八年级函数图像练习题69264

合集下载

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

八年级函数图像练习题

八年级函数图像练习题

八年级函数图像练习题[函数的图像]一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.[描点法画函数图形的一般步骤]第一步:列表;第二步:描点;第三步:连线。

[函数的表示方法]列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

二、试题1、设电报收费标准是每个字0.1元,写出电报费y 与字数x之间的函数关系式,自变量的取值范围是。

2、y?3x?5x自变量x的取值范围是yx的取值范围是;2自变量x的取值范围是; n?8x?43、当x=-4时,函数y?的值是。

x?3s?4、汽车以80千米/小时的速度匀速行驶,行驶路程为s千米,行驶时间为t小时,用含t的式子表示s得;在这个问题中,是变量,是常量。

5、写出下列函数的自变量的取值范围。

函数y?2的自变量x的取值范围是。

x?1函数y?x的取值范围是。

函数y?2x?3的自变量x的取值范围是函数y??2x2?5的自变量x的取值范围是*函数y?x的取值范围是。

、写出等腰三角形中底角的度数y与顶角度数x的函数关系式y?_________,其中自变量x的取值范围。

7、甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示。

这时一次米赛跑;甲、乙两人中先到达终点的是;甲在这次赛跑中的速度为米/秒。

8、小明的爷爷吃过晚饭后,出门散步,在报亭看了一会报纸才回家,小明绘制了爷爷离家的路程s与外出的时间t之间的关系图。

报亭离爷爷家米;爷爷在报亭看了分钟报纸;爷爷走去报亭的平均速度是米/分。

9、下列图形不能体现y是x的函数关系式是A、B、C、D、10、一根蜡烛厂20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h与燃烧时间t的函数关系用图象表示为A、 B、 C、 D、11、已知点A、B、C、D,其中在函数y?3x2的图象上的点有个。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

八年级函数及其图像习题

八年级函数及其图像习题

八年级函数及其图像习题课一.函数的定义判断1.下面在平面直角坐标系中所给的四个图像中,是函数图象的是( ).2.下列各曲线中不能表示y 是x 的函数的是( )A B C D 3.下列各图能表示y 是x 的函数是( )A .B .C .D .二.自变量1.已知函数1y x =+,则自变量x 的取值范围是( ) A .1x <- B .1x >- C .1x ≤- D .1x ≥- 2.函数1y 2x x 3=-+-中自变量x 的取值范围是 A .x≤2且x≠3 B .x≤2 C .x <2且x≠3 D.x =3 3.函数12-=x y 中自变量x 的取值范围是___ .4.函数211++-=x x y 的自变量x 的取值范围是___________________. 5.在函数y =1212xx --中,自变量x 的取值范围是 . 6.函数1x y x =-的自变量x 的取值范围在数轴上表示为( )三.函数值的计算1.已知函数31y x =-,当2x =-时,y =_____. 2.3.在女子3000米的长跑中,运动员的平均速度v=,则这个关系式中自变量是_________ .四.函数图像分析1.2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( )2.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A 、体育场离张强家2.5千米B 、张强在体育场锻炼了15分钟C 、体育场离早餐店4千米D 、张强从早餐店回家的平均速度是3千米/小时7.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到,他加快了速度,以每分45米的速度行走完剩下的路程,那么小明行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是 ( )8.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9.某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y(元)与通话时间(分)之间的关系的图象如下图所示,正确的是()10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C.12.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为,水流速度为.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为,航行的路程为,则与的函数图像大致是()13.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.。

初二关于函数图像练习题

初二关于函数图像练习题

初二关于函数图像练习题函数图像是初中数学中的一个重要内容。

通过练习题,我们可以进一步巩固对函数图像的理解。

下面是一些初二关于函数图像的练习题。

请你认真思考每个问题,并给出详细的解答。

习题一:已知函数y=f(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数f(x)的定义域是什么?2. 根据图像分析,函数f(x)的值域是什么?3. 根据图像分析,函数f(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数f(x)在哪些区间上是增函数?在哪些区间上是减函数?习题二:已知函数y=g(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数g(x)的定义域是什么?2. 根据图像分析,函数g(x)的值域是什么?3. 根据图像分析,函数g(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数g(x)在哪些区间上是增函数?在哪些区间上是减函数?习题三:已知函数y=h(x)的函数图像如下图所示,请你回答以下问题:【示意图】1. 根据图像分析,函数h(x)的定义域是什么?2. 根据图像分析,函数h(x)的值域是什么?3. 根据图像分析,函数h(x)是否有最大值和最小值?如果有,请具体说明它们的值和对应的自变量。

4. 根据图像分析,函数h(x)在哪些区间上是增函数?在哪些区间上是减函数?通过以上练习题,我们能够进一步加深对函数图像的理解。

希望你通过认真思考和分析,能够正确回答以上问题,并在解答过程中巩固对函数图像的知识掌握。

同时,也希望你能够掌握函数图像的绘制方法,通过练习更多的题目,进一步提高自己的能力。

祝你在数学学习中取得更好的成绩!。

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

人教版八年级数学下册《函数的图像》同步练习(含答案)

人教版八年级数学下册《函数的图像》同步练习(含答案)

函数的图像一、单选题1.下列是函数图象的是( )A .B .C .D .2.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线 是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三 角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .3.如图,矩形ABCD 中,1AB =,2BC =,点P 从点B 出发,沿B C D →→向终点D 匀速运动.设点P 走过的路程为x ,ABP ∆的面积为S ,能正确反映S 与x 之间函数关系的图象是( )A.B.C.D.4.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时5.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.小明在画函数6yx(x>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A.(1,6)B.(2,3)C.(3,2)D.(4,1)7.如图,各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.(3)(4)B.(2)(3)C.(1)(2)D.(2)(4)8.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h(cm)10 20 30 40 50 60 70 80小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50下列说法错误的是()A.当h=50cm时,t=1.89sB.随着h逐渐升高,t逐渐变小C.h每增加10cm,t减小1.23sD.随着h逐渐升高,小车的速度逐渐加快9.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A 点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A .B .C .D .10.已知某四边形的两条对角线相交于点O .动点P 从点A 出发,沿四边形的边按A→B→C 的路径匀速运动到点C .设点P 运动的时间为x ,线段OP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该四边形可能是( )A .B .C .D .二、填空题11.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.12.如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽,水槽内水面的高度()y cm 与注水时间()x s 之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.13.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).14.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=___________________,△APE的面积等于6.三、解答题15.如图所示,图象反映的是:小明从家里跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示小明离家的距离.根据图象回答下列问题:(1)体育场离小明家多远,小明从家到体育场用了多少时间?(2)体育场离文具店多远?(3)小明在文具店逗留了多少时间?(4)小明从文具店回家的平均速度是多少?16.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:(1)体育场离张强家的多远?张强从家到体育场用了多长时间?(2)体育场离文具店多远?(3)张强在文具店逗留了多久?(4)计算张强从文具店回家的平均速度.17.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程 s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?18.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2答案1.B 2.B 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.D 11.﹣1<x<1或x>2. 12.4 13.①②④ 14.1.5或5或9 15.(1)体育场离小明家2.5千米,小明从家到体育场用了15分钟.(2)体育场离文具店2.5﹣1.5=1(千米).(3)小明在文具店逗留的时间为65﹣45=20(分钟).(4)小明从文具店回家的平均速度是1.5010065--=370(千米/分钟).16.解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min. (2)2.5-1.5=1(km),所以体育场离文具店1km.(3)65-45=20(min),所以张强在文具店逗留了20min.(4)1.5÷(100-65)= (km/min),张强从文具店回家的平均速度为km/min.17.(1)∵纵轴的最大值为2000,∴学校离家的距离为2000米.∵横轴的最大值为20,∴小明到达学校时共用时间20分钟(2)15-10=5(分钟),小明修车用了5分钟.(3)修车前的骑行平均速度为1000÷10=100(米/分钟),修车后的骑行平均速度为(2000-1000)÷(20-15)=200(米/分钟)18.解:(1)根据图象得:点P在BC上运动的时间范围为6≤t≤12;(2)点P在AB上时,△APD的面积S=12×6×t=3t;点P在BC时,△APD的面积=12×6×6=18;点P在CD上时,PD=6-2(t-12)=30-2t,△APD的面积S=12AD•PD=12×6×(30-2t)=90-6t;∴当0≤t≤6时,S=3t,△APD的面积为10cm2,即S=10时,3t=10,t=103,当12≤t≤15时,90-6t=10,t=403,∴当t为103s或403s时,△APD的面积为10cm2。

新人教版初二下《函数图像》课时练习含答案

新人教版初二下《函数图像》课时练习含答案

新人教版初二下《函数图像》课时练习含答案一、选择题(每小题5分,共30分)1.下列函数关系中,属于正比例函数关系的是() A.圆的面积与它的半径B.面积为常数S 时矩形的长y 与宽xC.路程是常数时,行驶的速度v 与时刻tD. 三角形的底边是常数a 时它的面积S 与这条边上的高h答案:D.知识点:函数的图象解析:解答:A.s =πr 2,s 是r 的二次函数B.y =x s ,y 是x 的反比例函数C.v=ts ,v 是t 的反比例函数 D.s =21ah ,s 是h 的正比例函数 分析:将每个选项的关系式列出来,然后再判定即可.故选D.2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h (厘米)与点燃时刻t 之间的函数关系的是( ).答案:C.知识点:函数的图象解析:解答:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是h =20-5t ,是一次函数图象,即t 越大,h 越小,符合此条件的只有C.分析:能够列出蜡烛点燃后,剩下的长度h 与点燃时刻t 的函数关系式,利用函数的性质判定即可.故选C.3.下列四个点中在函数y =2x -3的图象上有( )个.(1,2) , (3,3) , (-1, -1), (1.5,0)A.1 B.2 C.3 D.4答案:B.知识点:函数的图象解析:解答:分别代入:2≠2×1-3;3=2×3-3;-1≠2×(-1)-3;0=2×1.5-3;共两个满足.分析:分别将各选项代入函数关系式,能满足左边等于右边的即在函数图象上.故选B.4.假如A、B两人在一次百米赛跑中,路程s(米)与赛跑的时刻t(秒)的关系如图所示,则下列说法正确的是()A .A比B先动身 B.A、B两人的速度相同 C.A先到达终点 D.B比A跑的路程多答案:C.知识点:函数的图象解析:解答:结合图象可得出,A、B同时动身,A比B先到达终点,A的速度比B的速度快.分析:依照图象法表示函数,观看A、B的动身时刻相同.故选C.5.函数y=3x+1的图象一定通过( )A.(2,7)B.(4,10)C.(3,5)D.(-2,3)答案:A.知识点:函数的图象解析:解答:将A、B、C、D的坐标分别代入解析式只A符合左边等右边,故A选项正确.分析:将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点.故选A.6.下列各点中,在函数y=2x-6的图象上的是( )A.(-2,3)B.(3,-2)C.(1,4)D.(4,2)答案:D.知识点:函数的图象解析:解答:将A、B、C、D的坐标分别代入解析式只D符合左边等右边,故D选项正确.分析:将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点.故选D.7. 一艘轮船和一艘快艇沿相同路线从甲港动身到乙港,行驶过程随时刻变化的图象如图所示,下列结论错误的是( )A.轮船的速度为20千米/小时B.快艇的速度为380千米/小时 C.轮船比快艇先动身2小时 D.快艇比轮船早到2小时答案:B.知识点:函数的图象解析:解答:轮船的速度:160÷8=20千米/小时, 快艇的速度为. 160÷(6-2)=40千米/小时,故A 正确,B 错误;由函数图象可知,C 、D 正确.分析:先运算轮船和快艇的速度,再结合图象,逐一判定.故选B.8.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家动身步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y (公里)和所用的时刻x (分)之间的函数关系.下列说法错误的是( )A.小强从家到公共汽车在步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟答案:D.知识点:函数的图象解析:解答:A.依题意得小强从家到公共汽车步行了2公里,故选项正确;B.依题意得小强在公共汽车站等掌上小明用了10分钟,故选项正确;C.公交车的速度为30公里/小时,故选项正确;D.小强和小明一起乘坐公共汽车,时刻为30分钟,故选项错误.分析:依照图象能够确定小强离公共汽车站2公里,步行用了多长时刻,等公交车的时刻是多少,两人乘车运行的时刻和对应的路程,然后确定各自的速度.故选D.9.小张的爷爷每天坚持体育锤炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反应当天爷爷离家的距离y (米)与时刻t (分钟)之间的大致图象是( )A . B. C. D.答案:B. 知识点:函数的图象解析:解答:依照题意中信息可知,相同的路程,跑步比闲逛的速度快;在一定时刻内没有移动距离,则速度为0.故小华的爷爷跑步到公园的速度最快,即单位时刻内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为0,还要注意出去和回来时的方向不同,故B 符合要求.分析:生活中比较运动快慢通常有两种方法,即比较相同时刻内通过的路程多少或通过相同路程所用时刻的多少,但统一的方法是直截了当比较速度的大小.故选B.10.如图,某个函数的图象由线段AB 和BC 组成,其中点A (0,34),B (1,21),C (2,35),由此函数的最小值是( ) A.0 B.21 C.1 D.35答案:B.知识点:函数的图象解析:解答:由函数图象的纵坐标,得 35>34>21. 分析:依照函数图象的纵坐标,可得答案.故选B.11.平均地向如图的容器中注满水,能反应在注水过程中水面高度h 随时刻t 变化的图象是( ) A.B. C. D.答案:A. 知识点:函数的图象解析:解答:最下面的容器较粗,第二个容器最粗,那么第二时期的函数图象水面高度h 随时刻t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.分析:由于三个容器的高度相同,粗细不同,那么水面高度h 随时刻t 变化而分三个时期. 故选A.12.小明骑自行车内学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽搁上课,加快了速度,下面是小明离家后他到学校剩下的路程s 关于时刻t 的函数的图象,那么符合小明行驶情形的图象大致是( )A.B. C. D.答案:D.知识点:函数的图象 解析:解答:因为开始以正常速度匀速行驶――停下修车――加快速度行驶,可得S 先缓慢减小,再不变,再加速减小.分析:由于开始以正常速度行驶,接着停下修车,后来加快速度匀速,因此开始行驶路S 是平均减小的,接着不变,后来速度加快,因此S 变化也加快变小,由此即可作出选择. 故选D.13.小亮家与学校相距1500m,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽搁几分钟,与小强辞别后他就改为匀速慢跑,最后回到了家,设小亮从学校动身后所用的时刻为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是()A. B. C. D.答案:C.知识点:函数的图象解析:解答:由题意得,最初与家的距离s随时刻t的增大而减小,与小强说话时,时刻增大而s不变,慢跑时,与家的距离s随时刻t的增大而减小.分析:分三段分析,最初步行、与小强说话、匀速慢跑,分析函数的性质,进行判定即可. 故选C.14.如图,将一个高度为12c m的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10c m,则水槽中的水面高度y(c m)随注水时刻x(s)的变化图象大致是()A. B. C. D.答案:D.知识点:函数的图象解析:解答:由题意,得锥形瓶中水满之前,水槽中水的高度为0,锥形瓶中水满之后,水槽中的水逐步增加,水槽中的水满之后,水槽中的水的高度不变.分析:依照锥形瓶中水满之前,水槽中水的高度为零,锥形瓶中水满之后,水槽中的水逐步增加,水槽中水满之后,水槽中的水的高度不变.故选D.15.如图,李老师早晨出门锤炼,一段时刻内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离动身点M的距离与时刻x之间的函数关系的大致图象是()A.B. C. D.答案:D. 知识点:函数的图象解析:解答:由题意,得从M 到A 距离再增加,由A 经B 到C 与M 的距离差不多上半径,由B 到M 距离逐步减少,故D 符合题意.分析:依照半圆的关系,可得从M 到A 距离再增加,由A 经B 到C 与M 的距离差不多上半径,由B 到M 距离逐步减少,可得答案.故选D.二、填空题(每小题5分,共25分) 16.放学后,小明骑车回家,他通过的路程s (千米)与所用时刻t (分钟)的函数关系如图所示,则小明的骑车速度是 千米/分钟.答案:0.2知识点:函数的图象解析:解答:由纵坐标看出路程是2千米,由横坐标看出时刻是10分钟,小明的骑车速度是102=0.2(千米/分钟). 分析:依照函数图象的纵坐标,可得路程,依照函数图象的横坐标,可得时刻,依照路程与时刻的关系,可得答案.故答案为:0.217.一慢车和一快车沿相同路线从A 地到B 地,所行的路程与时刻图象如图,则慢车比快车早动身 小时,快车追上慢车行驶了 千米,快车比慢车早 小时到达B 地.答案:2,276,4知识点:函数的图象解析:解答:由图象直截了当可得出:一慢车和一快车沿相同路线从A地到B地,所行的路程与时刻图象如图,则慢车比快车早动身2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B地.分析:依照横坐标的意义,分别分析得出即可.故答案为:2,276,4.18.园林队在公园进行绿化,中间休息了一段时刻.已知绿化面积S与时刻t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.答案:100知识点:函数的图象解析:解答:由纵坐标看出:休息前绿化面积是60平方米,休息后绿化面积160-60=100平方米.分析:依照函数图象的纵坐标,即可求得.故答案为:100.19.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升元.答案:7.09知识点:函数的图象解析:解答:单价=709÷100=7.09元.分析:依照函数图象明白100升油花费了709元,由此可求出这种汽油的单价.故答案为:7.09.20.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时刻(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快千米.答案:0.4知识点:函数的图象解析:解答:依照图示知,甲的速度是:8÷(5-1)=2(千米/小时),乙的速度是:8÷5=1.6(千米/小时).则:2-1.6=0.4(千米/小时).故答案是:0.4.分析:依照“速度=路程÷时刻”分别求甲、乙的速度,然后求其差.故答案为:7.09元.三、解答题(每题10分,共50分)21.小明从家里动身到超市买东西,再回到家,他离家的距离y(千米)与时刻t(分钟)的关系如图所示.请你依照图象回答下列问题:(1)小明家离超市的距离是千米;(2)小明在超市买东西时刻为小时;(3)小明去超市时的速度是千米/小时.答案:解答:(1)由纵坐标看出,小明家离超市的距离是3千米;(2)由横坐标看出到达超市是12,离开超市是72,在超市的时刻为72-12=60分钟=1小时;(3)由纵坐标看出,小明家离超市的距离是3千米,由横坐标看出到达超市是12分钟=0.2小时,小明去超市时的速度是3÷0.2=15千米/小时. 故答案为3,1,15.知识点:函数的图象解析:分析:(1)依照函数图象的纵坐标,可得答案;(2)依照函数图象的横坐标,可得答案;(3)依照函数图象的纵坐标,可得距离,依照函数的横坐标,可得时刻,依照路程与时刻的关系,可得答案.22.一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s (米)与时刻t (秒)的关系如图,结合结合图象,求图中S 1和S 0的位置.答案:解答:由图象可得出:(1)小刚比李明早到终点100秒;(2)两匀速跑时,小刚的速度大于李明的速度; ∵1S -1450200×100-1S -1600300×100=150, ∴S 1=2050, ∴S 0=1450+1S -1450200×100=1750. 故答案为2050,1750.知识点:函数的图象解析:分析:(1)依照图象可得出小刚和李明第一次相遇的时刻是100秒;小刚比李明早到终点100秒;两人匀速跑时,小刚的速度大于李明的速度;(2)求得小刚和李明速度,再乘以相遇时刻,两个路程相减即可得出两人的路程之差150.23.李老师为锤炼躯体一直坚持步行上下班.已知学校到李老师家总路程2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下来聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时刻t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时刻.答案:解答:由图象可得出:(1)李老师停留地点离他家的路程为:2000-900=1100(米),900÷45=20(分).a=20,b=1100,c=20+30=50;(2)20+30+1100/110=60(分)故答案为(1)a=20,b=1100,c=50(2)60分钟.知识点:函数的图象解析:分析:(1)依照函数图象和题中给出的信息算出a的值以及b、c的值;(2)依照等式“时刻=路程/速度”分段求出时刻,再累加起来算出到家的时刻.24.小强骑自行车去交游,下图表示他离家的距离y(千米)与所用的时刻x(小时)之间的函数图象,依照图象所提供的数据,请你写出3个信息.答案:解答:1.小强从早上9时动身;2.他在10时30分开始第一次休息;3.第一次休息11-10.5=0.5小时;4.小强离家最远为30千米;5.他在15时回到家等.知识点:函数的图象解析:分析:(1)一样应选取最容易得到的答案,比如什么时刻动身,到达离家多远的地点;什么时候开始休息,休息了多长时刻.25.某天早晨,王老师从家动身步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时刻t(分)之间的关系.(1)学校离他家米,从动身到学校,王老师共用了分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐往常的速度快依旧吃完早餐以后的速度快?吃完早餐后的平均速度是多少?答案:解答:(1)学校距他家1000米,王老师用25分钟;(2)王老师吃早餐用了20-10=10分钟;(3)吃完早餐以后速度快,(1000-500)÷(25-20)=100(米/分).知识点:函数的图象解析:分析:(1)由于步行前往学校,途中在路边一饭店吃早餐,那么行驶路程S(米)与时刻t(分)之间的关系图象中有一段平行x轴的线段,然后学校,依照图象能够直截了当得到结论;(2)依照图象中平行线x轴的线段即可确定王老师吃早餐用了多少时刻;(3)依照图象能够分别求出吃早餐往常的速度和吃完早餐以后的速度,然后比较即可得到结果.。

八年级数学:函数的图像及画法练习(含解析)

八年级数学:函数的图像及画法练习(含解析)

八年级数学:函数的图像及画法练习(含解析)1.A,B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法:①乙晚出发1个小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是( C ) A.1 B.2 C.3 D.4解析:横坐标表示时间,纵坐标表示路程.由题图可知甲先出发,而乙1小时后出发,故乙晚出发1小时,所以①正确;l1和l2的交点表示乙追上甲,从乙出发到追上甲共花时间2小时,所以②错误;甲3小时所走路程为12千米,故速度为4千米/小时,所以③正确;乙追上甲之后,速度不变,且乙的速度比甲的速度大,故乙先到达B地,所以④正确.故选C.2.①汽车紧急刹车(速度与时间的关系);②人的身高变化(身高与年龄的关系);③运动员跳跃横杆(高度与时间的关系);④一面冉冉上升的红旗(高度与时间的关系).用图来刻画上述情境,正确的顺序是( C )A.abcd B.dabc C.dbca D.cabd解析:①汽车紧急刹车时速度随时间的增大而减小,与d符合;②人的身高随着年龄的增加而增大,到一定年龄后身高不再增大,与b符合;③运动员跳跃横杆时高度先逐渐升高,达到最大高度之后高度逐渐减小,与c符合;④红旗升高时高度随着时间的增加而匀速增大,到一定时间高度不再增加,与a符合.故选C.3.(2017·哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( D )A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min解析:A.由纵坐标看出小涛家离报亭的距离是1 200 m,故A不符合题意;B.由纵坐标看出小涛家离报亭的距离是1 200 m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80 m/min,故B不符合题意;C.返回时的关系式为y=-60x+3 000,当y=1 200时,x=30,由横坐标看出返回时的时间是50-30=20(min),返回时的速度是 1 200÷20=60 (m/min),故C不符合题意;D.由横坐标看出小涛在报亭看报用了30-15=15(min),故D符合题意.故选D.4.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( C )解析:在深水池时,横截面窄,水的深度增加速度快,函数图像坡度大;在浅水池时,横截面宽,水的深度增加速度慢,函数图像坡度小.故选C.5.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,那么这是一次100 m赛跑,甲、乙两人中先到达终点的是甲.解析:最大的函数值100为路程;甲12 s到达终点,乙12.5 s到达终点,故甲先到达终点.6.上午8时,小张自驾小汽车从家出发,带全家人去离家200千米的一个4A级景区游玩,如图表示的是小张驾驶的小汽车离家的距离y(千米)与时间t(小时)之间的函数关系.(1)小张全家在景区游玩了几个小时;(2)小张在去景区的路上加油并休息后,平均速度达到100千米/时,问:他加油及休息共用了多少小时?(3)小张全家什么时间回到家中?解:(1)由图像信息可知,在离家距离200千米的景区游玩,当图像中显示距离一直不变时为停留时期,所以游玩了15-10.5=4.5(小时).(2)200-120100=0.8(小时),10.5-9.5-0.8=0.2(小时),即他加油及休息共用了0.2小时.(3)200÷[(200-120)÷1]=2.5(小时),15+2.5=17.5(小时),故小张全家17时30分回到家中.。

初二一次函数图象题专练

初二一次函数图象题专练

八年级数学一次函数图象题专练1. 如图,直线l 过点A (0,2),B (2,0).(1)求直线l 的解析式; (2)求AOB S △;(3)找出能使AOP S △=AOB S △的所有的点P 并写出坐标.2.如图,已知直线l :1y kx =+,:2:1OA OB =.(1)求直线l 的解析式;(2)求点O 到直线l 的最小距离.3.已知直线l 过A 、B 两点,A (0,2),B (-1,0),将△ABO 沿y 轴翻折得到△AOB '. (1)求AB '的解析式; (2)求△AOB '的面积.5.如图,已知直线l :y=x 及A (2,b ).若点A 在直线l 上,找出能使△AOP 是等腰三角形的所有点P 并写出坐标.7.已知111y k x b =+与222y k x b =+互相平行且1214k k +=.,求出2k 与2b 的值并求直线与坐标轴分别所围成的两个三角形的面积和.8.已知y +3与x +5成正比例,当x =100时,y =588.求y 与x 的函数关系式并求此直线与x 轴、y 轴所围成的三角形的面积.9.已知直线y=2x+1分别交x 轴、y 轴于点A 、B . (1)求点A 、B 的坐标; (2)求AOB S △;(3)找出所有能使得以A 、B 、O 、P 为顶点的四边形是平行四边形的点P 的坐标.10.已知直线y +3和点A .求点A 到该直线的最小距离.二、一次函数在经济问题中的应用1、某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图9中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油是的销售利润为5.5万元.请你根据图象及加油站五月份该油品的所有销售记录 提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式; (3)我们把销售每升油所获得的利润称为利润率,那 么,在O A.AB.BC 三段所表示的销售信息中,哪一段的 利润率最大?(直接写出答案)2、某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额y1(万元)和总利润y2(万元)关于新家电的总产量x(台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中y与x的函数关系式,分析该公司的盈亏情况.(注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)3、某公司到果园基地购买某种优质水果,•慰问医务工作者.•果园基地购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,•由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.•已知该公司从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买水果量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)当购买量在什么范围时,选哪种购买方案付款最少?并说明理由.4、某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.6、我国青海省玉树地区发生强烈地震以后,国家立即启动救灾预案,积极展开向灾区运送救灾物资和对伤员的救治工作.已知西宁机场和玉树机场相距800千米,甲、乙两机沿同一航线各自从西宁、玉树出发,相向而行.如图,线段AB 、CD 分别表示甲、乙两机离玉树机场的距离S (百千米)和所用去的时间t (小时)之间的函数关系的图象(注:为了方便计算,将平面直角坐标系中距离S 的单位定为(百千米)).观察图象回答下列问题:(1)乙机在甲机出发后几小时,才从玉树机场出发?甲、乙两机的飞行速度每小时各为多少千米?(2)求甲、乙两机各自的S 与t 的函数关系式;三、两个一次函数图像的应用如图,表示小王骑自行车和小李骑摩托车都沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题: (1)L 1是______行驶过程的函数图象,L 2是______行驶过程的函数图象;(2)哪一个人出发早?早多长时间?哪一个早到达目的地?早多长时间?(3)求出两个人在途中行驶的速度是多少?(4)分别求出表示自行车和摩托车行驶过程的函数解析式,并求出自变量x•的取值范围.四、一次函数在实际问题中的应用旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图像,并求旅客最多可以免费携带多少千克的行李?5、一辆汽车在行驶过程中,路程 y (千米)与时间 x (小时)之间的函数关系如图 所示 当时 0≤x ≤1,y 关于x 的函数解析式为 y = 60 x ,那么当 1≤x ≤2时, y 关于x 的函数解析式为_____________.4、某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。

人教版八年级下册《函数的图象》基础练习

人教版八年级下册《函数的图象》基础练习

《函数的图象》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知正方形的边长为x,则它的面积y与边长x的函数关系可表示为()A.B.C.D.2.(5分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.63.(5分)当长方形的面积S是常数时,长方形的长a与宽b之间关系的函数图象是()A.B.C.D.4.(5分)如图,已知正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止.设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)与x(cm)的函数关系的图象是()A.B.C.D.5.(5分)下列四个图象中,不是函数图象的是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图(1),在长方形ABCD中,动点P从B点出发,沿B、C、D、A 匀速运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系图象为图(2),则矩形ABCD的面积为.7.(5分)园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为平方米.8.(5分)如图反映的过程是:小刚从家去菜地浇水,又去青稞地锄草,然后回家.已知菜地与青稞地的距离为a千米,小刚在青稞地锄草比在菜地浇水多用了b分钟,则a,b的值分别为.9.(5分)ABC三地在同一条笔直的公路上,已知A地在B地与C地之间.甲车从A地出发先前往B地,再从B地前往C地与乙车会和;乙车与甲车同时出发,直接从B地前往C地,如图表示的是全过程中甲乙两车之间的距离y (千米)与乙车行驶时间x(小时)之间的函数关系.已知全过程中甲、乙两车速度均保持不变,乙车到达C地所用的时间是甲车到达B地所用时间的2倍,则甲车到达C地的时间为小时.10.(5分)甲乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各自加工零件的数量y件与时间x之间的函数图象如图所示.甲乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过小时恰好装满第2箱.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,点E是BC 边上一动点,联结AE,过点E作AE的垂线交直线CD于点F.已知AD=4cm,CD=2cm,BC=5cm,设BE的长为xcm,CF的长为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53 3.54 4.55y/cm 2.5 1.100.9 1.5 1.92 1.90.90(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BE=CF时,BE的长度约为cm.12.(10分)(1)如图1,是著名的艾宾浩遗忘曲线,观察图象并回答下列问题:①在这个图形所表示的变化过程中自变量、因变量各是什么?2小时后,记忆大约保持了多少?②图中点A表示的意义是什么?③图中的遗忘曲线还告诉你什么相关信息?请写出其中一条信息.(2)已知,如图2,AD∥BE,∠1=∠2,试判断∠A和∠E的关系,并说明理由.13.(10分)李明准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶x千米,应付给甲公司的月租费y1元,应付给乙公司的月租费是y2元,y1、y2与x之间的函数关系的图象如图所示,请根据图象回答下列问题:(1)每月行驶的路程在多少时,租甲,乙两家公司的费用相同?(2)每月行驶的路程在什么范围内时,租甲公司的车合算?(3)若李明估计每月行驶的路程为2300千米时,租哪家合算?14.(10分)如图表示一人骑自行车离家的距离与时间的关系,骑车者9时离开家,15时到家,根据图象回答问题:(1)到达离家最远的地方是什么时间?离家多远?(2)第一次休息时离家多远?(3)返回时的平均速度是多少?15.(10分)甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)随时间t(min)变化的函数图象,求每分钟乙比甲多行驶多少千米.《函数的图象》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知正方形的边长为x,则它的面积y与边长x的函数关系可表示为()A.B.C.D.【分析】由正方形的面积公式可得出y与x之间的函数关系式,在对照四个选项的函数图象即可得出结论.【解答】解:根据题意得:y=x2(x≥0),∴正方形的面积y与边长x的函数关系表示为选项C中的图象.故选:C.【点评】本题考查了函数的图象以及正方形的面积,利用正方形的面积公式找出y与x之间的函数关系式是解题的关键.2.(5分)如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.6【分析】由图象可知,BP⊥AC时,AP=5,由勾股定理求出BP,再求PC求BC即可.【解答】解:由图象可知,AB=3,AC=6如图,当x=1时,BP⊥ACRt△ABP中,BP==2,∵PC=6﹣1=5,∴Rt△CBP中,BC==,故选:B.【点评】本题以动点的函数图象为背景,考查了数形结合思想.解答时,注意利用勾股定理计算相关数据.3.(5分)当长方形的面积S是常数时,长方形的长a与宽b之间关系的函数图象是()A.B.C.D.【分析】根据题意得到函数关系式为ab=S(常数),于是得到ab是成反比例的量,根据函数关系式即可得到结论.【解答】解:由长方形的面积公式得,a=,∴C选项符合题意,故选:C.【点评】本题考查了函数的图象,根据题意列出函数关系式是解题的关键.4.(5分)如图,已知正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止.设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)与x(cm)的函数关系的图象是()A.B.C.D.【分析】根据点P的运动路线,y与x的函数关系分成两段,根据题意列出函数关系即可.【解答】解:由题意,当0≤x≤2时,y==x当2≤x≤4时,y=2故选:C.【点评】本题为动点问题的函数图象探究题,考查了一次函数图象以及数形结合思想,解答时注意分段讨论.5.(5分)下列四个图象中,不是函数图象的是()A.B.C.D.【分析】根据函数的定义可知y与自变量x是一一对应的,从而可以判断各个选项中的图象是否是函数图象,从而可以解答本题.【解答】解:由函数的定义可知,选项B中的图象不是函数图象,故选:B.【点评】本题考查函数的图象、函数的概念,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共5小题,共25.0分)6.(5分)如图(1),在长方形ABCD中,动点P从B点出发,沿B、C、D、A 匀速运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系图象为图(2),则矩形ABCD的面积为32.【分析】通过图象,可以分析出x在4到12时,点P在CD上运动,则可知BC =4,BC+CD=12,则问题可解.【解答】解:由图象可知,当点P在边CD上运动时,△ABP的面积不变则可知,当第P由B到C时,BC=4点P由C到D时,x=12,则CD=12﹣4=8则矩形面积为4×8=32故答案为:32【点评】本题为动点问题的函数图象探究题,考查了动点运动到临界点前后的图象变化规律,解答关键是数形结合.7.(5分)园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为100平方米.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由纵坐标看出:休息前绿化面积是60平方米,休息后绿化面积是160﹣60=100平方米,故答案为:100.【点评】本题考查了函数图象,观察函数图象的纵坐标得出绿化面积是解题关键.8.(5分)如图反映的过程是:小刚从家去菜地浇水,又去青稞地锄草,然后回家.已知菜地与青稞地的距离为a千米,小刚在青稞地锄草比在菜地浇水多用了b分钟,则a,b的值分别为0.5,8.【分析】根据函数图象可以求得a、b的值,从而可以解答本题.【解答】解:由图象可得,a=1.5﹣1=0.5,b=(56﹣33)﹣(27﹣12)=23﹣15=8,故答案为:0.5,8.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.(5分)ABC三地在同一条笔直的公路上,已知A地在B地与C地之间.甲车从A地出发先前往B地,再从B地前往C地与乙车会和;乙车与甲车同时出发,直接从B地前往C地,如图表示的是全过程中甲乙两车之间的距离y (千米)与乙车行驶时间x(小时)之间的函数关系.已知全过程中甲、乙两车速度均保持不变,乙车到达C地所用的时间是甲车到达B地所用时间的2倍,则甲车到达C地的时间为40小时.【分析】设甲车的速度为x千米/小时,乙车的速度为y千米/小时,根据速度×时间=路程即可得出关于x、y的二元一次方程组,解之即可得出甲、乙两车的速度,再根据路程=速度×时间即可求出B、C两地间的距离,利用时间=路程÷速度即可求出甲车到达C地的时间.【解答】解:设甲车的速度为x千米/小时,乙车的速度为y千米/小时,根据题意得:,解得:,∴B、C两地间的距离为60×10×2=1200(千米),∴甲车到达C地的时间为(400+1200)÷40=40(小时).故答案为:40.【点评】本题考查了函数的图象以及二元一次方程组的应用,根据速度×时间=路程列出关于x、y的二元一次方程组是解题的关键.10.(5分)甲乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各自加工零件的数量y件与时间x之间的函数图象如图所示.甲乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过小时恰好装满第2箱.【分析】根据工作效率=工作总量÷工作时间分别算出甲、乙组每小时加工零件数,结合函数图象找出y甲、y乙关于x(乙组在x≥2.8时间段)的函数关系式,令y甲+y乙=600求出x值,此题得解.【解答】解:甲组每小时加工零件数为:360÷6=60(件),乙组停产前每小时加工零件数为:100÷2=50(件),乙组停产后每小时加工零件数为:50×2=100(件).∴甲组加工零件的数量y件与时间x之间的函数关系式为y甲=60x,乙组在x≥2.8时间段加工零件的数量y件与时间x之间的函数关系式为y乙=100x+b,将(2.8,100)代入y乙=100x+b中,100=2.8×100+b,解得:b=﹣180,∴乙组在x≥2.8时间段加工零件的数量y件与时间x之间的函数关系式为y乙=100x﹣180(x≥2.8).令y甲+y乙=600,即60x+100x﹣180=600,解得:x=.故答案为:.【点评】本题考查了函数图象以及待定系数法求一次函数解析式,观察函数图象找出点的坐标利用待定系数法求出函数解析式是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,点E是BC 边上一动点,联结AE,过点E作AE的垂线交直线CD于点F.已知AD=4cm,CD=2cm,BC=5cm,设BE的长为xcm,CF的长为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53 3.54 4.55 y/cm 2.5 1.100.9 1.5 1.92 1.9 1.50.90(说明:补全表格时相关数据保留一位小数)(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BE=CF时,BE的长度约为0.6~0.8cm.【分析】根据题意作图测量即可,第(3)问构造直线y=x与所画图象求交点即可.【解答】解:(1)根据题意作图测量可得y=1.5故答案为:1.5(2)根据题意作图得(3)根据题意,所画图象于直线y=x交点即为所求数值.故测量数据在0.6~0.8之间.故答案为:0.6~0.8【点评】本题为动点问题的函数图象探究题,考查了函数图象的画法和将数据条件转化为函数图象的思想.解答关键是标准作图、数形结合.12.(10分)(1)如图1,是著名的艾宾浩遗忘曲线,观察图象并回答下列问题:①在这个图形所表示的变化过程中自变量、因变量各是什么?2小时后,记忆大约保持了多少?②图中点A表示的意义是什么?③图中的遗忘曲线还告诉你什么相关信息?请写出其中一条信息.(2)已知,如图2,AD∥BE,∠1=∠2,试判断∠A和∠E的关系,并说明理由.【分析】(1)①可以由图象的横纵坐标可以直接得到自变量是时间、因变量是记忆的保持量,再由图象可得2小时后,记忆大约保持了40%;②由图象的意义说明15小时后,记忆的保持量是多少;③答案不唯一,根据自己的认识说一条相关信息即可;(2)首先根据∠1=∠2可得DE∥AC,进而得到∠E=∠EBC,再根据AD∥EB 可得∠A=∠EBC,进而得到∠E=∠A.【解答】解:(1)①根据图象可知:记忆的保存量随时间的变化而变化,∴在这个图形所表示的变化过程中自变量是时间、因变量是记忆的保持量,2小时后,记忆大约保持了40%;②图中点A表示的意义是15小时后,记忆的保持量是多少;③图中的遗忘曲线还告诉我随时间的加长,人的记忆保持量会逐渐减少,两个小时内减少的最快.(2)∠A与=∠E,理由:∵AD∥BE,∴∠A=∠3,又∵∠1=∠2,∴DE∥AB,∴∠E=∠3,∴∠A=∠E.【点评】此题主要考查了函数的图象、平行线的性质,关键是正确理解横纵坐标所表示的意义.13.(10分)李明准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶x千米,应付给甲公司的月租费y1元,应付给乙公司的月租费是y2元,y1、y2与x之间的函数关系的图象如图所示,请根据图象回答下列问题:(1)每月行驶的路程在多少时,租甲,乙两家公司的费用相同?(2)每月行驶的路程在什么范围内时,租甲公司的车合算?(3)若李明估计每月行驶的路程为2300千米时,租哪家合算?【分析】(1)根据图象所过的特殊点易求两直线的解析式;(2)方案设计需分类讨论,根据x的取值范围选择;(3)当x=2300时,y2<y1,所以租乙公司合算.【解答】解:(1)设y1=k1x,将(1500,2000)代入求出函数解析式为将y1=x;同理,设y2=k2x+b,将(0,1250),(1500,2000)代入,可得函数解析式为y2=x+1250.当x=1500时选甲、乙公司都可以(2)当x<1500时选甲公司.(3)选乙公司【点评】此题为一次函数的综合题,涉及求解析式,分类讨论,方案设计等知识,是一道很好的试题.14.(10分)如图表示一人骑自行车离家的距离与时间的关系,骑车者9时离开家,15时到家,根据图象回答问题:(1)到达离家最远的地方是什么时间?离家多远?(2)第一次休息时离家多远?(3)返回时的平均速度是多少?【分析】(1)根据折线统计图可知,李老师到达离家最远的地方距离他家是30千米;(2)统计图中,折线持平的就是李老师休息的时间,根据函数的图象解答即可;(3)李老师从13:00开始返回,到15:00到家,所以可用15:00﹣13:00进行计算即可得到李老师返回的时间,列式解答即可得到答案.【解答】解:(1)李老师到达距离家最远的地方是上午12:00,此时他离家有30千米;(2)第一次休息时离家17千米答:李老师第一次休息时离家17千米;(3)15:00﹣13:00=2(小时),30÷2=15千米/小时.答:李老师返回时的平均速度为15千米/小时.【点评】此题主要考查的是如何从折线统计图中获取信息,然后再根据信息进行分析、解释即可.15.(10分)甲、乙两人以相同路线前往离学校12km的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)随时间t(min)变化的函数图象,求每分钟乙比甲多行驶多少千米.【分析】分别根据甲、乙的图象计算出各自的速度即可求出每分钟乙比甲多行驶的路程.【解答】解:由图可知甲的行驶速度为:12÷24=0.5(km/min),乙的行驶速度为:12÷(18﹣6)=1(km/min),故每分钟乙比甲多行驶的路程为:1﹣0.5=0.5(km).【点评】本题考查了一次函数的图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.。

八年级函数图像练习题

八年级函数图像练习题

八年级函数图像练习题69264(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除函数图像专题1.已知某一函数的图象所示,根据图象回答下列问题:(1)确定自变量的取值范围;(2)求当x=﹣4,﹣2,4时y的值是多少?(3)求当y=0,4时x的值是多少?(4)当x取何值时y的值最大当x取何值时y的值最小(5)当x的值在什么范围内是y随x的增大而增大当x的值在什么范围内时y随x的增大而减小2.(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点3.(2015•南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个B.2个C.3个D.4个4.(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.5.(2008•菏泽)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.206.(2003•武汉)小李以每千克元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了()A.32元B.36元C.38元D.44元7 .(2015•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮9.(2014秋•海曙区期末)一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米10.(2014•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为cm,匀速注水的水流速度为cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.13.(2015秋•威海期中)如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC以每秒1个单位长的速度作匀速运动,到点C后停止运动;点Q由点C开始沿C﹣A﹣B以每秒2个单位长的速度作匀速运动,到点B后停止运动.若点P,Q同时开始运动,运动的时间为t(秒)(t>0).求当点P、Q运动时,△PCQ的面积S与t的函数关系式,并指出自变量t的取值范围.。

初二数学图像练习题

初二数学图像练习题

初二数学图像练习题一、简答题1. 画出函数y = 2x - 3的图像,并标出与x轴和y轴的交点。

2. 画出函数y = |x + 2|的图像,并标出顶点、与x轴和y轴的交点。

3. 画出函数y = -3|x - 1| + 2的图像,并标出顶点、与x轴和y轴的交点。

4. 画出函数y = x^2 - 4x + 3的图像,并标出顶点、与x轴和y轴的交点。

5. 画出函数y = -x^2 + 4x的图像,并标出顶点、与x轴和y轴的交点。

二、计算题1. 求函数y = 2x - 3的零点。

2. 求函数y = |x + 2|的零点。

3. 求函数y = -3|x - 1| + 2的零点。

4. 求函数y = x^2 - 4x + 3的零点。

5. 求函数y = -x^2 + 4x的零点。

6. 求函数y = 2x - 3在x = 4处的函数值。

7. 求函数y = |x + 2|在x = -3处的函数值。

8. 求函数y = -3|x - 1| + 2在x = 2处的函数值。

9. 求函数y = x^2 - 4x + 3在x = 2处的函数值。

10. 求函数y = -x^2 + 4x在x = 3处的函数值。

三、综合题1. 请画出函数y = -2x^2 + 3x - 1的图像,并标出顶点、与x轴和y 轴的交点。

2. 求函数y = -2x^2 + 3x - 1的零点。

3. 求函数y = -2x^2 + 3x - 1在x = 2处的函数值。

四、挑战题1. 请画出函数y = √x的图像,并标出与x轴和y轴的交点。

2. 求函数y = √x的零点。

3. 求函数y = √x在x = 4处的函数值。

以上是初二数学图像练习题,希望对你的数学学习有所帮助。

可以根据题目要求一一解答,或者将解答整理在一个表格中,以便进行更好的比对和学习。

加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数图像专题
1.已知某一函数的图象所示,根据图象回答下列问题:
(1)确定自变量的取值范围;
(2)求当x=﹣4,﹣2,4时y的值是多少
(3)求当y=0,4时x的值是多少
(4)当x取何值时y的值最大当x取何值时y的值最小
(5)当x的值在什么范围内是y随x的增大而增大当x的
值在什么范围内时y随x的增大而减小
2.(2015海南)甲、乙两人在操场上赛跑,他们赛跑的路
程S(米)与时间t(分钟)之间的函数关系如图所示,则
下列说法错误的是()
A.甲、乙两人进行1000米赛跑
B.甲先慢后快,乙先快后慢
C.比赛到2分钟时,甲、乙两人跑过的路程相等
D.甲先到达终点
3.(2015南通)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①
两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人
行程均为10km;③出发后小时,甲的行程比乙多3km;④甲
比乙先到达终点.其中正确的有()
A.1个B.2个C.3个D.4个
4.(2015济宁)匀速地向一个容器内注水,最后把容器注满,
在注水过程中,水面高度h随时间t的变化规律如图所示(图中
OABC为一折线),这个容器的形状是下图中的()
A.B.C.D.
5.(2008菏泽)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A
停止,设点P运动的路程为x,△ABP的
面积为y,如果y关于x的函数图象如图
所示,则△ABC的面积是()
A.10 B.16 C.18 D.20
6.(2003武汉)小李以每千克元的价格从批发市场购进若
干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的
每千克降价元,全部售完.销售金额与卖瓜的千克数之间的
关系如图所示,那么小李赚了()
A.32元 B.36元 C.38元 D.44元
7 .(2015聊城)小亮家与姥姥家相距24km,小亮8:00
从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车
沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的
行进路程S(km)与北京时间t(时)的函数图象如图所示.根
据图象得到小亮结论,其中错误的是()
A.小亮骑自行车的平均速度是12km/h
B.妈妈比小亮提前小时到达姥姥家
C.妈妈在距家12km处追上小亮
D.9:30妈妈追上小亮
9.(2014秋海曙区期末)一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A.2000米B.2100米C.2200米D.2400米
10.(2014南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.
请根据图中提供的信息,解答下列问
题:
(1)圆柱形容器的高为cm,匀
速注水的水流速度为cm3/s;
(2)若“几何体”的下方圆柱的底面积
为15cm2,求“几何体”上方圆柱的高
和底面积.
13.(2015秋威海期中)如图(1),等边三角形ABC的边长为8,点P由点B开始沿BC以每秒1个单位长的速度作匀速运动,到点C后停止运动;点Q由点C开始沿C﹣A﹣B以每秒2个单位长的速度作匀速运动,到点B后停止运动.若点P,Q同时开始运动,运动的时间为t(秒)(t>0).求当点P、Q运动时,△PCQ的面积S与t的函数关系式,并指出自变量t的取值范围.。

相关文档
最新文档