初一数学 正数与负数教案

合集下载

初一数学正负数教案5篇

初一数学正负数教案5篇

初一数学正负数教案5篇初一数学正负数教案1一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;假如一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。

2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(由于全部的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地说明相反数,援助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即假设a0,那么∣a∣=a. 假设a=0,那么∣a∣=0. 假设a0,那么∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算1. 有理数的加法知识点:有理数的加法法那么:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,假设有互为相反的数,可利用它们的和为0的特点。

正数和负数说课稿(优秀4篇)

正数和负数说课稿(优秀4篇)

正数和负数说课稿(优秀4篇)正数和负数说课稿篇一教学目标1、知识掌握目标:使学生了解和掌握正数、负数和零的意义。

2、技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。

培养创新意识和精神、培养学生合作意识。

3、德育目标:通过负数的。

引入,对学生进行爱国主义教育。

教材分析与处理、学情分析。

本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。

活泼好动,思维敏捷,表现欲强,但思考问题不全面等。

采用探索引导式的学习方式。

重点、难点:重点:正数、负数的意义及如何区别意义相反的量。

难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。

教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。

依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。

教学过程教学环节教学内容设计意图一、创设情境导入新课本节课中,首先呈现给学生的是两幅冬日雪景动画画面。

教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?学生:(天气比较冷20°C 零下10°C 不能)教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题。

这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间。

二、获得新知加深理解教师:像零下10°C我们可以记着“-10°C”读做“负的”。

正数和负数教案人教版优秀6篇

正数和负数教案人教版优秀6篇

正数和负数教案人教版优秀6篇作为一名教职工,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面这6篇正数和负数教案人教版是作者为您整理的正数和负数教案范文模板,欢迎查阅参考。

正数和负数教案篇一三维目标一、知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。

二、过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。

三、情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣。

教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、 负数表示生活中具有相反意义的量。

2.难点:正数、负数概念的综合运用。

3.关键:通过对实例的进一步分析, 使学生认识到正负数可以用来表示现实生活中具有相反意义的量。

教具准备投影仪。

教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明, 有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。

分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。

负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利- 2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走- 7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)

初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。

2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。

本课内容是本章后续的有理数的相关概念及运算的基础。

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。

在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。

二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。

2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。

在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。

三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。

在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。

这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。

突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。

本节课的教学难点为:用正数、负数表示指定方向变化的量。

四、教学过程设计1、创设情境,引入新知教师展示教科书图1。

正数和负数教案 正数和负数教学反思优秀4篇

正数和负数教案 正数和负数教学反思优秀4篇

正数和负数教案正数和负数教学反思优秀4篇初一上册数学《正数和负数》教案篇一一、教学目标1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、学会用正负数表示实际问题中具有相反意义的量。

二、教学重点和难点重点:正负数的概念难点:负数的概念三、教具投影片、实物投影仪四、教学内容(一)引入师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4这些数,我们把它叫做什么数?生:自然数师:为了表示“没有”,又引入了一个什么数?生:自然数0师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数)师:可见数的概念是随着生产和生活的需要而不断发展的。

请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。

[板书:1、1正数与负数](二)新课教学1、相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1) 汽车向东行驶2.5千米和向西行驶1.5千米;(2) 气温从零上6摄氏度下降到零下6摄氏度;(3) 风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义请学生举出一些相反意义的量的实例。

教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、正数与负数师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

人教版初一数学上册正数、负数(教学设计)

人教版初一数学上册正数、负数(教学设计)

1.1 正数和负数教学设计【教学目标】1、使学生了解正数与负数是从实际需要中产生的;2、使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3、初步会用正负数表示具有相反意义的量;4、在负数概念的形成过程中,培养学生的观察、归纳与概括的能力。

【教学重难点】重点:正负数的概念难点:负数的概念及意义【教学用具】班班通多媒体【教学过程】一、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问。

现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

为了表示一个人、两只手、……,我们用到整数1,2,…。

为了表示半小时、四元八角七分、……,我们需用到分数和小数4.87、…。

为了表示“没有人”、“没有羊”、……,我们要用到0。

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

二、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃。

要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多。

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。

又如,某仓库昨天运进货物2 吨,今天运出货物 2吨,“运进”和“运出”,其意义是相反的。

同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。

甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。

其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”。

初一数学《正数和负数》教案(精选9篇)

初一数学《正数和负数》教案(精选9篇)

初一数学《正数和负数》教案(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初一数学《正数和负数》教案(精选9篇)教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。

正数与负数说课稿(精选10篇)

正数与负数说课稿(精选10篇)

正数与负数说课稿(精选10篇)正数和负数说课稿正数与负数说课稿正数与负数说课稿正数与负数说课稿(精选10篇)正数与负数说课稿1 一、说教材:1、教材的地位和作用:正数与负数是七年级数学第一章第一节的内容,属于数与代数领域的知识。

本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用。

2、学情分析:在本节课学习之前,学生在小学已经学习了自然数、分数等,对数已经有了一定的认识。

鉴于初一学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。

二、说教学目标:1、知识与技能目标:理解正负数的概念,会判断一个数是正数还是负数,明确0既不是正数也不是负数。

会列举出周围具有相反意义的量,并用正负数表示。

2、过程与方法目标:通过探索负数的形成过程,建立正数与负数的数感,培养想象能力、理论联系实际能力,并渗透“对立统一”,“实践第一”等辩证唯物主义观点。

3、情感态度目标:实际例子的引入,体验数学来源于生活,服务于生活,激发学习兴趣。

三、说教学重难点:1、重点:理解负数的意义,学会用正负数表示日常生活中具有相反意义的量。

2、难点:理解掌握负数的意义及0的含义,培养学生的观察、想象,归纳概括的能力。

四、说教法学法:1、说教法:采取启发式教学法及情感教学,辅以多媒体教学,增大教学密度。

2、说学法:鼓励学生积极主动地参与到教与学的整个过程。

五、说教学过程:本节课的教学过程设计分为五个部分:(1)创设情境,引入新课;(2)合作交流,探索新知;(3)巩固练习,熟练技能;(4)总结反思,发展情意;(5)布置作业;1、创设情境,引入新课首先观察课本上的三幅图,通过设置问题,复习小学学过的自然数、零和分数。

提出问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,那么要表示这两个温度该怎样来记呢?学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,从而引入新课。

初中数学七年级上册《正数和负数》教案(第1课时)

初中数学七年级上册《正数和负数》教案(第1课时)

《正数和负数》教案(第1课时)一、教学目标:1.了解正数和负数是怎样产生的;2.了解什么是正数和负数;3.理解数0表示的量的意义;4.会用正、负数表示具有相反意义的量,体会其中的符号化方法.二、教学重点:1.感受负数引入的必要性;2.初步使用正数和负数表示具有相反意义的量.三、教学过程:数的产生和发展离不开生活和生产的需要,哪位同学知道这些图片介绍的是什么内容?(1)天气预报北京冬季里某天的温度为-3℃~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一年增长-2.7%.“增长-2.7%”表示什么意思?夏新同学通过捡、卖废品,既保护了环境,又积攒了零花钱.下表是他某个月的部分收支情况:收支情况表年月像3,2,0.5……这样大于0的数叫做正数.像-3,-0.5,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数根据需要,有时在正数前面也加上“+”号,例如,+3,+2,+0.5就是3,2,0.5,.一个数前面的“+”、“-”号叫做它的符号.0是正数么?是负数么?答:0既不是正数,也不是负数.例1一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;答:这个月小明体重增长2kg,小华增长 -1kg,小强体重增长0kg .例2某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率.答:六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.从上面的例题中看到增长-1就是减少1,那么增长-6.4%是什么意思呢?什么情况下增长率是0?减少-1又是什么意思呢?哪些同学能再举些生活中存在的有关正数、负数的例子,并且指定其他同学将例子中的相关数据的意义给与解释呢?课堂练习:1.2010年我国全年平均降水量比上年增加108.7mm,2009年比上年减少81.5mm,2008年比上年增加53.5mm,用正数和负数表示这三年我国全年平均降水量比上年的增长量.答:2010年:+108.7mm;2009年:-81.5mm;2008年:+53.5mm.2.如果把一个物体向右移动1m记作移动+1m,那么这个物体又移动了-1米是什么意思?如何描述这时物体的位置?答:这个物体又向左移动了1m,即回到了原处.回顾本节课所学内容,并请同学们回答以下问题:1.什么是正数?什么是负数?2.你是如何理解数0的?3.你能举例说明引入负数的好处吗?补充练习1.以下各数+3、-2、0、+2.5、-9、-5中,正数有;负数有。

正数和负数说课稿6篇

正数和负数说课稿6篇

正数和负数说课稿6篇正数和负数说课稿1今天我讲的课是《正数和负数》,关于学生以前所学数的知识前面的李x老师已经作了很好的梳理,我现在只就本节课所涉及的相关内容进行说课。

一、我对课标要求的理解《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。

很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的生活基础。

因此《标准》将这一内容提前到小学阶段教学。

认识负数,对于小学生来说是数概念的一次拓展。

他们以往认识的整数、分数和小数都是算术范围内的数,建立负数的概念则使学生认数的范围从算术的数拓展到有理数,从而丰富了小学生对数概念的认识。

这样,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。

具体目标是:在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。

根据这一目标,北京义务教育课程改革试验教材四年级第八册出现了这崭新的一课《正数和负数》。

从《课标》中可以发现,本课的学习,意在让学生在熟悉的生活情境中初步认识负数,感受学习的内容就在我们的身边,拓展对数概念的认识。

并没有复杂的概念与计算,知识层次比较浅。

我认为,如何充分地展现负数的产生以及负数的魅力,激起学生学习负数的兴趣,是教师在设计本课时值得关注的问题。

二、研读教材的结果1、以前认识的数教材在1、2册安排完成对10以内、20以内和百以内数的认识以后在第4册安排了万以内数的认识;在第二学段四年级上册完成多位数的认识,至此,完成了对正整数的认识。

在第6册和第8册教材中分两次安排了分数与小数的初步认识2、以后将要认识的数以后逐步又在第8册和第10册分别又对小数和分数进一步认识,在11册一次完成对百分数的认识。

3、今天要学习的内容以上的这些数在第二学段即四年级第二学期第8册中出现了负数的认识,负数在数轴上显示都是"0"左边的数,这对于小学生来说,是数概念的一次拓展,使学生认数的范围从算术的数拓展的有理数,这是小学生学习有理数的开始。

初一数学教案3篇:用正数、负数表示温度教案

初一数学教案3篇:用正数、负数表示温度教案

初一数学教案3篇:用正数、负数表示温度教案一、教学目标:1.学生掌握温度的表示方法。

2.学生能够运用正数、负数表示不同温度。

3.学生通过实际的温度测量,加深对温度的理解。

二、教学重点:1.温度的表示方法。

2.正数、负数的运用。

三、教学难点:1.如何将正数、负数和温度相互联系起来。

2.如何进行实际温度测量,并将测量结果用数学符号表示出来。

四、教学方法:1.讲解与演示相结合。

2.小组合作探究。

3.互动问答,轻松愉快地学习。

五、教学步骤:1.导入环节引导学生想一想,在我们的生活中,温度有哪些表示方法?(可让学生举出几种日常温度表示方式,如摄氏度、华氏度、开尔文等等)2.温度概念的解释温度可以理解为物体分子的热运动程度,温度高表示分子热运动剧烈,温度低表示分子热运动缓慢。

3.何为正数、负数?正数指大于零的有理数,如1、2、3等等;负数指小于零的有理数,如-1、-2、-3等等。

4.温度的表示方法——以摄氏度为例摄氏度是一种用来表示温度的单位,常用符号为℃。

当温度为0℃时,表示纯净水的冰点;当温度为100℃时,表示纯净水的沸点。

在温度高于0℃时,用正数表示;在温度低于0℃时,用负数表示。

例如:室外温度为-10℃,可用数学符号表示为T= -10℃5.个人作业要求学生按照摄氏、华氏、开尔文三种温标分别对不同温度进行转换,体会不同温度单位的转换关系。

6.小组合作探究将学生分成小组进行合作探究,让他们实际测量不同环境下的温度,并将测量结果用正数、负数表示出来。

7.展示与总结让每个小组代表展示他们的测量结果,并进行对温度表示方法的总结。

六、教学评价:通过这次教学,学生掌握了温度表示方法,掌握了正数、负数的运用,并且能够进行实际的温度测量,并将结果用数学符号表示出来。

在小组合作探究中,学生有了更加深入的理解和体验。

在展示与总结中,学生归纳总结温度表示方法,从而更好地理解了温度的含义。

初一数学正负数教案

初一数学正负数教案

初一数学正负数教案教学目标:1. 理解正数与负数的概念,能够表示正数与负数;2. 能够用数轴表示正数与负数,并能够在数轴上表示给定的正数与负数;3. 通过具体的实例,了解正数与负数的加法与减法。

教学准备:1. 数轴模型;2. 小黑板或白板;3. 黑板笔或白板笔;4. 学生练习册或工作纸。

教学过程:一、导入新知识(5分钟)1. 提问:你们知道什么是正数和负数吗?请举例说明。

2. 学生回答后,教师解答:正数是大于零的数,如1、2、3等;负数是小于零的数,如-1、-2、-3等。

二、理解正数与负数(10分钟)1. 准备一个数轴模型,然后请学生观察数轴上的数字,并回答以下问题:a. 数轴的中央是什么数?(答案:0)b. 数轴的右侧是什么数?(答案:正数)c. 数轴的左侧是什么数?(答案:负数)2. 教师讲解:数轴上的右侧是正数,左侧是负数。

正数用正号“+”表示,负数用负号“-”表示。

三、数轴表示正数与负数(10分钟)1. 教师在黑板上画一条数轴,并标出0,然后请学生在数轴上表示以下数字:1,-2,3,-4,5。

2. 学生完成后,教师检查答案,并解释表示位置的意义。

四、正数与负数的加法(15分钟)1. 提问:正数与正数相加,结果是正数还是负数?为什么?2. 学生回答后,教师解答:正数与正数相加,结果是正数。

因为正数表示的是比零更大的数,两个正数相加,得到的数仍然比零更大。

3. 教师例举几个实际的加法例子,要求学生计算并给出结果。

例如:3+2=?,-4+2=?,-3+(-2)=?等。

4. 学生完成后,教师检查答案,并解释结果的意义。

五、正数与负数的减法(15分钟)1. 提问:正数与负数相减,结果是正数还是负数?为什么?2. 学生回答后,教师解答:正数与负数相减,结果可能是正数,也可能是负数,取决于两个数的大小关系。

3. 教师例举几个实际的减法例子,要求学生计算并给出结果。

例如:5-2=?,3-(-4)=?,-3-2=?等。

初一数学第一章教案

初一数学第一章教案

初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。

过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。

教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。

讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。

初一正数和负数的教案

初一正数和负数的教案

初一正数和负数的教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,一起看看初一正数和负数的教案!欢迎查阅!初一正数和负数的教案1理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么提问2 这种解法的局限性是什么(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q 0,方程无实根.二、探索新知用配方法解方程:(1)ax2-7x+3=0 (2)ax2+bx+3=0如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗什么情况下有解)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+bax=-ca配方,得:x2+bax+(b2a)2=-ca+(b2a)2即(x+b2a)2=b2-4ac4a2∵4a2 0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a 2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4初一正数和负数的教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗你知道七巧板是由哪些不同的图形组成的吗一千多年前,中国人发明了七巧板。

人教版初一数学教案正数和负数(精选9篇)

人教版初一数学教案正数和负数(精选9篇)

初一数学教案正数和负数人教版初一数学教案正数和负数(精选9篇)作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以让教学工作更科学化。

如何把教案做到重点突出呢?以下是小编为大家收集的初一数学教案正数和负数,希望能够帮助到大家。

初一数学教案正数和负数篇1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

正数和负数说课稿(3篇)

正数和负数说课稿(3篇)

正数和负数说课稿(3篇)篇一:正数和负数说课稿篇一尊敬的评委老师,您们好!今天我的说课是《正数与负数》,选用的教材是人教版数学(七年级上册)第一章第1节的内容。

一、教材1、地位、作用和特点本节是在学习自然数与分数之后编排的。

通过本节课的学习,既可以对知识进一步巩固和深化,又可以为后面学习有理数的相关知识打下基础,在学生学习数的只是中极其重要的一环。

所以《正数与负数》是本章的重要内容。

此外,《正数与负数》的知识与我们日常生活、生产有着密切的联系,因此学习这部分有着广泛的现实意义。

2、教学目标根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:(1)知识目标:了解负数的概念,且了解负数是如何产生的(2)能力目标:能够判断一个数的正负性,并能进行负数的运算(3)德育目标:感受到数学与生活的联系,了解负数是从生活实际需要中产生的3、教学的重点和难点:(1)教学重点:负数概念的理解(2)教学难点:负数的意义及零的内涵二、教学方法结合基于上面对教材的分析,根据我对研究性学习“启发式”教学模式和新课程改革的理论认识,结合初一学生抽象思维能力的发展并不成熟以及活泼好动的性格特点。

在教法上:创设问题情境,结合生活实际,给学生更加形象的认识,弥补学生在抽象思考能力上的不足。

教师讲解引导与学生自我归纳总结相结合,调动学生的积极性,使学生成为主动的学习者而不是被动的接受知识。

在学法上:鼓励学生积极参与到教学过程中来,对学生的回答与提问给出肯定,表扬。

保护并发展学生的学习兴趣。

引导学生向着更高的思维层次发展,注意引导他们的数学思维。

三、教学过程在上面的教学方法和理念的引领下,本节课的教学过程设计分为五个部分:(1)创设情境,引入新课;(2)合作交流,探索新知;(3)巩固练习,熟练技能;(4)总结反思,发展情意;(5)布置作业1、创设情境,引入新课首先我让学生观察课本上的三幅图,通过设置问题串,为学生复习小学学过的自然数和分数,让学生了解到数是因为实际生活的需要产生的,同时增加一个新的问题:某人有100元钱,另一人欠别人100元钱。

初中数学正负数教案

初中数学正负数教案

初中数学正负数教案教学目标:1. 理解正数和负数的定义及其性质;2. 能够正确识别正数和负数;3. 掌握正数和负数的运算规则;4. 能够运用正数和负数解决实际问题。

教学重点:1. 正数和负数的定义及其性质;2. 正数和负数的运算规则。

教学难点:1. 正数和负数的运算规则;2. 运用正数和负数解决实际问题。

教学准备:1. 教学课件或黑板;2. 教学卡片或小黑板;3. 练习题。

教学过程:一、导入(5分钟)1. 引入正数和负数的概念,让学生举例说明;2. 引导学生发现正数和负数的特点,如正数大于0,负数小于0等。

二、讲解(15分钟)1. 讲解正数和负数的定义及其性质,如正数的绝对值越大,其值越大;负数的绝对值越大,其值越小;2. 讲解正数和负数的运算规则,如加法、减法、乘法、除法等;3. 通过示例和练习,让学生掌握正数和负数的运算规则。

三、巩固(10分钟)1. 让学生完成一些有关正数和负数的练习题,如判断题、选择题、填空题等;2. 引导学生发现正数和负数在实际生活中的应用,如温度、存款等。

四、拓展(10分钟)1. 引导学生思考正数和负数的大小比较,如正数大于负数,负数小于正数等;2. 让学生举例说明正数和负数在实际生活中的应用,如购物、存钱等。

五、总结(5分钟)1. 回顾本节课所学的内容,让学生复述正数和负数的定义及其性质;2. 强调正数和负数在实际生活中的重要性。

教学反思:本节课通过引入正数和负数的概念,讲解其定义及其性质,让学生掌握了正数和负数的基本知识。

通过练习题和实际生活中的例子,让学生巩固了正数和负数的运算规则,并能够运用到实际问题中。

在教学过程中,注意引导学生发现正数和负数的特点,培养学生的观察能力和思维能力。

同时,通过拓展环节,让学生进一步了解正数和负数的应用,提高学生的实际问题解决能力。

总体来说,本节课达到了预期的教学目标,学生对正数和负数有了较为深入的理解和掌握。

初一数学正负数教案

初一数学正负数教案

初一数学正负数教案初一数学正负数教案篇1教学内容:正数和负数的初步熟悉,数轴的相关学问,相反数的相关学问,肯定值的相关学问。

教学目的:1、教学正数和负数的意义,会推断一个数是正数还是负数,会初步运用正数和负数表示相反意义的量。

2、能将学过的整数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、了解相反数的概念,把握相反数的表示法,能正确地求出一个数的相反数。

4、把握肯定值的表示法,给一个数,会求它的肯定值。

教材分析:本单元教材是为进一步学习正数和负数加减法打下基础,为学校数学学习做预备,是连接学校数学和学校数学的重要环节.教学的重点是相反数和肯定值,难点是正数和负数及数轴概念的理解。

教学课时:约6课时。

教学预备:小黑板、投影片。

教学内容:完成例题,“试一试”及练习一a组的1-7题,b组的1-3题。

教学目的:1、熟悉正数和负数,会用正数和负数表示一些常见的数量。

2、培育同学对相对的理解,培育创新的思维品质。

教学重点:负数的熟悉是本课的重点。

教学过程:一、创设情景:师:我们已经学过哪些数?出示气温图,说一说各数字表示的意思,找一找哪些是没有学过的?二、探究新知:1、师:你会读这些数字吗?试一试.师:像-1、-4、-8……这样的数都是负数。

师:为了和负数相对应,我们把以前学过的除零以外的数叫作正数,并可在前面加上符号“+”,读作正。

2、自学课本其次页的内容。

师:你还能举出一些正、负数的例子吗?3、教学例题出示例题,读题后说一说自己的想法。

明确:海平面以上用正数表示,海平面以下用负数表示。

4、试一试完成试一试的相关题目。

三、巩固拓展1、完成练习一a组的1-7题。

第4题要重点订正。

2、完成练习一b组的第1、2、3题。

四、小结师:本节课你有什么收获?初一数学正负数教案篇2学习目标:1.会用正.负数表示具有相反意义的量.2.通过正.负数学习,培育同学应用数学学问的意识.3.通过探究,渗透对立统一的辨证思想学习重点:用正.负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一.学前预备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导同学思索争论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导同学分析,再让同学独立完成例(1)一个月内,小明体重增加2kg,小华体重削减1kg,小强体重无变化,写出他们这个月的体重增长值;(2)20__年下列国家的商品进出口总额比上一年的变化状况是:美国削减6.4%,德国增长1.3%,法国削减2.4%,英国削减3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2023年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长—1kg,小强体重增长0kg.(2)六个国家2023年商品进出口总额的增长率:美国—6.4%,德国1.3%,法国—2.4%,英国—3.5%,意大利0.2%,中国7.5%.三.巩固练习从0表示一个也没有,是正数和负数的分界的角度引导同学理解.在同学的争论中简洁介绍分类的数学思想先不要给出有理数的概念.在例题中,让同学通过阅读题中的含义,找出具有相反意义的量,打算哪个用正数表示,哪个用负数表示.通过问题(2)提示同学审题时要留意要求,题中求的是增长率,不是增长值.四.阅读思索1页(教科书第8页)用正负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些大事可以用正负数表示允许误差吗?请举例.五.小结1.本节课你有那些收获?2.还有没解决的问题吗?六.应用与拓展1.必做题:教科书5页习题4.5.:6.7.8题2.选做题1)甲冷库的温度是—12°C,乙冷库的.温度比甲冷酷低5°C,则乙冷库的温度是.2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?初一数学正负数教案篇3教学目标:在熟识的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

初一数学教案:理解正负数加减法的运算规则

初一数学教案:理解正负数加减法的运算规则

初一数学教案:理解正负数加减法的运算规则一、教学目标1.1 知识目标(1)掌握正数和负数的概念。

(2)了解正数和负数之间的大小关系。

(3)掌握正数和负数的加减法运算规则。

1.2 能力目标(1)能运用正负数加减法运算规则解决实际问题。

(2)能够熟练地进行有理数的简单运算。

1.3 情感目标(1)培养学生认真听讲、认真思考、积极参与的态度。

(2)激发学生兴趣,提高他们学习数学的热情和自信心。

二、教学重、难点2.1 教学重点(1)正数与负数的加减法运算。

(2)运用加减法解决实际问题。

2.2 教学难点(1)正数和负数的运算规则。

(2)将实际问题转化为数学问题进行解决。

三、教学过程3.1 导入新课以实际问题为例,引导学生思考:举例:小明从家出发向左走了30米,又向右走了20米,最后又向左走了10米,请问小明离家有多远?让学生尝试用规定方向的走法来解决这个问题。

引导学生思考正负数的运用场景。

3.2 呈现新知(1)正数的概念引导学生思考,让学生尝试用实际应用的场景解释正数的含义,并让学生试着用自己的话描述一下正数。

正数表示有多少个单位,即表示数量的多少。

(2)负数的概念引导学生思考,让学生尝试用实际应用的场景解释负数的含义,并让学生试着用自己的话描述一下负数。

负数表示少了多少个单位,即表示数量的缺少。

(3)正数和负数之间的大小关系引导学生思考,让学生尝试用实际应用的场景解释正数和负数之间的大小关系,并让学生试着用自己的话描述一下正数和负数之间的大小关系。

(4)正数和负数的运算规则先以加法和减法为例,引导学生思考正数和负数的加减法运算规则。

在此基础上,学生可以通过解决实际问题,不断巩固正负数的加减运算规则。

3.3 同步练习通过练习,让学生熟悉并掌握正负数的加减规律。

3.4 拓展应用通过实际问题的求解,让学生将所学知识用于实际问题中,提升学生的理解和应用能力。

3.5 总结反思让学生进行知识回顾和总结,反思学习过程中存在的问题,并提出自己的看法和建议。

正数和负数教案

正数和负数教案

正数和负数教案正数和负数教案「篇一」预习提示1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境;2、理解正、负数表示一对具有相反意义的量,并会表示。

知识目标:会用正、负数表示相反意义的量。

能力目标:用正、负数表示实际生活中具有相反意义的量。

情感目标:体会正、负数在实际生活中的意义。

学习要求巩固一元一次方程解法,加强应用问题的训练,提高分析问题和解决问题能力。

课堂学习检测一、选择题1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为(A)13.4元(B)13.5元(C)13.6元(D)13.7元2.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为(A)3200元(B)3429元(C)2667元(D)3168元3.某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是(A)2150元(B)2200元(C)2250元(D)2300元4.一个商店以每3盘16元的价格购进一批录音带,又从另外一处以每4盘21元的价格购进比前一批数量加倍的录音带。

如果两种合在一起以每3盘k元的价格全部出售可得到所投资的20%的收益,则k值等于(A)17(B)18(C)19(D)20二、解答题5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水。

若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算)。

更多精彩推荐:初中>初一>数学>初一数学教案学习重、难点:用正、负数表示实际生活中具有相反意义的量学习过程:1、比比看谁快:(1)比0大的数叫___________,在___________前加上“-”号数叫负数;(2)把下列各数写入相应集合里:-10,6,―7,0,―2.25,―,10%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正数与负数
【教学目标】
了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数;会用正负数表示生活中常用的具有相反意义的量;培养学生的数学应用意识。

【内容简析】
本节是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

本节的重点是通过熟悉的实例引入负数的概念,使学生明确数学知识来源于实践又服务于实践。

能正确识别负数、用正负数表示具有相反意义的量是本节的难点。

教学中要特别强调“0”的特殊身份,明确“0”既不是正数,也不是负数,它是正、负数的分界点。

教学中应多结合实例加深对负数的认识。

【流程设计】
一、情景创设
1.引导学生回忆小学学过的数,并回答小学学过的最小的数是谁?是否存在比零小的数?在小学遇到0-2、3-5这类题会算吗?
2.你看过电视或听过广播中的天气预报吗?(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25°C,10°C,零下10°C,零下30°C。

为书写方便,将测量气温写成25,10,-10,-30,再如中国地形图上的海拔标注数据8848.13,-155之类的数是什么意思?怎样用数学来区分高出警戒水位1米与低于警戒水位1米呢?
二、新知探索
1.教师由以上实例归纳出正数与负数的描述性概念。

像25,10,8848,大于0的数叫正数;像-10,-30,-155这样在正数前面加上“-”(负号)的数叫做负数;0既不是正数也不是负数。

给出板书:
正数——大于0的数
负数——正数前面加“-”号的数(小于0的数)
0——既不是正数,也不是负数
说明:①负数前面的“-”号的读法,“-5”应读作“负5”;
②正数前面有时也可加上“+”(正)号,如将“5”写成“+5”;
③“0”是第一个自然数,可看作正数与负数的分界点,“0”的内涵很丰富,它不仅仅表示没有,在实际意义中,“0”是用来表示基准的数。

小资料:世界各国对负数的认识和接受也有一个过程。

如1484年法国数学家曾得到二次方程的一个负根,但他不承认它,说负数是荒谬的数。

1545年卡尔丹承认方程中可以有负根,但认为它是“假数”。

直到1831年还有数学家认为负数是“虚构”的,他还特意举了
一个“特例”来说明他的观点:“父亲56岁,他儿子29岁,问什么时候父亲的岁数将是儿子的两倍?”,通过列方程解得x= -2,他认为这个结果是荒唐的,他不懂得x= -2正是说明两年前父亲的岁数将是儿子的两倍。

三、范例共做
例1:所有正数组成正数集合,所有负数组成负数集合。

把下列各数中的正数和负数分别填在表示正数与负数集合的圈里:
-11, 4.8, +7.3, 0, -2.7, -61, 127, -8.12, -4
3
…… ……
正数集合 负数集合
例2:自己任意写出六个正数与六个负数分别填入相应的大括号里:
正数集合{ …}
负数集合{ …}
注:由于正数和负数都有无数个,在表示正数和负数的集合中常加上省略号。

例3:规定向前走为正,两个学生一组做游戏,如
甲:向前走2步 乙:2
甲:向后走3步 乙:-3
甲:-4 乙:向后走4步
甲:0 乙:原地不动
注:通过设计类似的游戏活动使学生加深对负数的认识。

四、巩固练习
1.-10表示支出10元,那么+50表示 ;
如果零上5度记作5°C ,那么零下2度记作 ;
如果上升10m 记作10m ,那么-3m 表示 ;
太平洋中的马里亚纳海沟深达11034米,可记作海拔 米(即低于海平面11034米)。

比海平面高50m 的地方,它的高度记作海拨 ;
比海平面低30m 的地方,它的高度记作海拨 ;
2.下面说法正确的是( )
A .正数都带有“+”号
B .不带“+”号的数都是负数
C .小学数学中学过的数都可以看作是正数
D .0既不是正数也不是负数
3.数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作 。

4.某物体向右运动为正,那么-2m 表示 ,0表示 。

5.一种零件的内径尺寸在图纸上是10±0.05(单位mm ),表示这种零件的标准尺寸是10mm ,加工要求最大不超过标准尺寸 ,最小不超过标准尺寸 。

五、小结提高
1.正数和负数表示的是一对相反意义的量,哪种意义为正是可以任意规定的。

如果把。

相关文档
最新文档