新人教版八年级数学下册第16章二次根式教案

合集下载

(完整版)新人教版八年级数学下册第16章二次根式教案

(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版

八年级数学下册第16章二次根式16.1二次根式(2)教案新版新人教版一、教材分析与处理(一)教材的地位和作用:《二次根式》是人教版义务教育课程标准实验教科书《数学》八年级下册第十六章第一节.二次根式是在学习平方根基础上将具体数字抽象化,并且基于学习二次根式定义的基础上对二次根式的性质进行进一步的探究,本节课为学习二次根式的计算等知识做好了铺垫.(二)教学目标:知识与技能目标:(a ≥0)是一个非负数,)2=a (a ≥0)和a a =2,并利用它们进行计算和化简.过程与方法目标:a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出)2=a (a ≥0),运用结论解题;通过具体数据的解答,(a ≥0),并利用这个结论解决具体问题.情感与价值目标:通过本节课的学习培养学生准确计算和化简的严谨的学习精神,培养学生观察、分析、发现问题的能力,并且通过探究感受学习的乐趣和获得成果的成就感,进一步增强学生自主参与意识. .(三)教学重点与难点:1.重点:a ≥0)是一个非负数,掌握()()02≥=a a a 、a a =2,并利用它们进行计算和化简.2.难点:引导学生自主探究推导得出()()02≥=a a a 、a a =2.二、学生情况分析及对策八年级学生已经学习了算数平方根,而且基本能够理解算数平方根的意义,并且能根据算数平方根进一步扩展探究二次根式的定义及二次根式有意义的条件,但是对于二次根式的意义及运算结果探究不深,而且有些同学不能深入理解二次根式的意义,这样学习本节课就产生了一定的困难.根据学生的实际情况和特点,我采取由特殊到一般,有简到难逐一探究、突破难点的教学方法进行本节课的教学.三、教法与学法1.教法:回顾旧知探究新知,教师设计情境,提出问题,引导学生通过观察,由具体到抽象,得到二次根式的性质,培养学生由特殊到一般的思想方法,先大胆猜想,再进一步探究,最终得到结论,并借助多媒体演示教学,增强课堂实例的直观性和启发性.2.学法:通过观察、猜想、分析、自主探究,得出二次根式的性质,增强数学思维能力.3.教学手段:借助电脑多媒体课件及视频辅助教学。

人教版八年级数学下册16.1二次根式(教案)

人教版八年级数学下册16.1二次根式(教案)
人教版八年级数学下册16.1二次根式(教案)
一、教学内容
本节课选自人教版八年级数学下册第16.1节,主题为“二次根式”。教学内容主要包括以下两个方面:
1.二次根式的概念与性质:理解二次根式的定义,掌握二次根式的性质,如乘除法则、平方差公式等。
2.二次根式的化简与运算:学会化简二次根式,掌握二次根式的加减乘除运算方法,并能解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如$\sqrt{a}$的表达式,其中$a$为非负实数。它是解决非整数平方问题的重要工具,广泛应用于数学和实际生活。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算矩形的对角线长度,通过二次根式的应用,我们可以轻松解决这一问题。
(5)实际应用:运用二次根式解决实际问题,如计算面积、体积等。
2.教学难点
(1)理解二次根式的定义:部分学生可能对根号下的数必须为非负实数这一点理解不透彻,需要通过实例进行解释。
(2)掌握二次根式的性质:乘除法则、平方差公式等性质的理解和运用是难点,如$\sqrt{a^2}=|a|$,学生容易忽略绝对值符号。
(4)二次根式的化简方法,如:$\sqrt{18}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}$;
(5)二次根式的加减运算,如:$\sqrt{3}+\sqrt{5}$,$\sqrt{3}-\sqrt{5}$等;
(6)运用二次根式解决实际问题。
二、核心素养目标
1.培养学生的数学抽象能力:通过二次根式的学习,使学生能够从具体问题中抽象出数学表达式,理解数学符号的含义,提高数学表达与交流能力。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的定义和性质这两个重点。对于难点部分,如二次根式的化简和运算,我会通过举例和比较来帮助大家理解。

初二数学二次根式教案

初二数学二次根式教案

初二数学二次根式教案【篇一:新人教版八年级数学下册第16章二次根式教案】课题:16.1二次根式1 课型:新授一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a?0(a?0)和(a)?a(a?0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质a?0(a?0)和(a)?a(a?0)。

三、学习过程(一)自学导航(课前预习)(1)已知x?a,那么a是x的______;x是a的______, 记为_____,a一定是____数。

(2)4的算术平方根为2,用式子表示为;正数a的算术平方根为4_______,0的算术平方根为_______;式子a?0(a?0)的意义是。

(二)合作交流(小组互助)(1)的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h?5t。

如果用含h的式子表示t,则t;(3)圆的面积为s,则圆的半径是;(4)正方形的面积为b?3,则边长为。

思考:,2222hs ,,?3等式子的实际意义.说一说他们的共同特征. ?5a(a?0)叫做二次根式,a叫做_____________。

定义: 一般地我们把形如1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,?,4a(a?0),x2?1 32、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。

所以,在二次根式a中,字母a必须满足 , 1a才有意义。

3、根据算术平方根意义计算: (1) (4)2 (2)((3)(.5) (4)()2根据计算结果,你能得出结论:(a)2?________,其中a?0,4、由公式(a)?a(a?0),我们可以得到公式a=(a)2 ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如()=5;也可以把一个非负数写成一个数的平方形式,如5=(). 22212) 32练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解x2?74a2-11(三)展示提升(质疑点拨)例:当x是怎样的实数时,x?2在实数范围内有意义?解:由x?2?0,得x?2当x?2时,x?2在实数范围内有意义。

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

八年级数学下册第十六章二次根式16.3二次根式的加减第1课时教案新新人教

16.3二次根式的加减第1课时【教学目标】知识与技能:1.理解二次根式合并的原理,能进行二次根式的合并.2.掌握二次根式加减的法则,会运用法则进行二次根式的加减.过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导二次根式的计算和化简.培养学生较熟练的运算能力.情感态度与价值观:帮助学生正确对待学习,养成良好的学习习惯,寻找有效的学习方法.【重点难点】重点:理解二次根式合并的原理,掌握二次根式加减的法则,会运用法则进行二次根式的加减.难点:掌握二次根式加减的法则,能熟练运用法则进行二次根式的加减.【教学过程】一、创设情境,导入新课:[问题情境]如图,面积为48 cm2的正方形四个角是面积为3 cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?解:原大正方形边长为=4(cm),小正方形边长为 cm.长方体的底面的边长为4-2.接下来怎样计算呢?这就是这节课我们要学习的二次根式的加减.二、探究归纳活动1:二次根式的合并的条件1.(1)什么是最简二次根式?(2)化简二次根式并找出被开方数相同的二次根式:①②③④⑤⑥⑦(3)上面二次根式哪些能合并?答案:①与⑥③与⑤④与⑦.2.归纳:二次根式的合并的条件把二次根式化成最简二次根式,被开方数相同的二次根式能合并.活动2:探索二次根式加减的法则1.填空:3+2=(3+2),其运算根据是______答案:分配律2.+=4+3①=(4+3)②=7.问题:(1)其中第①步是怎样运算的?______ ;答案:化成最简二次根式(2)第②步运算根据是________.答案:分配律3.思考:同类项可以合并,被开方数相同的最简二次根式能合并吗?提示:能.4.归纳:二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.活动3:例题讲解【例1】确定下列哪组二次根式能合并.(1),(2),(3),(4),分析:化成最简二次根式后,被开方数相同的二次根式可以合并.解:(1)=3与不能合并;(2)=与能合并;(3)=5,=10,5与10不能合并;(4)与不能合并.点拨:二次根式合并的方法1.将二次根式都化为最简二次根式;2.把被开方数相同的二次根式合并.【例2】计算:(1)+2+-.(2)a+-.分析:先把各二次根式化成最简二次根式,再把被开方数相同的二次根式合并.解:(1)+2+-=++2-=++2-=+.(2)a+-=+2-+=+(2+1)=+3.总结:二次根式加减的步骤:1.化简:将每一个二次根式都化为最简二次根式.2.判断:判断哪些二次根式的被开方数相同,把被开方数相同的二次根式结合在一起.3.合并:合并被开方数相同的二次根式,将二次根式的系数相加,被开方数不变.三、交流反思这节课我们学习了二次根式的加减运算,在运算时要注意按照:“一化二找三合并”的步骤进行,细心运算.四、检测反馈1.计算:-=________.A.B.2 C.D.2+2.化简-(-1)的结果是()A.2-1B.2-C.1D.2+3.下列根式中,不能与合并的是()A.B.C.D.4.计算-9的结果是()A.-B.C.-D.5.下列计算正确的是()A.4-3=1B.+=C.2=D.3+2=56.已知最简二次根式与能合并,则a的值可以是()A.5B.3C.7D.87.请确定下列二次根式是否能合并,说明理由.(1)和;(2)和;(3)和.8.计算:(1)-(2)+6-3x五、布置作业教科书第15页习题16.3第1,2,3题六、板书设计七、教学反思本节课学习了二次根式加减,关键是掌握二次根式加减的步骤:(1)化:将每一个二次根式都化为最简二次根式;(2)找:找出被开方数相同的二次根式,把被开方数相同的二次根式结合在一起;(3)合并:将被开方数相同的二次根式的系数相加,被开方数不变.并能运用步骤进行计算.。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版八年级数学下册第16章 二次根式 教案

人教版八年级数学下册第16章 二次根式 教案

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念1.理解二次根式的概念.2.≥0)的意义解答具体题目.自学指导:阅读教材第2页至3页,完成下列的问题.知识探究平方根的性质:正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为S 的正方形的边长为__________;(2)要修建一个面积为6.28 m 2的圆形喷水池,它的半径约为__________m ;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t 2如果用含有h 的式子表示t ,则t=__________...开平方时,被开方数a 的取值范围是a ≥0(为什么?)自学反馈(1)下列式子,哪些是二次根式?哪些不是二次根式?1x 、、1x y +≥0,y ≥0).判断二次根式的依据是一个形式一个条件,二者缺一不可.(2)当a 是怎样的实数时,下列各式在实数范围内有意义?a≥1a≥-3 2a≤3a≥0a≤0任意实数a>3任意实数任意实数二次根式中求字母的取值范围的依据是:被开方数大于等于零.活动1 小组讨论例1 当x?解:x≥2.例2当x11x+在实数范围内有意义?解:x≥-32且x≠-1.有二次根式的要考虑二次根式的被开方数大于等于零,有分母的要考虑分母不为零.例3已知,求xy的值.解:2 5 .当被开方数互为相反数时被开方数只能为零.活动2 跟踪训练1.要画一个面积为18的长方形,使它的长宽之比为3∶2,它的长宽应取多长?解:长:2.用代数式表示:(1)面积为S的圆的半径.(2)面积为S且两条邻边的比为2∶3的长方形的长和宽.解:(2)3.教材第3页上框练习.活动3 课堂小结1.二次根式的概念.2.二次根式的判断方法.3.怎样求二次根式的被开方数中字母的取值范围.第2课时 二次根式的性质1.≥0)是一个非负数.2.理解二次根式的两个性质)2=a(a ≥0)≥0).3.会运用上述两个性质进行有关计算和化简.自学指导:阅读教材第3页至4页,完成下列的问题.知识探究(—)当a>0a ;当a=00概括:≥0)是一个非负数.知识探究(二)根据算术平方根的意义填空:)2=4;)2=2;2=13;)2=0.概括:一般地:2=a (a ≥0)知识探究(三)=2;=0.01;23=0.=a (a ≥0)二次根式的三个性质:≥0)是一个非负数;)2=a(a ≥0);≥0).自学反馈1.计算:2 )2 2 )2 解:(1)32;(2)45;(3)56;(4)74. 2.化简:解:(1)3;(2)4;(3)5;(4)3.3.代数式的概念:用基本运算符号(基本运算符号包括加、减、乘、除、开方等)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.活动1 小组讨论例1 计算:(1) 2 (2)2解:(1)1.5;(2)20.例2 化简:( 2 (2解:(1)16;(2)5.一个非负数的算术平方根的平方等于它本身.一个负数的平方的算术平方根等于这个负数的相反数.例3 =0,求a2013+b2013的值.解:≥00,∴a=-1,b=1.∴a2013+b2013=0.二次根式本身具有非负性.活动2 跟踪训练1.计算:2)2解:(1)3;(2)18.2.说出下列各式的值:解:(1)0.3;(2)17;(3)-π;(4)-10.3.计算:22解:(1)5;(2)0.2;(3)0.6;(4)2 3 .4.教材第4页下框练习.活动3 课堂小结二次根式的性质:≥0)是一个非负数.2=a(a≥0)=a(a≥0)16.2 二次根式的乘除第1课时二次根式的乘法1.≥0,b≥0)并运用它进行计算.2.(a≥0,b≥0)并运用它进行解题和化简.自学指导:阅读教材第6页至7页,并完成预习内容.知识探究请同学们完成填空:=6,=6;=20,=20;=60,=60.参考上面的结果,用“>、<或=”填空.归纳:(a≥0,b≥0)反过来(a≥0,b≥0)自学反馈1.计算:解:.2.化简:解:(1)12;;(3)3|xy|;.活动1 小组讨论例1计算:×解:例2 化简:解:(2)36;;.(1)开方后可以移到根号外的因数或因式叫开得尽方的因数或因式.例3 计算:解:;;14写成7×2,同样(2)中写成10=5×2,方便开方.例4判断下列各式是否正确,不正确的请予以改正:=4.解:(1)不正确.(2)不正确..带分数的整数部分和分数部分是相加的关系,而不是相乘的关系.活动2 跟踪训练1.计算:解:(2)6;2.化简:解:(1)77;(2)15;3.和cm,则这个长方形的面积为4.教材第7页下框练习.活动3 课堂小结掌握二次根式的乘法规定和积的算术平方根的性质:≥0,b≥0)(a≥0,b≥0)及应用.第2课时 二次根式的除法1.≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.自学指导:阅读教材第8页至10页,并完成预习内容.知识探究请同学们完成填空:对二次根式的除法规定:两个二次根式相除,根指数不变,被开放数相除.自学反馈1.计算:解:(1)2;(2)2.下面利用这个规律来计算和化简一些题目.2.化简:解:(1)8;(2)83b a ;.活动1 小组讨论例1 计算:解:;(1)除了用除法公式外,还可进行分母有理化.例2 化简:解:. 例3 计算:(可以用两种方法计算)解:(1)5;(2)3(3)a.观察上面各小题的最后结果,比如等,这些二次根式有哪些特点: (1)被开方数的因数是整数,因式是整式;(2)被开方数不含能开得尽方的因数或因式.满足以上两点的二次根式,就叫做最简二次根式.在二次根式的运算中,一般要把最后结果化为最简,且结果的分母中不含二次根式.活动2 跟踪训练1.化简:解:(1)2;. 2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.解:6.5cm.3.教材第10页的中框练习.活动3 课堂小结1.二次根式的除法规定.2.逆用法则.3.最简二次根式的概念.16.3 二次根式的加减第1课时二次根式的加减1.使学生知道怎样将根式化为最简二次根式.2.使学生通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.自学指导:阅读教材第12页至13页的部分,完成以下问题.知识探究1.合并同类项:(1)2x+3x (2)2x2-3x2+5x2解:(1)5x;(2)4x2.这几道题你是运用什么知识做的?加减法则2.化简:(1(2(3解:(1;(2)(3)3.如何进行二次根式的加减计算?先化简,再合并.自学反馈计算:解:;;;活动1 小组讨论例1 计算:解:;.比较二次根式的加减与整式的加减,你能得出什么结论?例2计算:解:进行二次根式的加减运算时,必须先将其化简,是被开方数相同的二次根式才可合并. 活动2 跟踪训练1.下列计算是否正确?为什么?解:(1)不正确.此式结果为.(2)不正确.此式结果为5.(3)正确.2.计算:(6)a解:;;;(6)17a(7)0;. 3.教材第13页下框练习.计算结果中的二次根式必须是最简二次根式.活动3 课堂小结怎样进行二次根式的加减计算.第2课时 二次根式的混合运算1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.自学指导:阅读教材第14页的部分,完成以下问题.知识探究1.计算:(1)(2x+y)·zx (2)(2x 2y+3xy 2)÷xy解:(1)2x 2z+xyz ;(2)2x+3y.2.计算:(1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2解:(1)4x 2-9y 2;(2)8x 2+2.思考:如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.3.计算:))·) 2解:(1)43;(3)-6;在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.活动1 小组讨论例1 计算:)÷解:;(2)2-32例2 计算:-5) )解:;(2)2.活动2 跟踪训练1.计算:)2)2解:+;;(4)a-b;(5)9;(6)4;在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.2.已知+1,,求下列各式的值:(1)x2+2xy+y2(2)x2-y2解:(1)12;这类计算的简便方法是先变形,再代入求值.3.教材第14页下框练习.活动3 课堂小结1.如何计算二次根式加减混合运算.2.计算结果中的二次根式必须是最简二次根式.。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

人教版八年级数学下册第十六章二次根式教案1全

人教版八年级数学下册第十六章二次根式教案1全

人教版八年级数学下册教案16.1二次根式【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km,你能化简这个式子吗?式子公式中r=中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m 2,则它的宽为______m .(2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,则 _____ (3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?表示的数怎样变化?二.合作探究 形成知识上面问题中,得到的结果分别是: (1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65,5h的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.把形如 用来表示一个非负数的算术平方根的式子,叫做二次根式.我们把形如a≥0)•的式子叫做二次根式,称为二次根号.三.初步应用巩固知识练习2二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.例2当x 是怎样的实数时,2x在实数范围内有意义?3x呢?答案:(1)a为任何实数;(2) a =1.总结:被开方数不小于零.四.比较辨别探索性质五.综合应用深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?四.作业:教科书第5页第1,3,5,6,7,10题.五.教后反思16.2 第一课时二次根式乘法教学内容二次根式的乘法课时数 1学科数学年级八年级班级教学目标理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简教学重点掌握和应用二次根式的乘法法则和积的算术平方根的性质。

人教版数学八年级下册16章《二次根式》单元整体教学设计

人教版数学八年级下册16章《二次根式》单元整体教学设计
3.互动评价:鼓励学生互相批改、评价,共同进步。
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。

人教版八年级数学下册第16章二次根式(教案)一

人教版八年级数学下册第16章二次根式(教案)一
-二次根式的估算:估算二次根式的值需要学生具备一定的数感和近似计算能力,这对于一些学生来说是一个边长为\(\sqrt{4}\)的正方形和一个边长为\(\sqrt{-4}\)的虚构图形,通过比较正方形的实际存在来说明二次根式非负性的重要性。
-教学难点2举例:对比\(\sqrt{8}\)和\(\sqrt{6}\),解释为什么\(\sqrt{8}\)可以化简为\(2\sqrt{2}\),因为8是2的平方的倍数,而6则不是任何整数的平方的倍数,因此不能化简。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a(a≥0)的表达式,它是表示非负数平方根的一种数学表达方式,对于解决实际问题和某些数学问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在几何中的应用,例如计算非整数边长的正方形面积。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调根号下的数必须是非负数,以及二次根式的书写规范。
-二次根式的性质:掌握二次根式的非负性、乘除法运算法则,如\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)。
-二次根式的化简:学会将二次根式化简至最简形式,如\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)。
3.增强学生数学建模素养,培养学生运用二次根式解决实际问题的能力,如对二次根式的估算,使学生能够将数学知识应用于生活实际。
4.培养学生直观想象能力,通过二次根式的图形表示,使学生能够形象地理解二次根式的概念及其运算规律,提高数学思维品质。
5.培养学生数学抽象素养,使学生能够从具体的二次根式实例中抽象出一般性规律,形成数学的一般概念。

人教版数学八年级下册第十六章二次根式(教案)

人教版数学八年级下册第十六章二次根式(教案)
-举例:解释为什么√9=3,但√(-9)没有实数解。
-难点二:二次根式的乘除运算。在进行乘除运算时,如何正确应用乘除法则,特别是当根号下的数不明确时,如何进行化简。
-举例:解决√(12/18)的问题,需要先化简分数,再进行根号下的运算。
-难点三:二次根式的化简。在化简二次根式时,如何正确识别和分解根号下的因数,以及如何处理含有变量的问题。
我也注意到,在讲解二次根式的乘除法则时,需要更多的例题和练习来巩固学生的理解。有些学生对于如何正确应用这些法则感到困惑,特别是在处理含有变量的二次根式时。因此,我计划在下一节课中增加一些更具挑战性的练习题,让学生在解决问题的过程中深化对法则的理解。
此外,我发现学生在化简二次根式时,对因数分解的掌握不够熟练,这影响了他们对二次根式的化简能力。针对这一点,我打算在未来的课堂中,加强对因数分解的复习和练习,帮助学生更好地掌握这个工具。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是表示非负数的平方根的数学表达式,如√9。它在解决面积、速度等实际问题中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在计算非标准图形面积中的应用,以及它如何帮助我们解决问题。
-重点二:二次根式的乘除运算。掌握二次根式的乘除法则,能够正确进行运算,包括合并同类项,如√a * √b = √(ab)。
-重点三:二次根式的化简与应用。能够对二次根式进行化简,解决实际问题,如计算√(4x^2)或求解含二次根式的方程。
2.教学难点
-难点一:对二次根式概念的理解。学生对二次根式定义的理解可能存在困难,特别是对于根号下的非负性要求,以及根号内外的数如何进行运算。
四、教学流程

新人教版八年级数学下册第16章二次根式教案

新人教版八年级数学下册第16章二次根式教案

新人教版八年级数学下册第16章二次根式教案Lesson 1: The Concept of Quadratic Radicals1.Knowledge and Skills: Understand the concept of quadratic radicals and use the meaning of a (a≥0) to answer specific ns。

2.Process and Method: Raise ns for n。

analyze and summarize the concept。

analyze the XXX。

draw important ns。

and use XXX3.ns。

Attitudes。

and Values: Develop students' ability to observe。

analyze。

XXX quadratic radicals。

Learning Focus: XXX in the form of a (a≥0)。

solving specific problems using "a (a≥0)"。

preparing basic XXXXXX-XXX:Analysis of Student n: Students XXX。

Activity Content:1.XXX een positive square roots and negative square roots is that they are expressed as ±a。

2.What is the arithmetic square root of a number。

What is the meaning of a in a (a≥0)。

Review of Knowledge: What is the square root of a number。

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《 二次根式 》

人教版数学八年级下册教案 16.1《二次根式》一. 教材分析人教版数学八年级下册第16.1节《二次根式》是初中数学的重要内容,主要让学生了解二次根式的概念、性质和运算。

本节内容为后续学习二次根式的应用和二次方程等知识打下基础。

教材通过引入二次根式,让学生体会数学与实际生活的联系,培养学生的数学应用能力。

二. 学情分析学生在学习本节内容前,已掌握了实数、有理数和无理数的基本知识,具备一定的代数运算能力。

但学生对二次根式这一概念的理解和应用尚存困难,因此,在教学过程中,要注重引导学生通过实例认识二次根式,感悟数学与生活的联系,激发学习兴趣。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算,提高学生的数学运算能力。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.情境教学法:通过生活实例引入二次根式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生探究二次根式的性质和运算方法,培养学生的独立思考能力。

3.小组合作学习:学生进行小组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示二次根式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固学生对二次根式的理解和应用。

七. 教学过程1.导入(5分钟)利用生活实例,如求物体长度、面积等,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的定义,让学生通过实例理解二次根式。

3.操练(15分钟)让学生进行二次根式的基本运算,如加减乘除,巩固学生对二次根式的掌握。

4.巩固(10分钟)出示练习题,让学生独立解答,检查学生对二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的性质,如二次根式的乘除法、化简等,引导学生运用性质解决问题。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确二次根式的概念、性质和运算方法。

人教版 八年级下册数学第十六章 二次根式 二次根式的运算教案

人教版 八年级下册数学第十六章 二次根式   二次根式的运算教案

二次根式的运算一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 理解二次根式的乘法法则和积的算术平方根的性质及二次根式的除法法则和商的算术平方根的性质,并能利用它们进行计算和化简;● 了解最简二次根式的概念,能运用二次根式的有关性质进行化简;● 理解同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算; ● 会利用运算律和运算法则进行二次根式的混合运算.重点难点:● 重点:理解(00)a b ab a b ⋅=≥≥,,(00)ab a b a b =⋅≥≥,及利用它们进行计算和化简;理解(00)aa ab b b =≥>,,(00)a a a b b b=≥>,及利用它们进行计算和化简;最简二次根式的运用;合并同类二次根式;二次根式的混合运算.● 难点:发现规律,归纳出二次根式的乘除法则;会判定一个二次根式是否是最简二次根式,及二次根式的化简. 学习策略:对于本专题的学习应注意以下几方面问题:● 首先要理解二次根式乘除法和积商的算术平方根的性质之间的关系、性质成立的条件以及最简二次根式的概念. ● 在化简过程中,要熟练应用约分、因式分解、分数与小数之间互化的知识,化简的最后结果必须是最简二次根式或整式.● 理解同类二次根式的概念,熟练掌握合并同类二次根式的方法.● 在进行二次根式的加、减、乘、除及含有乘方的混合运算时,要注意运算顺序和符号问题.二、学习与应用二次根式的性质(1)............................(0)a a ≥≥;“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(2)()2............................(0)a a =≥;(3)............................2............................(0)||(0)a a a a ≥⎧==⎨<⎩; (4)积的算术平方根的性质:............................(00)ab a b =≥≥,;(5)商的算术平方根的性质:............................(00)a a b b=≥>,.知识点一:二次根式的乘法法则:.........................(00)a b a b ⋅=≥≥,,即两个二次根式相乘,根指数 ,只把被开方数 .要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是 数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:123....................................................123(0000)n n a a a a a a a a ⋅⋅⋅⋅=≥≥≥≥,,,,(3)若二次根式相乘的结果能写成2a 的形式,则应化简,如164=. 知识点二:积的算术平方根的性质............................................(00)ab a b =≥≥,,即积的算术平方根等于积中.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足00a b ≥≥,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有2a 形式的a 移到根号外面.知识点三:二次根式的除法法则:.....................(00)aa b b =≥>,,即两个二次根式相除,根指数 ,知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

人教版八年级下册数学第十六章《二次根式》教案

人教版八年级下册数学第十六章《二次根式》教案

16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

*三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; `(4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式哪些不是为什么3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负4数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(>根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2. 练习:(1)把下列非负数写成一个数的平方的形式:6 (2)在实数范围内因式分解72-x 4a 2-11(三)展示提升(质疑点拨) %例:当x 是怎样的实数时,2-x 在实数范围内有意义解:由02≥-x ,得2≥x当2≥x 时,2-x 在实数范围内有意义。

练习:1、x 取何值时,下列各二次根式有意义①43-x ③ 2、(1有意义,则a 的值为___________. (2)若在实数范围内有意义,则x 为( )。

"A.正数B.负数C.非负数D.非正数________)(2=a 2)3(x--213、(1)在式子xx +-121中,x 的取值范围是____________.(2)已知42-x +y x +2=0,则=-y x _____________.(3)已知233--+-=x x y ,则x y = _____________。

(四)达标检测 (一)填空题:1、=⎪⎪⎭⎫⎝⎛253 2、若0112=-+-y x ,那么x = ,y = 。

&3、当x =时,代数式有最小值,其最小值是 。

4、在实数范围内因式分解:(1)-=-229x x ( )2=(x + )(y - )(2)-=-223x x ( )2=(x + )(y - )(二)选择题:1、一个数的算术平方根是a ,比这个数大3的数为( )A 、3+aB 、3-aC 、3+aD 、32+a2、二次根式1-a 中,字母a 的取值范围是( ) A 、 a <l B 、a ≤1 C 、a ≥1 D 、a >1 、2、已知03=+x 则x 的值为A 、 x >-3B 、x <-3C 、x =-3D 、 x 的值不能确定 3、下列计算中,不正确的是 ( )。

A 、3= 2)3( B 、 =2)5.0( C 、6.06.02= D 、35)75(2=*|课题:二次根式2 课型:新授一、学习目标:1、掌握二次根式的基本性质:a a =22、能利用上述性质对二次根式进行化简.二、学习重点、难点重点:二次根式的性质a a =2.难点:综合运用性质a a =2进行化简和计算。

三、学习过程(一)自学导航(课前预习) -(1)什么是二次根式,它有哪些性质 (2)二次根式52-x 有意义,则x 。

(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - ) (二)合作交流(小组互助)1、计算:=24= =220观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时2、计算:-2)4(=观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时!3、计算:=20 当==2,0a a 时(三)展示提升(质疑点拨) 1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<->==00002a a a a a a2、化简下列各式: (1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a =(0<a )3、请大家思考、讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。

#1、化简下列各式(1))0(42≥x x (2) 4x2、化简下列各式 (1))3()3(2≥-a a (2)()232+x (x <-2)。

(四)达标检测A 组1、填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________.2、已知2<x <3,化简:3)2(2-+-x xB 组3、 已知0<x <1,化简:4)1(2+-x x -4)1(2-+xx ?4、把()212--x x 的根号外的()x -2适当变形后移入根号内,得( ) A 、x -2B 、2-x C 、x --2 D 、2--x5、 x -4│-│7-x │。

】课题:二次根式乘法 课型:新授 一、学习目标a ≥0,b ≥0)(a ≥0,b ≥0),并利用它们进行计算和化简二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。

难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。

三、学习过程(一)自学导航(课前预习) '1.填空:(1=____;(2=____=___;(3. (二)合作交流(小组互助) 1、 学生交流活动总结规律.2、一般地,对二次根式的乘法规定为反过来:例1、计算—(1 (2 (3)×(4 例2、化简(1 (2 (3 (4 (5巩固练习(1)计算: ①× ②55×215 ③312a ·231ay -(2)化简:;(三)展示提升(质疑点拨)判断下列各式是否正确,不正确的请予以改正:(1<(2=4^展示学习成果后,请大家讨论:对于9×27的运算中不必把它变成243 后再进行计算,你有什么好办法注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。

·2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解。

(2)分解后把能开尽方的开出来。

`(四)达标检测 A 组 1、选择题(1)等式1112-=-•+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-1(2)下列各等式成立的是( ).A .45×25=85 B .53×42=205C .43×32=75D .53×42=206((3)二次根式6)2(2⨯-的计算结果是( )A .26 B .-26 C .6D .122、化简与计算:(1)360; (2)432x ; (3)3018⨯; (4)7523⨯B 组1、选择题(1)若04144222=+-++++-c c b b a ,则c a b ••2=( ) !A .4B .2C .-2D .1 (2)下列各式的计算中,不正确的是( ) A .64)6()4(-⨯-=-⨯-=(-2)×(-4)=8B .2222442)(244a a a a =⨯=⨯=C .5251694322==+=+D .12512131213)1213)(1213(121322⨯=-⨯+=-+=-2、计算:(1)68×(-26); (2; .3、不改变式子的值,把根号外的非负因式适当变形后移入根号内。

(1) -332 (2) aa 212- 课题:二次根式除法 课型:新授一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。

2、能熟练进行二次根式的除法运算及化简。

二、学习重点、难点重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。

(难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。

三、学习过程(一)自学导航(课前预习)1、计算: (1)38×(-46) (2)3612ab ab ⨯2、填空: (1=____; 规律:(2;(3=____;\(4=____.一般地,对二次根式的除法规定:(二)合作交流(小组互助)1、计算:(1(2 (3 (42、化简:(1 (2 (3 (4、注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。

2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。

(三)展示提升(质疑点拨) 阅读下列运算过程:3==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”。

利用上述方法化简: ' (1)=_________(3) =_____ ___ (4) =___ ___(四)达标检测 A 组1、选择题 (1的结果是( ). A .27B .27CD.7(2的结果是( ) A .-3 B .C .-3 D .2、计算:( (1)482 (2)xx 823 (3)16141÷ (4B 组用两种方法计算: (1(2)346:课题:最简二次根式 课型:新授 一、学习目标1、理解最简二次根式的概念。

2、把二次根式化成最简二次根式.3、熟练进行二次根式的乘除混合运算。

二、学习重点、难点重点:最简二次根式的运用。

难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。

三、学习过程 【(一)自学导航(课前预习)1、化简(1)496x = (2=(3= (4= (5= (二)合作交流(小组互助)观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式,叫做最简二次根式. 2、化简: \(1) (2) (3) (4)2083、计算:521312321⨯÷4、比较下列数的大小 《(1)8.2与432(2)7667--与注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化。

相关文档
最新文档