自动控制理论发展简史

合集下载

§1.2 自动控制理论发展概述

§1.2 自动控制理论发展概述

1.2自动控制理论发展概述自动控制理论是在人类征服自然的生产实践活动中孕育、产生,并随着社会生产和科学技术的进步而不断发展、完善起来的。

早在古代,劳动人民就凭借生产实践中积累的丰富经验和对反馈概念的直观认识,发明了许多闪烁控制理论智慧火花的杰作。

例如,我国北宋时代(公元1086~1089年)苏颂和韩公廉利用天衡装置制造的水运仪象台,就是一个按负反馈原理构成的闭环非线性自动控制系统;1681年DennisPapin发明了用做安全调节装置的锅炉压力调节器;1765年俄国人普尔佐诺夫(I.Polzunov )发明了蒸汽锅炉水位调节器等等。

1788,英国人瓦特(James Watt)在他发明的蒸汽机上使用了离心调速器,解决了蒸汽机的速度控制问题,引起了人们对控制技术的重视。

之后,人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。

实践中出现的问题,促使科学家们从理论上进行探索研究。

1868年,英国物理学家麦克斯韦(J.C.Maxwell)通过对调速系统线性常微分方程的建立和分析,解释了瓦特速度控制系统中出现的不稳定问题,开辟了用数学方法研究控制系统的途径。

此后,英国数学家劳斯(E.J.Routh)和德国数学家古尔维茨(A.Hurwitz)分别在1877年和1895年独立地建立了直接根据代数方程的系数判别系统稳定性的准则。

这些方法奠定了经典控制理论中时域分析法的基础。

1932年,美国物理学家奈奎斯特(H.Nyquist)研究了长距离电话线信号传输中出现的失真问题,运用复变函数理论建立了以频率特性为基础的稳定性判据,奠定了频率响应法的基础。

随后,伯德(H.W.Bode)和尼柯尔斯(N.B.Nichols)在20世纪30年代末和40年代初进一步将频率响应法加以发展,形成了经典控制理论的频域分析法,为工程技术人员提供了一个设计反馈控制系统的有效工具。

二战期间,反馈控制方法被广泛用于设计研制飞机自动驾驶仪、火炮定位系统、雷达天线控制系统以及其他军用系统。

1.3自动控制理论发展简史

1.3自动控制理论发展简史
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店 铺)
第一章 自动控制概述
1.3自动控制理论发展简史
自动控制理论发展简史
1.胚胎萌芽期(1945年以前) 自动控制技术广泛应用开始于欧洲工业革命时期 1788年瓦特发明离心式调速器 1868年麦克斯韦发表了“论调速器”,自动控制原理逐步 形成 1892年李雅普诺夫发表 “论运动稳定性的一般问题”
自动控制理论发展简史
3.现代控制理论时期(50年代末-60年代)
空间技术的发展提出了许多复杂控制问题 1957年苏联发射了第一颗人造地球卫星 1968年美国阿波罗飞船成功登月
催生了第二代控制理论————现代控制理论 以状态为基础的状态空间法,主要研究高性能、高精度
的多变量变参数复杂系统的控制问题
自动控制理论发展简 1927年反馈放大器正式诞生 内燃机的广泛应用,促进了飞机、汽车、船舶、机器制造
业和石油工业的发展,产生了伺服控制和过程控制 第二次世界大战,军事工业发展很快,飞机、雷达、火
炮上的伺服机构,总结了自动调节技术及反馈放大器技术 ,搭起了经典控制理论的架子。
•广泛应用于工农 业、国防及日常 生活
自动控制理论发展简史
4.大系统理论和智能控制理论时期(目前)
• 各学科相互渗透,要分析的系统越来越大,越来越复杂。 朝着 控制论、信息论和仿生学为基础的智能控制论发展。
• 此外,控制论还用于处理社会、经济、人口、环境等复杂问 题,出现了经济控制论、人口控制论等学科分支。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
自动控制理论发展简史
2.经典控制理论时期(1940-1960)
1945年贝塔朗菲《系统论》 1948年维纳《控制论:或关于在动物和机器中控制和通信的科学》 形成了完整的控制理论体———经典控制理论 以传递函数为基础的经典控制理论,主要研究单输入-单输 出、线性定常系统的分析和设计问题

自动控制理论发展

自动控制理论发展

自动控制理论发展1. 引言自动控制理论是现代工程学的重要分支之一,它涉及到机械、电子、计算机等多个学科的交叉和融合。

自动控制理论的发展可以追溯到19世纪末,随着科学技术的不断进步和应用领域的拓展,自动控制理论也得到了快速发展。

本文将从自动控制理论的起源,主要发展阶段以及当今的前沿研究领域等方面进行阐述。

2. 起源和发展自动控制理论的起源可追溯到19世纪末的工业革命时期。

当时,由于工业化的快速发展和机械化的需求,人们开始思考如何利用机械设备进行精确的控制。

这促使了自动控制理论的初步形成。

早期的自动控制系统主要基于机械装置,如自动调节阀、机械计算机等。

到了20世纪初,电气技术和电子技术的发展为自动控制理论的进一步发展提供了有力支持。

电气控制系统的出现和使用使得自动控制的范围得到了拓展,如电焊机、电力系统、电梯等。

同时,数学理论和控制理论的发展也为自动控制提供了重要的理论基础。

随着计算机技术的快速发展,自动控制理论进入了一个全新的阶段。

现代的自动控制系统主要基于数字计算机进行控制和计算,大大提高了控制系统的精确性和效率。

同时,人工智能和模糊控制等新兴技术的引入也为自动控制理论的应用带来了更多的可能性。

3. 主要发展阶段3.1 经典控制理论经典控制理论是自动控制理论的最早阶段,主要包括PID控制和频域分析等方法。

PID控制器是最简单且常见的控制器之一,它通过调节比例、积分和微分三个部分的参数来实现控制。

频域分析则是从频率的角度对控制系统进行分析和设计。

3.2 现代控制理论现代控制理论是在20世纪50年代至60年代逐渐发展起来的,它以状态空间方法为基础。

状态空间方法通过将系统的动态描述为一组状态方程,从而实现对系统的精确建模和分析。

这一阶段的代表性成果包括线性系统理论、最优控制理论等。

3.3 非线性控制理论非线性控制理论是自动控制理论的重要发展方向之一。

相比于线性系统,非线性系统的动态行为更加复杂,需要采用不同的建模和控制方法。

自动控制理论发展概况

自动控制理论发展概况

自动控制理论发展概况前控制是自动控制理论的起源阶段,主要在19世纪末至20世纪初发展起来。

当时主要研究控制系统的开-闭锁问题,即如何实现不同位置之间的切换控制。

此时的控制系统主要采用开放系统结构,输入信号与输出信号之间没有反馈环路。

该阶段的主要理论包括勒贝格同位、双位同位和电气继电器方法。

随着现代化生产的需要,自动控制理论的研究逐渐转向反馈控制。

反馈控制是通过不断感知系统输出信号,与给定的目标输出信号之间的差异来调整输入信号。

这种控制方式可以使系统对外部扰动和参数变化具有较好的鲁棒性。

控制技术的快速发展促使了反馈控制的普及和应用。

20世纪30年代,现代自动控制理论框架初步建立,产生了控制系统的数学描述、线性系统的稳定性分析和根轨迹法等方法。

20世纪40年代至70年代,现代控制理论得到了迅速发展和广泛应用。

控制系统的数学理论不断深化,控制效果逐渐得到提高。

特别是在航空、导弹、火箭、军事、化工和能源等领域,自动控制理论的应用取得了巨大成功。

在这一时期,经典控制理论和现代控制理论逐渐发展完善,研究了最优控制、鲁棒控制、自适应控制和模糊控制等控制方法。

20世纪70年代以后,现代控制理论进入了第三个阶段,即多模型自适应控制系、模型预测控制、神经网络控制和模糊分级控制系统等理论成果的出现。

同时,计算机技术和信息技术的迅猛发展也为控制理论的研究和应用提供了良好的条件。

现代控制理论注重系统建模、系统特性分析和系统控制方法的研究,提高了控制系统的鲁棒性和优化性能。

此外,随着科学技术的进一步发展,自动控制理论还涌现出一些新的理论和方法,如非线性控制理论、科学计量管控理论、模块化控制理论、混杂动态系统建模与分析方法等。

综上所述,自动控制理论经历了前控制、反馈控制和现代控制三个阶段的发展。

从最早的开-闭锁问题研究到现代的控制系统建模与优化控制,自动控制理论在科学研究和工程实践中发挥着重要作用,并且不断创新和完善。

经典自动控制的发展及简介

经典自动控制的发展及简介

功 放 器 率 大
电 、 速 、 机 减 器 调 器 压
(3) 复合控制系统
复合控制: 复合控制:是指把按偏差控制和按扰动控制相结合的控制系 统。 主要特点: 主要特点:
能够抑止强干扰; 能够抑止强干扰; 结构复杂
控制方式: 同时采用反馈控制(按偏差控制)和开环控制(按扰动控制) 控制方式: 同时采用反馈控制(按偏差控制)和开环控制(按扰动控制)
输 信 出 号 ( 际 温 实 炉 )
测 量 ( 睛 眼 )
温控系统——自动控制 温控系统——自动控制 ——
ub
ur
∆u
E
220
控制目标: 控制目标:要求炉子的温度恒定在期望的数值 上。 控制过程: 控制过程:
期 温 + 望 度 ur _ ub 热 偶 电 ∆u 实 温 际 度 炉 子
电 放 器 压 大
液位自动控制系统的方框图
扰动
方块称为环节,系统最基本的环节是控制器 执行器、 控制器、 方块称为环节,系统最基本的环节是控制器、执行器、传 感器和被控对象。它是信号的转换单元(功能单元)。 感器和被控对象。它是信号的转换单元(功能单元)。 带箭头的有向线条代表环节间信息传递的方向, 带箭头的有向线条代表环节间信息传递的方向,流入环节 为输入信号,流出环节为输出信号。 为输入信号,流出环节为输出信号。 图中带箭头的作用线表示信号的传递方向, 图中带箭头的作用线表示信号的传递方向,不代表实际物 料的流动方向。 料的流动方向。
r(t)
Time
(2)随动控制系统 )
随动系统: 随动系统:输出量能以一定精度跟随给定值变化的系 统称随动系统,又称为跟踪系统。 统称随动系统,又称为跟踪系统。这类系统的特点是 系统的给定值变化规律完全取决于事先不能确定的时 间函数。例如,火炮系统,卫星控制系统等。 间函数。例如,火炮系统,卫星控制系统等。 c(t)= r(t) c(t)= r(t) 为未知时间函数。 r(t)为未知时间函数。

自动控制原理自动控制理论发展历史

自动控制原理自动控制理论发展历史
自动控制的发展历史
第一阶段: 经典(自动)控制理论
经典控制理论即古典控制理论,也称为自动控制理论。主要 研究对象:对单输入单输出线性定常系统的分析和设计问题。它 的发展大致经历了以下几个过程:
一 萌芽阶段
如果要追朔自动控制技术的发展历史,早在两千年前中国就 有了自动控制技术的萌芽。
1
1. 两千年前我国发明的 指南车,就是一种开 环自动调节系 统。
13
第二阶段 现代控制理论
科学技术的发展不仅需要迅速地发展控制理论,而且也 给现代控制理论的发展准备了两个重要的条件—现代数学和 数字计算机。
现代数学,例如泛函分析、现代代数等,为现代控制理 论提供了多种多样的分析工具;而数字计算机为现代控制理 论发展提供了应用的平台。
在二十世纪五十年代末开始,随着计算机的飞速发展, 推动了核能技术、空间技术的发展,从而对出现的多输入多 输出系统、非线性系统和时变系统。
主要研究对象:多输入、多输出、时变参数、高精度 复杂系统的分析和设计问题。
14
1.五十年代后期,贝尔曼(Bellman)等人提出了状态分析 法;在1957年提出了动态规划。
1.1959年卡尔曼(Kalman)和布西创 建了卡尔曼滤波理论;1960年在控制 系统的研究中成功地应用了状态空间 法,并提出了可控性和可观测性的新 概念。
瓦特
5
1788年英国Watt发明的控制蒸汽机速度的离心式调速器
6
三 发展阶段
1. 1868年马克斯韦尔 (J.C.Maxwell)解决了蒸汽 机调速系统中出现的剧烈振 荡的不稳定问题,提出了简 单的稳定性代数判据。
马克斯韦尔(J.C.Maxwell)
7
2. 1895年劳斯(Routh)与赫 尔维茨(Hurwitz)把马克

自动控制理论发展史

自动控制理论发展史

自动控制理论发展史自动控制理论是研究如何设计、分析和实现自动控制系统的学科。

它涉及到数学、工程和物理等多个领域,经过数十年的发展,取得了广泛的应用和重要的成果。

本文将对自动控制理论的历史进行回顾和总结,探讨其发展的重要里程碑。

1.早期控制理论的起源在自动控制理论发展的早期阶段,人们主要关注如何通过机械装置实现自动控制。

18世纪末,雅各布·温特和约瑟夫·马里奥·雅科比开创了自动控制领域的先河。

他们分别发明了温特调节系统和雅科比的机械计算机,这两项发明被视为现代自动控制的重要基石。

2.经典控制理论的发展经典控制理论主要集中在线性系统的分析与设计上。

20世纪30年代,黑尔伯特正演算法的提出奠定了经典控制理论的基础,为后来的PID控制器奠定了基础。

此后,由于工程实践的需求,随着频率响应、根轨迹和复平面等概念的引入,经典控制理论逐渐成熟并被广泛应用。

3.现代控制理论的诞生随着科学技术的发展和对更高控制性能的需求,进一步推动了自动控制理论的发展。

20世纪40年代和50年代,现代控制理论开始崭露头角。

导纳法和态空间法等概念的提出为自动控制理论的进一步推进奠定了基础。

此外,奈奎斯特和布鲁克斯斯等学者的贡献,使得自动控制的频域分析和设计方法得以成为一门独立的学科。

4.控制理论的发展与应用随着计算机技术的发展,控制理论也得以推动和应用于更多领域。

20世纪60年代,数字控制技术的出现使得控制系统的精度和性能得到极大提升。

此后,随着自适应控制、鲁棒控制和优化控制等新概念的提出,控制理论迎来了一次次的飞跃。

特别是随着人工智能的兴起,基于神经网络和模糊逻辑的控制理论开始受到广泛关注。

5.未来的发展趋势随着科技的迅猛发展,自动控制理论也面临着新的挑战和机遇。

深度学习、强化学习等新兴技术的涌现将为控制理论的进一步发展提供巨大的潜力。

同时,面对日益复杂的工程系统和全球化的挑战,自动控制理论也需要不断创新和发展,以满足实际应用的需求。

自动控制发展的历程

自动控制发展的历程

自动控制发展的历程自动控制的发展可追溯至古代,然而,现代自动控制的概念始于19世纪末和20世纪初。

以下是自动控制发展的历程:1. 早期自动控制:早在古代,人们通过使用简单机械和水力设备实现了一定程度的自动化控制。

例如,古希腊的水钟可以自动记录时间,古埃及使用尼罗河水位来自动灌溉农田。

2. 工业革命时期:18世纪末到19世纪初的工业革命时期,自动控制的需求迅速增长。

发明家詹姆斯·瓦特改进了蒸汽机的自动控制系统,使其能够稳定运行。

3. 反馈原理的发现:20世纪初,数学家和工程师开始研究自动控制理论。

美国的尼科拉斯·洛蒙诺索夫提出了“反馈”原理,即通过测量系统的输出信号,并将其与期望输出进行比较,从而调节系统的输入信号。

这一原理成为自动控制系统的核心概念。

4. PID调节器的应用:20世纪20年代,自动调节器的一种形式PID(比例-积分-微分)调节器开始广泛应用于工业控制中。

PID调节器通过计算误差信号的比例、积分和微分,并根据计算结果来调节输入信号,以使系统达到稳定状态。

5. 计算机控制系统的发展:随着计算机技术的进步,自动控制系统得到了极大的发展。

20世纪50年代和60年代,数字计算机开始应用于自动控制系统,使得更加复杂的系统可以实现高度精确的自动化控制。

6. 现代自动控制的发展:近年来,自动控制系统的发展取得了巨大的进展。

传感器和执行器的技术更加先进,使得自动控制系统能够接收更多的信息,并更准确地执行控制任务。

此外,人工智能和机器学习的发展为自动控制系统带来了新的领域,例如自适应控制和智能控制。

总而言之,自动控制的发展经历了从简单机械到计算机控制的演变过程。

随着科技的不断进步和创新,自动控制系统将在各个领域继续发挥重要作用。

自动控制理论发展历史

自动控制理论发展历史

自动控制理论发展历史
自动控制理论作为一种科学技术,其发展史可以追溯到古代,但真正有效的自动控制系统实施是在20世纪。

在这一时期,微型计算机、微处理器和数字信号处理技术的发展为自动控制的发展提供了技术支持。

主要发展历史如下:
第一阶段:20世纪50年代,美国大规模投入军事科研,开发了许多用于无线电导航和飞机控制领域的自动控制系统,这个阶段以科研方面的发展为主,自动控制理论初步形成,但受到当时计算机能力有限的制约。

第二阶段:20世纪60年代,随着微机电子技术的迅猛发展,芯片电子技术和数字信号的处理技术的出现,推动了自动控制领域的发展。

这个时期,计算机的能力和性能得到了极大的改进,微型机控制也得到了广泛的应用,这样自动控制理论也不断完善,不同的控制算法也不断提出。

第三阶段:20世纪70年代,计算机技术、微处理机结构设计和控制算法等都得到了长足发展。

特别是当时的专家系统优化的控制算法和系统仿真技术的发展,极大地推动了虚拟自动控制技术的建立,使自动控制领域的研究有了更大的发展空间。

第四阶段:20世纪80年代,计算机技术的发展也不断提升。

自动控制理论发展

自动控制理论发展

自动控制理论是一门研究如何设计稳定、鲁棒和高性能控制系统的学科。

自动控制理论的发展可以分为以下几个阶段:
1. 经典控制理论阶段:20世纪前半叶,经典控制理论主要集中在线性系统的研究上,包括PID控制器、根轨迹法、频域分析等方法。

这些方法主要适用于线性、稳定、可预测的系统。

2. 现代控制理论阶段:20世纪60年代后期至70年代初期,现代控制理论开始崭露头角,状态空间方法、最优控制理论、鲁棒控制理论等相继涌现,为非线性、时变系统的分析与设计提供了新的思路。

3. 数字控制理论阶段:随着计算机技术的发展,数字控制理论应运而生。

数字信号处理技术的应用使得控制系统设计更加灵活,同时也促进了实时控制的发展。

4. 智能控制理论阶段:近年来,随着人工智能和机器学习的快速发展,智能控制理论逐渐引起关注。

模糊控制、神经网络控制、遗传算法等方法被引入到控制领域,为复杂系统的建模与控制提供了新的思路。

5. 网络化控制理论阶段:随着物联网和云计算技术的快速发展,网络化控制理论成为一个新的研究热点。

研究者们开始探索在网络环境
下的控制系统设计与实现,涉及到网络延迟、数据丢失、安全性等问题。

总的来说,自动控制理论的发展经历了经典理论、现代理论、数字化、智能化和网络化等多个阶段,不断地推动着控制理论与技术的进步,为各种工程和科学应用提供了强大支持。

自动控制理论发展简史

自动控制理论发展简史

自动控制理论发展简史18世纪末,瓦特发明了蒸汽机,引发了对自动控制的兴趣。

他设计了第一个调速装置,来控制蒸汽机的转速。

这个装置利用负反馈的原理,测量蒸汽机的转速并自动调节阀门的开度,以保持恒定的转速。

19世纪,飞行员的研究对自动控制理论的发展有着重要影响。

塞巴斯蒂安·勒米特尔和尤金·尤尔·布雷克特设计了第一个用于自动驾驶的飞行器。

他们使用了基于机械原理的自动控制系统,通过磁针来检测航向的偏差,并用风力来纠正偏差。

20世纪初,焦耳指出了负反馈的重要性,他认为它是自动控制系统稳定性的关键。

他的工作为自动控制理论奠定了基础,并在之后的数十年里,负反馈成为自动控制系统设计的主要原则。

20世纪20年代,美国工程师哈罗德·布莱克设计了第一个比例积分(PID)控制器。

这个控制器是基于系统输出与期望输入之间的误差,调整比例、积分和微分参数,以控制系统输出。

PID控制器一直是工业中最常用的控制器之一,直到今天仍然广泛应用。

在20世纪的前半叶,随着工程师对系统建模和分析的研究,出现了数学控制理论的发展。

拉普拉斯提出了拉普拉斯变换,将微分和积分方程转化为代数方程。

这一理论为分析和设计线性系统提供了强有力的工具。

二战期间,自动控制理论得到了飞机、导弹和火炮等军事应用的推动。

由于需要高精度和快速的控制,工程师们开始研究更加复杂的控制理论。

鲁斯特·亨利·尼科尔斯和尼科尔斯-克鲁赛尔理论提供了一种用频域方法来分析非线性系统的方法。

20世纪50年代,随着电子技术的发展,计算机控制系统开始兴起。

计算机提供了更强大的处理能力和更复杂的算法,使得控制系统设计变得更加灵活和精确。

20世纪60年代,状态空间理论的发展成为自动控制理论的重要里程碑。

状态空间理论将控制系统建模为状态、输入和输出的数学模型,使得系统分析和设计更加方便和直观。

到了21世纪,自动控制理论继续发展,涉及的领域越来越广泛。

自动控制理论的发展

自动控制理论的发展
(3)只讨论系统输入与输出之间的关系,而忽视系统的内 部状态,是一种对系统的外部描述方法。
应该指出的是,反馈控制是一种最基本最重要的控制 方式,引入反馈信号后,系统对来自内部和外部干扰的响 应变得十分迟钝,从而提高了系统的抗干扰能力和控制精 度。与此同时,反馈作用又带来了系统稳定性问题,正是 这个曾一度困扰人们的系统稳定性问题激发了人们对反馈 控制系统进行深入研究的热情,推动了自动控制理论的发 展与完善。因此从某种意义上讲,古典控制理论是伴随着 反馈控制技术的产生和发展精选而PPT逐课件渐完善和成熟起来的。 3
Matatlab软件为k仿真—建模、分析和仿真
精选PPT课件
7
1.5 控制系统的基本概念
1.开环控制与闭环控制
1).开环控制
开环控制是指系统的被控制量(输出量) 只受控于控制作用,而对控制作用不能 反施任何影响的控制方式。采用开环控
制的系统称为开环控制系统。例如:图
以辨识。
智能控制是从“仿人”的概念出发的。一般认为,其方法包 括学习控制、模糊控制、神经元网络控制、和专家控制等方法。
1.4 控制系统的计算机辅助设计
1.控制系统的数字化特点
含有大量的矩阵运算
Fortan /C 科学计算
频域、时域分析
控制模型图形化
2.开发平台:
以计算机为工具,进行控制系统的设计与仿真分析
第二阶段:现代控制理论的兴起和发展;
第三阶段:大系统控制理论兴起和发展阶段;
第四阶段:智能控制发展精选阶PPT段课件。
1
经典控制理论
控制理论的发展初期,是以反馈理论为基础的自动调节原
理,主要用于工业控制。第二次世界大战期间,为了设计和制 造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统等基 于反馈原理的军用装备,进一步促进和完善了自动控制理论的 发展。

自动控制理论

自动控制理论

➢ 放大机构-----提高系统的控制精度
➢ 执行元件-----驱动被控对象,以改变被控制的量
2020/5/1
第一章 绪论
6
自动控制理论
为了控制系统的表示简单明了,控制工程中一般用方框图表示系统 的各个组件,组件的基本组成单元如图1-4所示,其中图a)为引出点, 图 b)为比较点,图 c)部件的框图。
➢ 随动控制系统的输入是一个变化量,要求系统的被控制量能快速准确地跟 随友考输入信号的变化而变化
连续控制系统和离散控制系统
按系统内部传输信号的性质分为连续控制和离散控制系统。
➢ 控制系统中各部传输信号都是时间T的连续函数,则称这类系统为连
续控制系统 ➢ 若在控制系统内部有一个或一个以上的信号是时间T的离散信号,则称 这类系统为离散控制系统。计算机控制系统是一种常见离散控制系统。
二、快速性
要求系统的输出响应具有一定的快速性,它是系统的一个重要性能指标。
三、稳定精度
控制系统的稳态精度通常是用它的稳态误差来表示,稳态误差越小,系 统的控制精度就越高。
本课程要研究两大课题
➢ 对于一个具体的控制系统,如何从理论上对它的动态性能和稳定精度进 行定性的分析和定量的计算。 ➢ 根据对系统性能的要求,如何合理地设计校正装置,使系统的性能能全 面地满足技术上的要求。
美国数学家维纳把那时发表的有关控制方面的理论称为“控制论”。
2020/5/1
第一章 绪论
2
自动控制理论
20世纪60年代前的控制理论----经典控制理论。经典控制理论研究的是单输入— 单输出线性定常系统的分析与设计,所用的数学工具是常微分方程和复变函数。
20世纪60年代后所提出的控制理论---现代控制理论。用这种理论能分析与设计 多输入—多输出,高精度和参数时变系统的分析与设计,其内容有状态空间分析 法,最优控制原理最优估计、系统辨识、大系统理论、模糊控制与预测控制、智 能控制等,它们所研究的问题和所用的数学工具也各不相同。

自动控制理论发展史

自动控制理论发展史

到现在,自动化有关的研究机构越来越细分,如机械工业自动化所、冶金自动化所等。自动化学会挂靠在自动化所,所作的工作是研究自动化还有什么发展余地,像是模式识别。
控制论在中国的传播
苏联三位重量级科学家索保列夫(Sergei Sobolev,1 908-1989) 、哲托夫(AnatoliiIv anovichK itov) 、李亚普诺夫联合发表的文章,其中就控制论的科学意义、电子计算机与神经系统、控制论的实用意义三部分,对控制论进行了深刻的阐述。文章指出:“我们的一些哲学家犯了一个严重的错误:他们没有分析清楚问题的本质,就去否定这一新的科学方向的意义⋯⋯”。
自动控制的起源(续)
这种过度的分工,是不得不然的,是越演越烈的。由一行分成三十六行,由三十六行分成三百六十行,由三百六十行,分成三千六百行,二十世纪的科学家,不下三万六千行了。 这种局面的形成,产生了两个副作用, 是行与行间形成了许多无人管的地带; 甲行所研究出的程序、方法、 或设备,可能对乙行有极大的效用,但乙行常无从利用起,依然是从头开始。 哈佛医学院的谈话会,正是在这种气候下产生的。 而就由这个会中产生了『自动控制』的基本观念。
钱学森-扭转一个学科的命运
1954 年《工程控制论》出版,并迅速地被译成德、俄、中文版。书中系统地揭示了控制论对自动化、航空、航天、电子、通信等科学技术的意义和深远影响,写的全是技术科学,并未触及到人类这种动物的尊严。包括前苏联在内的世界各国科学界立即接受了这一新学科,从而吸引了大批数学家、工程技术学家从事控制论的研究,推动了五六十年代该学科发展的高潮。
自动控制理论的发展史
CLICK HERE TO ADD A TITLE
1
相对论、量子力学以及控制论被认为是20世纪的三项伟大科学成就。

自动控制理论发展史

自动控制理论发展史

自动控制理论发展史
自动控制理论的发展可以追溯到17世纪,那时法国的理论家和发明家巴斯德(Basil)首次提出了“称量”的概念,这有助于他设计出一种物体重量可以自动调整的测量仪器,他认为,可以在重力的作用下自动控制物体重量的概念。

18世纪初,英国的工程师威廉·劳伦斯(William Lawrence)将该理论应用于蒸汽机的负荷控制,他成功地设计出了一种蒸汽机燃料调节系统,可以根据蒸汽机转速变化自动调节燃料的流量,从而控制蒸汽的压力。

20世纪初,美国科学家威廉·马斯特森(William M. Mason)在理论和实践上发展了自动控制理论,以及它在一些领域的应用,他设计出了第一台自动飞行机器人,以自动调节飞机的高度、速度和航向,由此,自动控制技术被广泛应用于航空领域。

20世纪20年代,美国的科学家弗兰克·迪杰斯特拉普(Frank D.J.Stump)提出了“反馈控制”理论,他完成了大量的实验研究,确定了反馈控制系统的概念和原理。

20世纪30年代,埃利·施蒂利克(Erle S.Steele)开展了反馈控制系统的模拟实验。

自动控制理论发展简史

自动控制理论发展简史

自动控制理论发展简史(经典部分)牛顿可能是第一个关注动态系统稳定性的人。

1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。

他假设引力与质点到中心距离的q 次方成正比。

牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。

而当q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上。

在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。

特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。

1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。

并因此成为法国科学院副院士。

虽然他的论证今天看来并不严格,但他的工作对后来李亚普诺夫的稳定性理论有很大的影响。

直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。

主要是天文学的问题。

在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。

James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人。

在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。

Maxwell的工作开创了控制理论研究的先河。

Maxwell是一位天才的科学家,在许多方面都有极高的造诣。

他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。

目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。

约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。

自动控制理论发展史

自动控制理论发展史

经典控制理论经典控制理论,以单变量控制,随动/调节为主要内容,以微分方程和传递函数为数学模型,所用的方法主要以频率响应法为主。

数学工具:微分方程,复变函数(一)、经典控制理论阶段闭环的自动控制装置的应用,可以追溯到1788年瓦特(J.Watt)发明的飞锤调速器的研究。

然而最终形成完整的自动控制理论体系,是在20世纪40年代末。

最先使用反馈控制装置的是希腊人在公元前300年到1年中使用的浮子调节器。

凯特斯比斯(Kitesibbios)在油灯中使用了浮子调节器以保持油面高度稳定。

19世纪60年代期间是控制系统高速发展的时期,1868年麦克斯韦尔(J.C.Maxwell)基于微分方程描述从理论上给出了它的稳定性条件。

1877年劳斯(E.J.Routh),1895年霍尔维茨(A.Hurwitz)分别独立给出了高阶线性系统的稳定性判据;另一方面,1892年,李雅普诺夫(A.M.Lyapunov)给出了非线性系统的稳定性判据。

在同一时期,维什哥热斯基(I.A.Vyshnegreskii)也用一种正规的数学理论描述了这种理论。

1922年米罗斯基(N.Minorsky)给出了位置控制系统的分析,并对PID三作用控制给出了控制规律公式。

1942年,齐格勒(J.G.Zigler)和尼科尔斯(N.B.Nichols)又给出了PID控制器的最优参数整定法。

上述方法基本上是时域方法。

1932年柰奎斯特(Nyquist)提出了负反馈系统的频率域稳定性判据,这种方法只需利用频率响应的实验数据。

1940年,波德(H.Bode)进一步研究通信系统频域方法,提出了频域响应的对数坐标图描述方法。

1943年,霍尔(A.C.Hall)利用传递函(复数域模型)和方框图,把通信工程的频域响应方法和机械工程的时域方法统一起来,人们称此方法为复域方法。

频域分析法主要用于描述反馈放大器的带宽和其他频域指标。

第二次世界大战结束时,经典控制技术和理论基本建立。

机械工程控制基础课件第四节 自动控制理论的发展

机械工程控制基础课件第四节 自动控制理论的发展
❖1787年,James Watt 为控制蒸汽机速度设计的离心调节器, 是自动控制领域的第一项重大成果。
❖1868年,英国J.C 麦克斯韦首先解释了瓦特速度控制系统中 出现的不稳定问题。1892年李雅普诺夫用严格的数学分析方法 论述了稳定性问题,至今仍然是分析稳定性的重要方法。
❖1932年,Nyquist提出了一种根据系统的开环频率响应(对 稳态正弦输入),确定闭环系统稳定性的方法。
如:汽车看成是一个具有两个输入 (驾驶盘和加速踏板)和两个输出(方向和 速度)的控制系统。
机械工程控制基础
第一章 绪 论
经典控制理论与现代控制理论比较
项目
经典控制理论
现代控制理论
研究对象 描述方法 研究办法
线性定常系统 (单输入、单输出)
传递函数 (输入、输出描述)
根轨迹法和频率法
线性、非线性、定常、 时变系统
这一时期的主要代表人物有庞特里亚金、贝尔曼(Bellman) 及卡尔曼(R.E.Kalman,1930~)等人。庞特里亚金于1961 年发表了极大值原理;贝尔曼在1957年提出了动态规化原则; 1959年,卡尔曼和布西发表了关于线性滤波器和估计器的论文, 即所谓著名的卡尔曼滤波。
机械工程控制基础
第一章 绪 论
机械工程控制基础
第一章 绪 论
❖20世纪40年代,频率响应法为闭环控制系统提供了一种可 行方法,Evans提出并完善了根轨迹法。
❖1948年,美国数学家N.Wiener出版《Cybernetics》是一个 控制科学里程碑。《控制论》的副标题是关于人、动物及其通 讯的科学。
❖20世纪50年代末,控制系统设计问题的重点从设计许多可行 系统中的一种系统,转到设计在某种意义上的最佳系统。

论自动控制理论的发展历程

论自动控制理论的发展历程

论自动控制理论的发展历程随着社会生产和科学技术发展,自动控制技术在不断进步、不断完善起来。

控制理论向更纵深、更广阔的领域发展,无论在数学工具、理论基础、还是在研究方法上都产生了实质性的飞跃,在信息与控制学科研究中注入了蓬勃的生命力,启发并扩展了人的思维方式,引导人们去探讨自然界更为深刻的运动机理。

1 自动控制理论的简介1.1 自动控制的定义自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。

自动控制是相对人工控制概念而言的。

自动控制是工程科学的一个分支。

它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要的值。

从方法的角度看,它以数学的系统理论为基础。

我们今天称作自动控制的是二十世纪中叶产生的控制论的一个分支。

1.2 自动控制理论的基本概念在已知控制系统结构和参数的基础上,求取系统的各项性能指标,并找出这些性能指标与系统参数间的关系就是对自动控制系统的分析,而在给定对象特性的基础上,按照控制系统应具备的性能指标要求,寻求能够全面满足这些性能指标要求的控制方1/ 6案并合理确定控制器的参数,则是对自动控制系统的分析和设计。

1.3 自动控制的历史利用反馈来控制系统有着悠久的历史。

最早的反馈控制出现在公元前330年的古希腊,运用在一种改进的浮球控制器装置上。

现代欧洲的第一个反馈系统出现在15世纪荷兰人发明的温度控制器中。

18世纪,瓦特的蒸汽机离心调速器被公认是第一台应用在工业生产中的自动反馈控制器,这是将自动控制技术应用到工业中的最早代表。

1932年奈奎斯特提出了研究控制系统的频率发。

1948年伊文思提出了根轨迹法,这两大重大贡献,是自动控制理论和控制技术发展史上的里程碑。

建立在频率法和根轨迹法基础上的控制理论成为经典控制理论。

第二次世界大战前,美国和西欧的自动控制理论,在发展方式上与俄国和东欧有很大差别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制理论发展简史(经典部分)牛顿可能是第一个关注动态系统稳定性的人。

1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。

他假设引力与质点到中心距离的q 次方成正比。

牛顿发现,假设q>-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。

而当q≤-3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上。

在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。

特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。

1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。

并因此成为法国科学院副院士。

虽然他的论证今天看来并不严格,但他的工作对后来李亚普诺夫的稳定性理论有很大的影响。

直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。

主要是天文学的问题。

在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。

James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人。

在他1868年的论文“论调节器”(Maxwell J C.On Governors. Proc. Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。

Maxwell的工作开创了控制理论研究的先河。

Maxwell是一位天才的科学家,在许多方面都有极高的造诣。

他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。

目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。

约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员。

这项两年一次的奖授予在该委员会所选科学主题方面竞争的最佳论文。

1877年的Adams Prize的主题是“运动的稳定性”。

E.J.Routh在这项竞赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U.K.:Macmillan,1877)。

Routh的这一成果现在被称为劳斯判据。

Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论。

Edward John Routh 1831年1月20日出生在加拿大的魁北克。

他父亲是一位在Waterloo服役的英国军官。

Routh 11岁那年回到英国,在de Morgan指导下学习数学。

在剑桥学习的毕业考试中,他获得第一名。

并得到了“Senior Wrangler”的荣誉称号。

(Clerk Maxwell排在了第二位。

尽管Clerk Maxwell当时被称为最聪明的人。

)毕业后Routh开始从事私人数学教师的工作。

从1855年到1888年Routh教了600多名学生,其中有27位获得“Senior Wrangler”称号,建立了无可匹敌的业绩。

Routh于1907年6月7日去世,享年76岁。

Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一种方法(Hurwitz A. On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen,vol.46:273-284,1895)。

Hurwitz的条件同Routh的条件在本质上是一致的。

因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据。

1892年,俄罗斯伟大的数学力学家A.M.Lyapunov(1857.5.25-1918.11.3)发表了其具有深远历史意义的博士论文“运动稳定性的一般问题”(The General Problem of the Stability of Motion,1892)。

在这一论文中,他提出了为当今学术界广为应用且影响巨大的李亚普诺夫方法,也即李亚普诺夫第二方法或李亚普诺夫直接方法。

这一方法不仅可用于线性系统而且可用于非线性时变系统的分析与设计。

已成为当今自动控制理论课程讲授的主要内容之一。

Lyapunov是一位天才的数学家。

他是一位天文学家的儿子。

曾从师于大数学家P.L.Chebyshev(车比晓夫),和A.A.Markov(马尔可夫)是同校同学(李比马低两级),并同他们始终保持着良好的关系。

他们共同在概率论方面做出过杰出的成绩。

在概率论中我们可以看到关于矩的马尔可夫不等式、车比晓夫不等式和李亚普诺夫不等式。

李还在相当一般的条件下证明?在控制系统稳定性的代数理论建立之后,1928年至1945年以美国AT&T公司Bell实验室(Bell Labs)的科学家们为核心,又建立了控制系统分析与设计的频域方法。

1928年8月2日,Harold Black(1898-1983),在前往Manhattan西街(West Street)的上班途中,在Hudson 河的渡船Lackawanna Ferry上灵光一闪,发明了在当今控制理论中占核心地位的负反馈放大器。

由于手头没有合适的纸张,他将其发明记在了一份纽约时报(The New York Times)上,这份早报已成为一件珍贵的文物珍藏在AT&T的档案馆中。

当时的Black年仅29岁,从Worcester Polytechnic Institute获得电子工程学士毕业刚六年。

是西部电子公司工程部(这个部后来成为1925年成立的Bell Labs的核心)的工程师,正在从事电子管放大器的失真和不稳定问题的研究。

Black首先提出了基于误差补偿的前馈放大器,在此基础上最终提出了负反馈放大器并对其进行了数学分析。

同年Black就其发明向专利局提出了长达52页126项的专利申请,但直到九年之后,当Black和他在AT&T的同事们开发出实用的负反馈放大器和负反馈理论之后,Black 才得到这项专利。

反馈放大器的振荡问题给其实用化带来了难以克服的麻烦。

为此Harry Nyquist(1889-1976)和其他一些A T&T的通讯工程师介入了这一工作。

Nyquist于1917年在耶鲁大学(Yale)获物理学博士学位,有着极高的理论造诣。

1932年Nyquist发表了包含著名的“奈奎斯特判据”(Nyquist criterion)的论文,并在1934年加入了Bell Labs。

Black关于的负反馈放大器的论文发表在1934年,参考了Nyquist的论文和他的稳定性判据。

这一时期,Bell实验室的另一位理论专家,Hendrik Bode(1905-1982)也和一些数学家开始对负反馈放大器的设计问题进行研究。

Bode是一位应用数学家,1926年在俄荷俄州立大学(Ohio State)获硕士;1935年在哥伦比亚大学(ColumbiaUniversity)获物理学博士学位。

1940年,Bode引入了半对数坐标系,使频率特性的绘制工作更加适用于工程设计。

1942年,H.Harris引入了传递函数的概念。

用方框图、环节、输入和输出等信息传输的概念来描述系统的性能和关系。

这样就把原来由研究反馈放大器稳定性而建立起来的频率法,更加抽象化了,因而也更有普遍意义,可以把对具体物理系统,如力学、电学等的描述,统一用传递函数、频率响应等抽象的概念来研究。

不久拉普拉斯变换就被应用到分析自动调节系统问题上,并取得了显著成效。

传递函数就是在拉普拉斯变换的基础上引入的。

至1945年,控制系统设计的频域方法,“波德图”(Bode plots)方法,已基本建立在经典控制理论中,根轨迹法占有十分重要的地位。

它同时域法,频域法可称是三分天下。

美国电信工程师W.R.Evans在这里包打天下,他的两篇论文“Graphical Analysisof Control System, AIEE Trans. Part II,67(1948),pp.547-551.”和“Control System Synthesis by Root Locus Method, AIEE Trans. Part II,69(1950),pp.66-69”即已基本上建立起根轨迹法的完整理论。

Evans所从事的是飞机导航和控制,其中涉及许多动态系统的稳定问题,因此其已经又回到70多年前Maxwell和Routh曾做过的特征方程的研究工作。

但Evans用系统参数变化时特征方程的根变化轨迹来研究,开创了新的思维和研究方法。

Evans方法一提出即受到人们的广泛重视,1954年,钱学森即在他的名著“工程控制论”中专用两节介绍这一方法,并将其称为Evans方历史上的三本重要著作在控制理论发展的历史上有三部著作特别值得一提,即(1) 目前被作为信息论开端的香农(Claude Elwood Shannon,1916-)的论文:《通讯的数学理论》(A Mathematical Theory of Communication)1948年发表在《贝尔系统技术杂志》第27卷。

这篇论文同其1949年发表的论文《噪声中的通讯》(Communication in Presence of Noise.Proc.IRE,37,10-21)奠定了信息论的基础。

(2) 控制论创立者维纳(Norbert Wienner,1894-1964)的经典论著:《控制论,或关于在动物和机器中控制和通讯的科学》(Cybernetics or Control and Communication in the annimal and the machines. 1948)(3) 钱学森(Tsien H S,1991-)的著作《工程控制论》(Engineering Cybernetics. 1954)这三部著作对人类社会有着巨大的影响,产生了新型的综合性基础理论:控制论,信息论和工程控制论。

在中国,1954年出版了由刘豹编写的第一本自控专著《自动控制原理》(上海:中国科学图书仪器公司、1954)。

相关文档
最新文档