宽度为3000.00,可见系统会自动会填充第一个分割点的位置为12231.90,单击“应用”返回到主对话框.(3):此时可以看到下部数值标签网格里的“值”列已被自动填充,单击“生成标签”按钮,是标签列也得到自动填充. (4):将离散的变量名设定为expendNew.(5):单击“确定”按钮.3、频数分析操作步骤:(1):选择“分析”→“描述统计”→“频率”,打开频率对话框.(2):选定“expendNew”,点击“图表”,选择“条形图”点击继续.(3):点击“确认”,生成如下三张表.Statistics人均消费(已离散化)N Valid 32Missing 0Mean 3.13由上图的频数分析可以看出,我国2013年城镇居民人均消费支出集中在第二组和第三组,大约占到百分之七十.由于在表格中不存在缺失值,因此频数分布表中的百分比和有效百分比相同.从此次分析中可以看出,我国城镇家庭居民人均消费的总体水平比较集中,大约在12000元--18000元之间,还有少数省市的消费水平处在中等阶段,而有上海、北京、浙江等一些经济较发达的地区的城镇家庭居民人均消费达到了21000元以上.三、对数据的回归分析(一)、作出人均收入与消费支出散点图,以观察他们的线性关系如何操作步骤:(1):选择“图形”,打开“图表构建程序”菜单项(2):从“库”中选择“散点图”将其拖入“图表预览使用数据实例”(3):将“人均收入”选定为x轴,将“人均消费”选定为y轴(4):点击“确认”生成如下散点图由散点图可以看出,人均消费Y和人均收入X大概呈一元线性关系,因此可以建立一元线性模型进行回归分析.(二)假设回归模型为Y=a+b X,其中,Y表示城镇人均消费支出,为被解释变量,X表示人均收入,为解释变量,b为回归系数.操作步骤:(1)选择“分析”→“回归”→“线性”菜单项,打开“线性回归”对话框.(2)将“人均消费”选入“因变量”列表框,将“人均收入”选入“自变量”列表框.(3)单击“确定”按钮.得到如下(1)、(2)、(3)、(4)四张表格,依次分析如下:表(1):移入/移出的变量Variables Entered/Removed bModel Variables Entered VariablesRemoved Method1 人均收入a. Entera. All requested variables entered.b. Dependent Variable: 人均消费从上表可以看出,放入模型的变量只有一个即“人均收入”,选择变量的方法为强行进入法,也就是说将所有的自变量都放入模型中,模型的因变量为“人均消费”.表(2):模型汇总以知道相关系数R=0.960,决定系数2R=0.922,调整决定系数2R=0.920,和回归系数的标准误=31106.90715.由于决定系数接近于1,说明模型的拟合程度较好.度影响.人均消费Y=1897.504+0.599人均收入X上述回归方程给出了如下信息:2013年中国城镇居民人均可支配收入增加1元,人均消费支出增加0.599元.四、单样本的T检验(一):由频数分析可知,分组后,全国31个省市的城镇家庭居民平均每人生活消费支出合计,大约有23个城市都集中在第一组,数额主要12231.91——18231.90元之间,其中在15231.91 - 18231.90之间的占到了百分之四十,因此可推断,全国农村家庭居民平均每人生活消费支出的平均数应该在15000--20000元之间,假设为18000元,由于该问题涉及的是单个总体,且要进行总体均值检验,同时农村家庭居民平均每人消费的总体可近似认为服从正态分布,因此,应采用单样本t检验来分析推断全国农村家庭居民人均消费的平均值是否为18000元.分析结果如下:(二):操作步骤:1、选择“分析”→“比较均值”→“单样本天t检验”菜单项,打开“单样本t检验”对话框如下图所示:2、单击“确定”按钮.生成如下两张图表:表(1):One-Sample StatisticsN Mean Std. Deviation Std. Error Mean人均消费32 17216.6031 3902.16064 689.81106表(2):One-Sample TestTest Value = 18000t df Sig. (2-tailed) Mean Difference 95% Confidence Interval of theDifferenceLower Upper人均消费-1.136 31 0.265 -783.39688 -2190.2758 623.4821均值标准差689.81106.由表(2)为单样本t检验的分析结果,第一行注明了用于比较的假设总体均数为18000,下面从左到右依次为t值、自由度、p值、两均数的差值、差值.根据上面的检测结果t=-1.136,p=0.256,由于p>0.05,所以不能拒绝原假设,可以认为人均消费水平在18000元.同时,可知全国城镇居民2013年人均消费在95%的置信水平下的置信区间为:(15809.7242,18623.4821).五、非参数检验——多配比样本分参数检验数据中我国城镇家庭居民人均消费包括食品、衣着、居住、家庭设备、交通及通讯、文教娱乐、医疗保健、和其他8个指标,为了比较清楚的了解这8项指标对我国城镇居民人均消费总体的影响,以及其大概的消费动向,可以利用多配比样本的非参数检验Friedman 检验对各个指标进行检验.(一):操作步骤:(1)选择“分析”→“非参数检验”→“旧对话框”→“k个相关样本”菜单项,打开如下对话框:(2):单击“确定”按钮,得到如下两张表格:表(1):RanksMean Rank食物消费8.00衣物消费 5.09居住消费 4.50家居设备 2.66交通通讯 6.38医疗保健 2.34文教娱乐 5.88其它 1.16表(2):Test Statistics aN 32Chi-Square 198.604df 7Asymp. Sig. .000a. Friedman Test(二)、结果分析检验结果中的p值小于给定水平0.05,故拒绝原假设,认为八个指标对我国城镇居民人均消费的影响是有显著差异的.由表(1)知食物消费对人均消费的影响最大,其次是交通通讯和衣物消费,而影响最小的是其它.六、因子分析在研究我国城镇居民的消费情况时收集了食物、衣物、居住等八个影响居民消费情况的因素,以期对问题能够有比较全面、完整的把握和认识.由于数据过多,在实际建模时,这些变量未必能真正发挥预期的作用,会给统计分析带来许多问题,可以表现在:计算量的问题和变量间的相关性问题.为了解决这些问题,最简单和最直接的解决方案是削减变量个数,但这又必然会导致信息丢失和信息不完整等问题的产生.为此,人们希望探索一种更有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失.因子分析正是解决这种问题的方法.(一)操作步骤(1)、选择菜单“分析”→“降维”→“因子分析”,出现因子分析对话框;(2)、把参与因子分析的样本选到变量对话框中,如下图:(3)单击“确定”按钮,得到如下11张图:图(1)原有变量的相关系数矩阵:Correlation Matrix食物消费衣物消费居住消费家居设备医疗保健交通通讯文教娱乐其它Correlatio n 食物消费1.000 .288 .656 .744 .295 .787 .782 .732衣物消费.288 1.000 .337 .517 .694 .368 .374 .634居住消费.656 .337 1.000 .676 .505 .849 .750 .771家居设备.744 .517 .676 1.000 .441 .830 .853 .767医疗保健.295 .694 .505 .441 1.000 .479 .414 .600交通通讯.787 .368 .849 .830 .479 1.000 .860 .782文教娱乐.782 .374 .750 .853 .414 .860 1.000 .831其它.732 .634 .771 .767 .600 .782 .831 1.000从上图可以看到,大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析.图(2)巴特利特球度检验和KMO检验KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .833Bartlett's Test of Sphericity Approx. Chi-Square 233.009df 28Sig. .000由上图知,巴特利特球度检验统计量的观测值为233.009,相应的概率p为0.如果给出的显著性水平为0.05,由于概率p小于显著性水平,应拒绝零假设,认为相关系数矩阵与单位阵有显著地差异.同时,KMO值为0.833,根据Kaiser 给出了KMO度量标准可知原有变量适合进行因子分析.图(3)因子分析的初始解CommunalitiesInitial Extraction食物消费 1.000 .798衣物消费 1.000 .862居住消费 1.000 .750家居设备 1.000 .812医疗保健 1.000 .821交通通讯 1.000 .897文教娱乐 1.000 .885其它 1.000 .872Extraction Method: Principal ComponentAnalysis.由上图第二列可知,所有变量的共同度均较高,各个变量的信息丢失较少.因此,本次因子提取的总体效果较理想.图(4)因子解释原有变量总方差的情况:Total Variance ExplainedComponent Initial Eigenvalues Extraction Sums of SquaredLoadingsRotation Sums of SquaredLoadings上图◎第一组数据项描述了初始因子解的情况.可以看到,第一个因子解的特征根值为 5.504,解释原有八个变量总方差的68.794%,累计方差贡献率为68.794%.其余数据含义类似.在初始解中由于提取了八个因子,因此原有变量的总方差均被解释掉.◎第二组数据项描述了因子解的情况.可以看到,由于指定提取两个因子,两个因子共解释了原有变量总方差的83.692%.总体上,原有变量的信息丢失较少,因子分析效果较理想.◎第三组数据项描述了最终因子解的情况.可见,因子旋转后,累计方差比没有改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子解释原有变量的方差,改变了各因子的方差贡献,使得因子更容易解释.图(5)因子的碎石图:上图横坐标为因子数目,纵坐标为特征根.可以看到,第一个因子的特征根值很高,对原有变量的贡献最大;第3个以后的因子特征根都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取两个因子是合适的.图(6)因子载荷矩阵:Component Matrix aComponent1 2其它.929 .097交通通讯.921 -.222文教娱乐.909 -.241家居设备.895 -.103居住消费.854 -.143食物消费.822 -.350衣物消费.599 .710医疗保健.635 .646a. 2 components extracted.上图因子载荷矩阵是因子分析的核心内容.根据该表可以写出本案例的因子分析模型:其它=0.9291f +0.0972f 交通通讯=0.9211f -0.2222f 文教娱乐=0.9091f -0.2412f 家居设备=0.8951f -0.1032f 居住消费=0.8541f -0.1432f 食物消费=0.8221f -0.3502f 衣物消费=0.5991f +0.7102f 医疗保健=0.6351f +0.6462f由上表知,八个变量在第一个因子上的载荷都很高,意味着他们与第一个因子的相关度高,第一个因子很重要. 图(7)旋转后的因子载荷矩阵:Rotated Component Matrix aComponent 12交通通讯 .915 .244 文教娱乐 .914 .222 食物消费 .889 .084 家居设备 .836 .336 居住消费 .819 .281 其它 .770 .528 衣物消费 .188 .909 医疗保健 .250.871a. Rotation converged in 3 iterations.由上图知,交通通讯、文教娱乐、食物消费、家居设备、居住消费、其它在第一个因子上有较高的载荷,第一个因子主要解释了这几个变量;衣物消费、医疗保健在第二个因子上的载荷较高,第二个因子主要解释了这几个变量. 图(8)因子旋转中的正交矩阵Component Transformation Matrix Component 1 2 1 .879 .477 2 -.477.879图(9)因子协方差矩阵:Component Score Covariance Matrix Component 1 2 1 1.000 .000 2 .0001.000从上表可以看出,两因子没有线性相关性,实现了因子分析的设计目标.图(10)旋转后的因子载荷图:由上图可以直观的看出,衣物消费和食物消费比较靠近两个因子坐标轴,表明如果分别用第一个因子刻画食物消费,用第二个因子刻画衣物消费,信息丢失较少,效果较好.图(11)因子得分系数矩阵:Component Score Coefficient MatrixComponent1 2食物消费.271 -.187衣物消费-.188 .576居住消费.194 -.032家居设备.184 .001医疗保健-.157 .532交通通讯.236 -.084文教娱乐.241 -.099其它.110 .152根据上表可以得到以下因子得分函数:F=0.271食物消费-0.188衣物消费+0.194居住消费+0.184家居设备-0.157医1疗设备+0.236交通通讯+0.241文教娱乐+0.110其它F=-0.187食物消费+0.576衣物消费-0.032居住消费+0.001家居设备+0.532医2疗设备-0.084交通通讯-0.099文教娱乐+0.152其它可见计算两个因子得分变量的变量值时,食物消费和衣物消费的权重较高,但方向恰好相反,这与因子的实际含义是相吻合的.七、实验心得本科的时候有概率统计和数理分析的基础,但是从来没有接触过应用统计分析的东西,SPSS也只是听说过,从来没有学过.一直以为这一块儿会比较难,这学期最初学的时候,因为没有认真看教材,课下也没有认真搜集相关资料,所以学起来有些吃力,总感觉听起来一头雾水.老师说最后的考核是通过提交学习报告,然后我从图书馆里借了些教材查了些资料,发现很多问题都弄清楚了.结合软件和书上的例子,实战一下,发现SPSS的功能相当强大.这门课要学习完了,整个学习的过程是充满曲折和挑战的,我见证了自己从一无所知到困惑迷茫再到略懂再到会用的过程.甚至学完之后有些问题还没有彻底搞清楚,自己接下来还会不断的探索的.SPSS是个很神奇的工具,结合AMOS和EXCEL更是如虎添翼,相信学习了SPSS在以后的论文和数据分析中很有用.这门课给我的感觉是看起来很难,但是实际学起来就好很多,因为当我结合具体实例和软件的时候,很多抽象的问题就豁然开朗了.但是想给老师一个建议,这门课需要很强的统计和概率论的基础,要不然就会很难听懂或者听得半懂.然后这门课的很多方法的相关资料都是用在医疗卫生、自然科学领域的,在管理中的应用的资料不怎么多.老师希望我们上课的时候结合在管理中的应用来学习,但是资料有限,希望老师在这个方面多给学生一些引导.。