2020年中考数学总复习
2020年中考数学必考知识点复习演练:整式与代数式
2020年中考数学必考知识点复习演练:整式与代数式一、选择题1.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个2.下列说法正确的是( )A. xyz与xy是同类项B. 和x是同类项C. 0.5x3y2和7 x3y2是同类项D. 5mn2与-4nm2是同类项3.如果3ab2m-1与9ab m+1是同类项,那么m等于()A. 2B. 1C. --1D. 04.当x=﹣1时,代数式x2+2x+1的值是()A. ﹣2B. ﹣1C. 0D. 45.下列计算正确的是()A. 2a+3b=5abB. 2ab﹣2ba=0C. 2a2b﹣ab2=a2bD. 2a2+3a2=5a36.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子枚数为()A. 4nB. 4n-4C. 4n+nD.7.下列运算正确的是()A. x3+2x3=3x6B. 2(a+b)=2a+bC. (1+ )(1﹣)=1D.8.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A. B. C. D.9.若多项式x2+2ax+4能用完全平方公式进行因式分解,则a值为()A. 2B. ﹣2C. ±2D. ±410.若x2﹣kx+1恰好是另一个整式的平方,则常数k的值为()A. 1B. 2C. ﹣2D. ±211.计算1052-952的结果为( )A. 1000B. 1980C. 2000D. 400012.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,….用你发现的规律判断32019的个位数字是()A. 9B. 7C. 3D. 113.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y二、填空题14.若a+b=6,ab=4,则a2+b2=________ .15.化简:(b-1)(b+1)(b2+1)=________.16.己知x,y为实数,且 + =0,则的值________.17.分解因式:m3﹣mn2=________.18.若代数式的值是5,则代数式的值是________ 。
2020年中考备考数学专题复习--新疆 第1部分 第3章 第11节 一次函数及其应用
2.一次函数与一元一次不等式的关系 (1)不等式 kx+b>0 的解集⇔一次函数 y=kx+b 的图象 位于 x 轴上方的部分所对应的自变量 x 的取值范围,即 y>0 时,x 的取值范围; (2)不等式 kx+b<0 的解集⇔一次函数 y=kx+b 的图象 位于 x 轴下方的部分所对应的自变量 x 的取值范围,即 y<0 时,x 的取值范围.
4.[2017 新疆生产建设兵团,21]某周日上午 8:00 小宇 从家出发,乘车 1 小时到达某活动中心参加实践活动.11:00 时他在活动中心接到爸爸的电话,因急事要求他在 12:00 前 回到家,他即刻按照来活动中心时的路线,以 5 千米/小时的 平均速度快步返回.同时,爸爸从家沿同一路线开车接他, 在距家 20 千米处接上了小宇,立即保持原来的车速原路返 回.设小宇离家 x(小时)后,到达离家 y(千米)的地方,图中 折线 OABCD 表示 y 与 x 之间的函数关系.
第 1 题图
一次函数的实际应用
考向一 销售(购买)问题 2.[2019 新疆维吾尔自治区、生产建设兵团,21]某水果 店以每千克 8 元的价格购进苹果若干千克,销售了部分苹果 后,余下的苹果每千克降价 4 元销售,全部售完.销售金额 y(元)与销售量 x(千克)之间的关系如图所示,请根据图象提供 的信息完成下列问题:
k 决定函数的 增减性
k>0 y 随 x 的增大而②__增__大____
b 决定图象与 y b>0⇔交点在 b=0⇔交点在 b<0⇔交点在
轴的交点位置 正半轴上
原点
负半轴上
大致图象
经过的象限 第一、二、三 第一、三 第④_一__、__三__、__四__
k 决定函数的
2020年九年级数学中考复习专题专题:函数模型的应用(含答案)
专题:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x 之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h =0时,得x =20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.6.解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x=30时,花费为30×6=180;当x=150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500, ∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110);(2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500; (2)设销售收入为W ,根据题意得 W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200; ②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m2,∵m >0,∴对称轴x =140+m2>70,∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, ∴当x =65时,y max =1400,代入表达式解得m =5.。
2020年初三数学下册中考专题复习 二次函数面积最值问题(含答案)
2020年初三数学下册中考专题复习二次函数面积最值问题1.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.2.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.4.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.5.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.6.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.7.如图,抛物线y=ax2+bx+与直线AB交于点A(﹣1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S 取最大值时的点C的坐标.8.如图A(0,3),B(3,0),C(1,0)分别是抛物线:y=ax2+bx+c(a≠0)上的三点,点P为抛物线上一动点.(1)求此抛物线的解析式.(2)当△PAB是以AB为一直角边的直角三角形时,求此时点P的坐标.(3)若点P在抛物线上A、B两点之间移动时,是否存在一个位置,使△PAB的面积最大?若存在,请求此时点P的坐标.若不存在,请说明理由.9.如图,抛物线y=ax2+bx+c经过A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.点P为直线AE上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的表达式;(2)当t为何值时,△PAE的面积最大?并求出最大面积;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C (0,﹣3)(1)求出该抛物线的函数关系式及对称轴(2)点P是抛物线上的一个动点,设点P的横坐标为t(0<t<3).当△PCB的面积的最大值时,求点P的坐标(3)在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,求P点的坐标.11.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.12.如图1,在平面直角坐标系中,直线y=x﹣与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.点P是直线AB上方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线,垂足为E,交直线AB于点C,作PD⊥AB于点D,交x轴于点F.(1)求该抛物线的解析式;(2)求sin∠ACE的值;(3)连接PA、PB(如图2所示),设△PAB的面积为S,点P的横坐标为x,求S关于x的函数关系式,并求出S的最大值.13.如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A.经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E;PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小.若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.14.如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.15.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?16.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1,P为抛物线上的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P的纵坐标为2时,求点P的横坐标;(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.17.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.18.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)在抛物线上BC之间是否存在一点D,使得△DBC的面积最大?若存在请求出点D 的坐标和△DBC的面积;若不存在,请说明理由.19.如图1,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于C点,对称轴x=﹣,点N(n,0)是线段AB上的一个动点(N与A、B两点不重合),请回答下列问题:(1)求出抛物线的解析式,并写出C点的坐标;(2)试求出当n为何值时,△ANC恰能构成是等腰三角形.(3)如图2,过N作NF∥BC,与AC相交于D点,连结CN,请问在N点的运动过程中,△CDN的面积是否存在最大值;若存在,试求出该最大面积,若不存在,请说明理由.20.抛物线y=ax2+bx+c与x轴交于点A(1,0)和点B(5,0),与y轴交于点C(0,3).该抛物线与直线相交于C,D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M,N.(1)求该抛物线所对应的函数解析式;(2)连结PC,PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ 与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.详细答案一.解答题(共20小题)1.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.2.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=3,x2=﹣1,则C(﹣1,0),A ′(3,0);当x=0时,y=3,则A(0,3);(2)∵四边形ABOC为平行四边形,∴AB∥OC,AB=OC,而C(﹣1,0),A(0,3),∴B(1,3)=×3×1=,∴OB==,S△AOB又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,∴∠ACO=∠OC′D,OC′=OC=1,又∵∠ACO=∠ABO,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB,∴△C′OD∽△BOA,∴=()2=()2=,=×=;∴S△C′OD(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴S△AMA′=S△ANM+S△MNA′=MN•3=(﹣m2+3m)=﹣m2+m=﹣(m﹣)2+,∴当m=时,S△AMA'的值最大,最大值为,此时M点坐标为().3.【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A(0,﹣3),B(5,9),则AB=13,①当AB=AC时,设点C坐标(m,0),则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0);②当AB=BC时,设点C坐标(m,0),则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m,m2﹣m﹣3),则点H坐标为(m,m﹣3),S△P AB=•PH•x B=(﹣m2+12m),取得最大值为:,当m=2.5时,S△P AB答:△PAB的面积最大值为.4.【解答】解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时PA+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,则S△MOC∵﹣<0,故x=,最大值为.故当点M(,)时,S△MOC5.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)∴S△PBC×4=﹣2(t﹣2)2+8,最大值为8,此时t2﹣3t﹣4=﹣6,∴当t=2时,S△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.6.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=16﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=﹣m2+3m+4,∴m=1±,∴P(1+,1+)或P(1﹣,1﹣),②如图,设点P(t,﹣t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,∵点D在直线BC上,∴D(t,﹣t+4),∵PD=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,BE+CF=4,=2S△PCB=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=﹣4t2+16t,∴S四边形PBQC∵0<t<4,=16∴当t=2时,S四边形PBQC最大7.【解答】解:(1)∵由题意得解得:,∴y=﹣x2+2x+.(2)设直线AB为:y=kx+b.则,解得直线AB的解析式为y=+.如图所示:记CD与x轴的交点坐标为E.过点B作BF⊥DC,垂足为F.设D(m,﹣m2+2m+)则C(m,m+).∵CD=(﹣m2+2m+)﹣(m+)=m2+m+2,∴S=AE•DC+CD•BF=CD(AE+BF)=DC=m2+m+5.∴S=m2+m+5.∵﹣<0,∴当m=时,S有最大值.∴当m=时,m+=×+=.∴点C(,).8.【解答】解:(1)将A(0,3),B(3,0),C(1,0)代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点P的坐标为(m,m2﹣4m+3).∵点A的坐标为(0,3),点B的坐标为(3,0),∴AP2=(m﹣0)2+(m2﹣4m+3﹣3)2=m4﹣8m3+17m2,BP2=(m﹣3)2+(m2﹣4m+3)2=m4﹣8m3+23m2﹣30m+18,AB2=(3﹣0)2+(0﹣3)2=18.分两种情况考虑:①当∠BAP=90°时,AB2+AP2=BP2,即18+m4﹣8m3+17m2=m4﹣8m3+23m2﹣30m+18,整理,得:m2﹣5m=0,解得:m1=0(舍去),m2=5,∴点P的坐标为(5,8);②当∠ABP=90°时,AB2+BP2=AP2,即18+m4﹣8m3+23m2﹣30m+18=m4﹣8m3+17m2,整理,得:m2﹣5m+6=0,解得:m3=2,m3=3(舍去),∴点P的坐标为(2,﹣1).综上所述:当△PAB是以AB为一直角边的直角三角形时,点P的坐标为(5,8)或(2,﹣1).(3)存在,如图过点P作PD∥y轴交直线AB于点D.设直线AB的解析式为y=kx+d(k≠0),将A(0,3),B(3,0)代入y=kx+d,得:,解得:,∴直线AB的解析式为y=﹣x+3.设点P的坐标为(n,n2﹣4n+3)(0<n<3),则点D的坐标为(n,﹣n+3),∴PD=(﹣n+3)﹣(n2﹣4n+3)=﹣n2+3n,=OB•PD=﹣n2+n=﹣(n﹣)2+.∴S△P AB∵﹣<0,取得最大值,此时最大值为,∴当n=时,S△P AB∴当△PAB的面积取最大值时,点P的坐标为(,﹣).9.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴==,∴t=时,△PAE的面积最大,最大值是.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,∴,即t2﹣t﹣1=0,解得:t=或t=<0(舍去),综上可知存在满足条件的点P,t的值为1或.10.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线与y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1∴设抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,对称轴为直线x=1;(2)设P(t,t2﹣2t﹣3),S△PCB=S△POC+S△POB﹣S△BOC=×3t+×3×|t2﹣2t﹣3|﹣=∵a=<0,∴函数有最大值,当t=时,面积最大,∴P()(3)设Q(1,n)),①当PQ、PC为平行四边形的对角线时,P(4,n+3),∴42﹣2×4﹣3=n+3,n=2,∴P(4,5);②当CQ、BP为平行四边形的对角线时,P(﹣2,n﹣3),∴(﹣2)2﹣2×(﹣2)﹣3=n﹣3,n=8,∴P(﹣2,5);综上所述,以BC为边,以点B、C、P、Q为顶点的四边形是平行四边形时,P点的坐标(4,5),(﹣2,5).11.【解答】解:(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;把C(0,3)代入y=﹣x+m,解得m=3,∴直线CD的解析式为y=﹣x+3,解方程组,解得或,∴D点坐标为(,);(2)存在.设P(m,﹣m2+2m+3),则E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,∴S△PCD当m=时,△CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m =,综上所述,m的值为或或.12.【解答】解:(1)当x=﹣8时,y=x﹣=﹣,则B(﹣8,﹣),当y=0时,x﹣=0,解得x=2,则A(2,0),把B(﹣8,﹣),A(2,0)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式y=﹣x2﹣x+;(2)当x=0时,y=x﹣=﹣,则G(0,﹣),在Rt△AOG中,∵OG=,OA=2,∴AG==,∴sin∠AGO===,∵PC⊥x轴,∴PC∥OG,∴∠ACE=∠AGO,∴sin∠ACE=;(3)设P(x,﹣x2﹣x+),则C(x,x﹣),∴PC=﹣x2﹣x+﹣(x﹣)=﹣x2﹣x+4,∴S=•(2+8)•(﹣x2﹣x+4)=﹣x2﹣x+20=﹣(x+3)2+,当x=﹣3时,S的最大值为.13.【解答】解:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=×PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.14.【解答】(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.15.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QCP==,∴=,解得t=;当∠PQC=90°时,∵cos∠QCP==,∴=,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,=S△AFQ+S△CFQ∴S△ACQ=FQ•AG+FQ•DG=FQ(AG+DG)=FQ•AD=×2(t﹣)=﹣+t=﹣(t2+4﹣4t﹣4)=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.16.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A和点B(1,0),与y 轴交于点C(0,3),其对称轴l为x=﹣1,∴A(﹣3,0),∴解得:,∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).(2)设点P(x,2)即y=﹣x2﹣2x+3=2,解得x1=﹣1或x2=﹣﹣1,∴点P(﹣1,2)或(﹣﹣1,2).(3)设点P(x,y),则y=﹣x2﹣2x+3,=S△OBC+S△OAP+S△OPC,∵S四边形BCP A∴=,∵﹣<0,∴当x=﹣时,四边形PABC的面积有最大值,所以点P(﹣,).17.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.=S△P AQ+S△PCQ=×(﹣m2+m)×6∵S△P AC=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).18.【解答】解:(1)∵B点的坐标为B(8,0),∴﹣16+8b+4=0,解得b=,∴抛物线的解析式为y═﹣+x+4,对称轴方程为x=﹣=3;(2)∵由(1)知,抛物线的对称轴方程为x=3,B(8,0)∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.∵∠AOC=∠COB=90°,∴△AOC∽△COB.(3)设BC解析式为y=kx+b,把(8,0),(0,4)分别代入解析式得,,解得,解得y=﹣x+4,作DH⊥x轴,交BC于H.设D(t,﹣t2+t+4),H(t,﹣t+4),S△BCD=DH•OB=×(﹣t2+t+4+t﹣4)×8=﹣t2+8t=﹣(t2﹣8t+42﹣16)=﹣(t﹣4)2+16,当t=4时,△DBC的最大面积为16,此时D点坐标为(4,6).19.【解答】解:(1)∵抛物线y=﹣x2+bx+c(a≠0)与x轴交于A(﹣4,0)、B(1,0)两点,不妨设抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2.∴C(0,2).(2)分两种情形:①当AN=AC时,如图1中,∵AC==2,∴n﹣(﹣4)=2,∴n=2﹣4.②当NA=NC时,如图2中,在Rt△NOC中,OC=2,∵NC=NA=n﹣(﹣4)=n+4,ON=n,∴n2+22=(n+)2,解得n=﹣.综上所述,当n=2﹣4或﹣时,△ANC是等腰三角形.(3)如图3中,由题意可知:直线BC的解析式为y=﹣2x+2,直线AC的解析式为y=x+2,设N(n,0),易知N在线段OB上时,△CDN的面积较小,不妨设n<0,∵ND∥BC,设ND的解析式为y=﹣2x+b,代入(n,0)可得b=2n,∴ND的解析式为y=﹣2x+2n,由,可得点D的纵坐标:y D=(8+2n),=S△AOC﹣S△ADN﹣S△CON∴S△CDN=[2×4﹣2|n|﹣(8+2n)(n+4)=﹣(n+)2+,∵﹣<0,∴当n=﹣时,△DCN的面积最大,最大值为.20.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、点B(5,0)和点C(0,3),因为与y轴相较于点C,所以c=3.∴,解得,∴该抛物线对应的函数解析式为y=x2﹣x+3;(2)∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,t2﹣t+3)(1<t<5),∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,t+3),∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的垂线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,=S△PCN+S△PDN=PN•CE+PN•DF=PN=[﹣(t﹣)2+]=﹣(t ∴S△PCD﹣)2+,∴当t=时,△PCD的面积有最大值,最大值为;(3)存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,t+3),∴CQ=t,NQ=t+3﹣3=t,∴,∵P(t,t2﹣t+3),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);当时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).。
2020年九年级中考数学专题复习:圆的垂径定理的应用(含解析)
中考数学专题复习:圆的垂径定理的应用(含解析)班级:姓名:一、单选题1.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是( )A. 5cmB. 8cmC. 10cmD. 12cm2.下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有()A. 3个B. 2个C. 1个D. 0个3.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A. 4B. 6C. 8D. 104.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A. 0.5B. 1C. 2D. 45.如图,⊙O的弦AB=8,C是AB的中点,且OC=3,则⊙O的半径等于( )A. 8B. 5C. 10D. 46.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A. 4cmB. 3cmC. 2cmD. 1cm7.如图,以O为圆心的两个同心圆中,半径分别为3和5,若大圆的弦AB与小圆相交,则弦AB的长的取值范围是()A. 8≤AB≤10B. 8<AB<10C. 8<AB≤10D. 6≤AB≤108.如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是( )A. 2B. 3C. 4D. 59.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为()A. 8B. 5C. D.二、填空题10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为________厘米.11.如图,已知⊙O的半径为5,点P是弦AB上的一动点,且弦AB的长为8.则OP的取值范围为________.12.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.三、解答题13.如图①是某校存放学生自行车的车棚的示意图(尺寸如图所示,单位:m),车棚顶部是圆柱侧面的一部分,其展开图是矩形;如图②是车棚顶部截面的示意图, 所在圆的圆心为点O,车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)14.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8 cm,CD=2 cm.求破残的圆形残片的半径.15.如图,某公司的一座石拱桥是圆弧形(劣弧),其跨度AB为24m,拱高CD为8m,求石拱桥拱的半径.四、综合题16.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.17.如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.(1)请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;(2)点C旋转到点C′所经过的弧的半径是________,点C经过的路线长是________.答案解析部分一、单选题1.【答案】C【考点】垂径定理的应用【解析】【解答】解:设光盘的圆心为O,如图所示:过点O作OA垂直直尺于点A,连接OB,设OB=r,∵一边与光盘边缘两个交点处的读数恰好是“2”和“10”,∴AB=×(10﹣2)=4,∵刻度尺宽2cm,∴OA=r﹣2,在Rt△OAB中,OA2+AB2=OB2 ,即(r﹣2)2+42=r2 ,解得:r=5.∴该光盘的直径是10cm.故选:C.【分析】设光盘的圆心为O,过点O作OA垂直直尺于点A,连接OB,再设OB=r,利用勾股定理求出r的值即可.2.【答案】C【考点】垂径定理的应用,三角形的外接圆与外心,命题与定理【解析】【解答】解:①不在同一直线上的3个点确定一个圆,故错误;②弦的垂直平分线经过圆心,故错误;③根据圆的轴对称性可得,正确;④平分弦(非直径)的直径平分弦所对的弧,故错误;正确的有1个,故选C.【分析】根据垂径定理的知识及过3点圆的知识可得正确选项.3.【答案】C【考点】垂径定理的应用【解析】【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,∴AB=2AE=8,故选C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE4.【答案】B【考点】垂径定理的应用【解析】【解答】解:设半径为r,过O作OE⊥AB交AB于点D,连接OA、OB,则AD=AB=×0.8=0.4米,设OA=r,则OD=r﹣DE=r﹣0.2,在Rt△OAD中,OA2=AD2+OD2 ,即r2=0.42+(r﹣0.2)2 ,解得r=0.5米,故此输水管道的直径=2r=2×0.5=1米.故选B.【分析】根据题意知,已知弦长和弓形高,求半径(直径).根据垂径定理和勾股定理求解.5.【答案】B【考点】垂径定理的应用【解析】【分析】连接OA,即可证得△OAM是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长.【解答】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=4在直角△OAM中,OA==5故选B.【点评】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.6.【答案】C【考点】勾股定理,垂径定理的应用【解析】【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO= =3(cm),∴水的最大深度CD为:2cm.故选:C.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.7.【答案】C【考点】勾股定理,垂径定理的应用【解析】【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有两个公共点,即相交,此时AB>8;又因为大圆最长的弦是直径10,则8<AB≤10.【解答】当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∵大圆的弦AB与小圆有两个公共点,即相交,∴8<AB≤10.故选C.【点评】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.8.【答案】B【考点】垂径定理的应用,圆周角定理【解析】【分析】已知OE是⊙O的半径,D是弦AB的中点,可根据垂径定理的推论来判断所给出的结论是否正确.【解答】∵OE是⊙O的半径,且D是AB的中点,∴OE⊥AB,弧AE=弧BE=弧AEB;(故①⑤正确)∴AE=BE;(故②正确)由于没有条件能够证明③④一定成立,所以一定正确的结论是①②⑤;故选B.9.【答案】D【考点】垂径定理的应用,圆周角定理【解析】【分析】首先连接BD,易得△ABD是等腰直角三角形,然后由特殊角的三角函数值,求得AD的长.【解答】连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10,∴AD=AB•sin45°=.故选D.【点评】此题考查了圆周角定理、等腰直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用二、填空题10.【答案】10【考点】勾股定理,垂径定理的应用【解析】【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.【分析】首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.11.【答案】3≤OP≤5【考点】垂径定理的应用【解析】【解答】解:过点O作OE⊥AB,垂足为E,连结OA.则可得当点P与点E重合时,线段OP为最短距离.∵点O为圆心,OE⊥AB,AB为圆的一条弦,∴AE=BE.∵AB=8,∴AE=BE=4.∵OE⊥AB,AE=4,OA=5,∴OE=3.当点P落在点A或点B处时,OP的长度最长,等于圆的半径,即为5.故OP的取值范围是3≤OP≤5.12.【答案】26【考点】垂径定理的应用【解析】【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE= AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2 ,即r2=52+(r﹣1)2 ,解得:r=13,所以CD=2r=26,即圆的直径为26.【分析】根据垂径定理和勾股定理求解.三、解答题13.【答案】解:如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知,E是AB的中点,F是的中点,从而EF是弓形的高.∵AB=4,∴AE= AB=2 m,EF=2 m.设半径为Rm,则OE=(R-2)m.在Rt△AOE中,∴R2=(R-2)2+(2 )2.∴R=4.在Rt△AEO中,∵AO=2OE,∴∠OAE=30°,∠AOE=60°,∴∠AOB=120°.∴的长为=(m).∴覆盖棚顶的帆布的面积为×60=160π(m2).【考点】含30度角的直角三角形,勾股定理,垂径定理的应用,弧长的计算【解析】【分析】如图,连结OB,过点O作OE⊥AB,垂足为E,交于F,由垂径定理知:E是AB的中点,F是AB⌢的中点,从而EF是弓形的高;设半径为Rm,则OE=(R-2)m.在Rt△AOE中,根据勾股定理计算出半径R,再由在直角三角形中,30度所对的直角边等于斜边的一半,从而得出∠AOB的度数,根据弧长公式即可求出弧AB的长度,最后得出覆盖棚顶的帆布的面积.14.【答案】解:在直线CD上取圆心O ,连接OA ,设半径为r cm.∵弦AB的垂直平分线交弧AB于点C ,交弦AB于点D .在Rt△ADO中,OA2=AD2+OD2 ,∴r2=42+(r-2)2 ,∴r=5答:破残的圆形残片的半径为5 cm.【考点】勾股定理,垂径定理的应用【解析】【分析】设圆的半径为r cm,根据AB CD和已知条件求出AD=AB,在Rt △ADO中,利用勾股定理为等量关系列方程,求出半径即可.15.【答案】解:延长CD到O,使得OC=OA,则O为圆心,∵拱桥的跨度AB=24cm,拱高CD=8cm,∴AD=12cm,∴AD2=OA2﹣(OC﹣CD)2 ,即122=AO2﹣(AO﹣8)2 ,解得AO=13cm.即圆弧半径为13米.答:石拱桥拱的半径为13m.【考点】勾股定理,垂径定理的应用【解析】【分析】将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答四、综合题16.【答案】(1)解:连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD= ==4 ,∵S△ADB= AD•BD= AB•DE∴AD•BD=AB•DE,∴DE= = =4 ,即DE=4 ;(2)解:证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【考点】全等三角形的判定与性质,垂径定理的应用【解析】【分析】(1)出现直径时,连接直径的端点和圆周上的一点,构成90度圆周角,利用勾股定理和面积法可以解决;(2)过圆心向弦引垂线,由垂径定理,得平分,构造出AC的一半,再证△AFO≌△OED,可证出结论.17.【答案】(1)解:如图所示,四边形OA′B′C′即为所求作的图形(2);π【考点】垂径定理的应用,弧长的计算,旋转的性质,作图-旋转变换【解析】【解答】解:(2)根据勾股定理,OC= = ,C经过的路线长= = π.【分析】(1)根据网格结构找出点A、B、C的对应点A′、B′、C′的位置,然后顺次连接即可;(2)先利用勾股定理求出OC的长度,再根据弧长的计算公式列式进行计算即可得解.。
2020年数学中考复习专题:《三角形综合》(后附解析)
中考复习冲刺:《三角形综合》1.如图,在三角形ABC 中,AB =8,BC =16,AC =12.点P 从点A 出发以2个单位长度/秒的速度沿A →>B →C →A 的方向运动,点Q 从点B 沿B →C →A 的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t = 秒时,P 是AB 的中点.(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得BP =2BQ . (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.2.如图,在△ABC 中,BC =7cm ,AC =24cm ,AB =25cm ,P 点在BC 上,从B 点到C 点运动(不包括C 点),点P 运动的速度为2cm /s ;Q 点在AC 上从C 点运动到A 点(不包括A 点),速度为5cm /s .若点P 、Q 分别从B 、C 同时运动,请解答下面的问题,并写出探索主要过程:(1)经过多少时间后,P 、Q 两点的距离为5cm ?(2)经过多少时间后,S △PCQ 的面积为15cm 2?(3)用含t 的代数式表示△PCQ 的面积,并用配方法说明t 为何值时△PCQ 的面积最大,最大面积是多少?3.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=4 2 ,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.4.如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB 平移至线段CD,使点A的对应点C在y轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD 之间的一个等量关系,并说明理由.5.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD =S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.6.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.7.定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“和美三角形”,这条边称为“和美边”,这条中线称为“和美中线”.理解:(1)请你在图①中画一个以AB为和美边的和美三角形,使第三个顶点C落在格点上;(2)如图②,在Rt△ABC中,∠C=90°,tan A=.求证:△ABC是“和美三角形”.运用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底边BC的长(画图解答).8.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC =α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC =7,AD=2.请直接写出线段BE的长为.9.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.10.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM =EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.11.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.12.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;=30,∠CAF=∠ABD,求线段BP的长.(ⅱ)如图2,若AB=10,S△ABC13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,过点C作CG⊥AD于点G,过点B作FB⊥CB于点B,交CG的延长线于点F,连接DF交AB于点E.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF;(3)连接AF,试判断△ACF的形状,并说明理由.15.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC =90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.16.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.17.已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.18.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为.②∠APC的度数为.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为.19.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C 重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②∠DCE=120°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:①∠DCE的度数;②线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE,若BE=10,BC=6,直接写出AE的长.20.思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE 绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.参考答案1.解:(1)∵AB=8,点P的运动速度为2个单位长度/秒,∴当P为AB中点时,即4÷2=2(秒);故答案为:2.(2)由题意可得:当BP=2BQ时,P,Q分别在AB,BC上,∵点Q的运动速度为个单位长度/秒,∴点Q只能在BC上运动,∴BP=8﹣2t,BQ=t,则8﹣2t=2×t,解得t=,当点P运动到BC和AC上时,不存在BP=2BQ;(3)当点P为靠近点A的三等分点时,如图1,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+CQ=16+4=20,∴a=20÷16=,当点P为靠近点C的三等分点时,如图2,AB +BC +CP =8+16+4=28,此时t =28÷2=14,∵BC +CQ =16+8=24,∴a =24÷14=.综上可得:a 的值为或.2.解:(1)连接PQ ,设经过ts 后,P 、Q 两点的距离为5cm ,ts 后,PC =7﹣2tcm ,CQ =5tcm ,根据勾股定理可知PC 2+CQ 2=PQ 2,代入数据(7﹣2t )2+(5t )2=(5)2; 解得t =1或t =﹣(不合题意舍去);(2)设经过ts 后,S △PCQ 的面积为15cm 2 ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =15解得t 1=2,t 2=1.5,经过2或1.5s 后,S △PCQ 的面积为15cm 2.(3)设经过ts 后,△PCQ 的面积最大,ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =×(﹣2t 2+7t ).=﹣5.∴当t=s时,△PCQ的面积最大,最大值为cm2.3.(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴∠A=2∠C,即△ABC是倍角三角形,(2)解:∵∠A>∠B>∠C,∠B=30°,①当∠B=2∠C,得∠C=15°,过C作CH⊥直线AB,垂足为H,可得∠CAH=45°,∴AH=CH=AC=4.∴BH=,∴AB=BH﹣AH=﹣4,∴S=.②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在.综上所述,△ABC面积为.(3)△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴∠ADE=∠ADB,BD=DE.又∵AB +AC =BD ,∴AE +AC =BD ,即CE =BD .∴CE =DE .∴∠C =∠BDE =2∠ADC .∴△ADC 是倍角三角形.∵△ABD ≌△AED ,∴∠E =∠ABD ,∴∠E =180°﹣∠ABC ,∵∠E =180°﹣2∠C ,∴∠ABC =2∠C .∴△ABC 是倍角三角形.4.解:(1)∵点A (﹣4,﹣1)、B (﹣2,1),C (k ,0),将线段AB 平移至线段CD , ∴点B 向上平移一个单位,向右平移(k +4)个单位到点D ,∴D (k +2,2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∵A (﹣4,﹣1)、B (﹣2,1),C (k ,0),D (k +2,2),∴BE =1,CE =k +2,DF =2,EF =k +4,CF =2,∵S 四边形BEFD =S △BEC +S △DCF +S △BCD , ∴=+,解得:k =2.(3)∠BPD =∠BCD +∠A ;理由如下:过点P 作PE ∥AB ,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.5.证明:(1)过B作BM⊥DA于M,过C作CN⊥EA交EA的延长线于N,如图,∵∠BAC=∠DAE=90°,∴∠BAD+∠CAE=180°,∵∠CAN+∠CAE=180°,∴∠BAD=∠CAN∵sin∠BAD=,sin∠CAN=,又∵AB=AC,∴BM=CN,∵DA=AE,S△ABD =DN×BM,S△ACE=AE×CN,∴S△ADB =S△ACE.(2)延长AM到Q使AM=QM,连接CQ、EQ,如图,∵AM是△ACE中线,∴CM=EM,∴四边形ACQE是平行四边形,∴AC=EQ=AB,AE=CQ=AD,AC∥EQ,∴∠CAE+∠AEQ=180°,∵∠BAD+∠CAE=180°,∴∠BAD=∠AEQ,∵在△BAD和△QEA中∴△BAD≌△QEA,∴∠BDA=∠EAM,∵∠DAE=90°,∴∠NAD+∠QAE=90°,∴∠BDA+∠NAD=90°,∴∠DNA=180°﹣90°=90°,∴MN⊥BD.6.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC =∠AEH ,∵AD =AE ,∴△ACD ≌△EHA ,∴CD =AH ,EH =AC =BC ,∵CB =CA ,∴BD =CH ,∵∠EHF =∠BCF =90°,∠EFH =∠BFC ,EH =BC ,∴△EHF ≌△BCF ,∴FH =CF ,∴BD =CH =2CF .(3)如图3中,同法可证BD =2CM .∵AC =3CM ,设CM =a ,则AC =CB =3a ,BD =2a , ∴==.7.解:(1)如图①中,△ABC 1,△ABC 2即为所求.(2)证明:如图②,根据定义Rt △ABC 中,和美中线一定是较长直角边上的中线. 理由:取AC 的中点D ,连结BD ,设AC =2x ,则CD =AD =x ,∵,∴,∴,在Rt△BCD中,∴BD=AC,∴△ABC是“和美三角形:.(3)分两种情况:如图③,当腰上的中线BD=AC时,则AB=BD,过B作BE⊥AD于E,∵AB=AC=20,∴BD=20,,∴CE=10+5=15,∴Rt△BDE中,BE2=BD2﹣DE2=375,∴Rt△BCE中,;如图④,当底边上的中线AD=BC时,则AD⊥BC,且AD=2BD,设BD=x,则x2+(2x)2=202,∴x2=80,又∵x>0,∴,∴.综上所述,底边BC的长为或.8.解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.9.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).10.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.11.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.12.(1)证明:∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,=BC•AF=×10×AF=30,则S△ABC∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,=AC•BD=×2×BD=30,∵S△ABC∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD===,∴BP=BD﹣PD=3﹣=;当点F在点C的右侧时,则∠CAF=∠ACF',∵BD⊥AC,∴∠APD=∠AP'D,∴AP=AP',PD=P'D=,∴BP=+2×=;综上所述,线段BP的长为或.13.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形14.证明:(1)∵CG⊥AD,∴∠AGC=90°,∴∠GCA+∠CAD=90°,∵∠GCA+∠FCB=90°,∴∠CAD=∠FCB,∵FB⊥BC,∴∠CBF=90°,∵Rt△ABC是等腰三角形,∠ACB=90°,∴AC=BC,∠CBF=∠ACB,在△ACD和△CBF中,∴△ACD≌△CBF(ASA);(2)∵△ACD≌△CBF,∴CD=BF,∵D为BC的中点,∴CD=BD,∴BD=BF,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠DBE=45°,∵∠CBF=90°,∴∠DBE=∠FBE=45°,在△DBE和△FBE中,∴△DBE≌△FBE(SAS),∴DE=FE,∠DEB=∠FEB=90°,∴AB垂直平分DF;(3)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,由(2)知:AB垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.16.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.17.解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△END≌△ABD(SAS),∴DB=DN,∠NDE=∠BDA,∴∠NDE+∠BDE=90°,∴∠NDB=90°,∴DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,在(2)的条件下,CM=ME,DM⊥BM,∴BE=BC=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.18.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.19.证明:(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;(2)∠DCE=90°,BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE===8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE===,∵△ADE是等腰直角三角形,∴.20.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,过点D作DF⊥BC于F,连接CD,过点C作CN⊥BD于N,如图④所示:则四边形ACFD是矩形,∴CF=AD=AE=2,DF=AC=4,∴CD===2,BF=BC﹣CF=4﹣2=2,∴BD===2,∵DF•BC=CN•BD,∴CN===,BN===,∴PN=BD﹣BN=×2﹣=,∴PC===.。
中考总复习数学第3节 一元二次方程及其应用
边的长是方程 x2-8x+12=0 的解,则这个三角形的周
长是 17 .
3. (2020·无锡)解方程:x2+x-1=0.
解:x1=-1+2
5,x2=-1-2
5 .
4. (2020·荆州)阅读下列“问题”与“提示”后,将 解方程的过程补充完整,求出 x 的值.
【问题】解方程:x2+2x+4 x2+2x-5=0. 【提示】可以用“换元法”解方程. 解:设 x2+2x=t(t≥0),则有 x2+2x=t2, 原方程可化为:t2+4t-5=0. 【续解】
-4ac > 0.即可得到关于 a 的不等式,从而求得 a 的 范围.(2)将 x=1 代入方程 x2+2x+a-2=0 得到 a
的值,再根据根与系数的关系求出另一根.
【自主作答】(1)b2-4ac=22-4×1×(a-2)=12- 4a>0,解得 a<3.
(2)设方程的另一根为 x1,由解的定义及根与系数的 1+2+a-2=0, a=-1,
关系,得 1×x1=a-2, 解得 x1=-3,则 a 的值是 -1,该方程的另一根为-3.
类型3:一元二次方程的应用 ►例3沅江市近年来大力发展芦笋产业,某芦笋生产 企业在两年内的销售额从 20 万元增加到 80 万元.设这 两年的销售额的年平均增长率为 x,根据题意可列方程为 () A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80
数学 中考总复习
第3节 一元二次方程及其应用
类型1:一元二次方程的解法 ►例1分别用两种不同的方法解下列一元二次方程: (1)x2+6x=1; (2)(x-3)2+4x(x-3)=0.
分析:公式法是解一元二次方程通用的方法,在运
2020年九年级数学中考复习专题新定义导学案含答案解析
2020年中考总复习专题新定义一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=.7.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+2x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.专题新定义参考答案与试题解析一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B(﹣a,)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1或a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c =x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故选:B.二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是﹣3.【解答】解:∵a*b=a×(a﹣b)3,∴3*4=3×(3﹣4)3=3×(﹣1)3=3×(﹣1)=﹣3,故答案为:﹣3.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为2.【解答】解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x﹣4的距离为:d===2,因为直线y=x和y=x﹣4平行,所以这两条平行线之间的距离为2.故答案为2.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为x=3.【解答】解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=1或﹣2.【解答】解:当(x+1)2<x2,即x<﹣时,方程为(x+1)2=1,开方得:x+1=1或x+1=﹣1,解得:x=0(舍去)或x=﹣2;当(x+1)2>x2,即x>﹣时,方程为x2=1,开方得:x=1或x=﹣1(舍去),综上,x=1或﹣2,故答案为:1或﹣27.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是﹣7.5【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,∴这个数列以﹣2,,,依次循环,且﹣2+=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣))﹣2=﹣=﹣7.5,故答案为﹣7.5.三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∵m是四位数,∴m=99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∵D(m)==3(100﹣10y﹣x),∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=﹣,f(﹣4)=﹣;(2)猜想:函数f(x)=+2x(x<0)是增函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【解答】解:(1)∵f(x)=+2x(x<0),∴f(﹣3)=+2×(﹣3)=﹣,f(﹣4)=+2×(﹣4)=﹣故答案为:﹣,﹣;(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=+2x(x<0)是增函数,故答案为:增;(3)设x1<x2<0,∵f(x1)﹣f(x2)=+2x1﹣﹣2x2=(x1﹣x2)(2﹣)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=+2x(x<0)是增函数.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=1;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.【解答】解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”都能(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【解答】解:(1)任意一对“互换点”都能在一个反比例函数的图象上.理由如下:设A(a,b)在反比例函数y=的图象上,则k=ab.根据“互换点”的意义,可知A(a,b)的“互换点”是(b,a).∵ba=ab=k,∴(b,a)也在反比例函数y=的图象上.故答案为:都能;(2)∵M、N是一对“互换点”,点M的坐标为(2,﹣5),∴N(﹣5,2).设直线MN的表达式为:y=kx+b,∴,解得:,∴直线MN的表达式为y=﹣x﹣3;(3)∵点A在反比例函数y=﹣的图象上,∴设A(k,﹣),∵A,B是一对“互换点”,∴B(﹣,k),设直线AB的解析式为y=mx+n,∵直线AB经过点P(,),∴,解得,∴A(2,﹣1),B(﹣1,2),或A(﹣1,2),B(2,﹣1).将A、B两点的坐标代入y=x2+bx+c,得,解得,∴此抛物线的表达式为y=x2﹣2x﹣1.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为6.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围0<r<3﹣或r>.【解答】解:(1)设直线AB的函数表达式为y=kx+b(k≠0),将A(0,6)、B(4,0)代入y=kx+b,得:,解得:,∴直线AB的函数表达式为y=﹣x+6.当x=2时,y=﹣x+6=3,∴点C的坐标为(2,3),∴点B,C的“X矩形”的面积=(4﹣2)×(3﹣0)=6.故答案为:6.(2)①∵点M,N的“X矩形”是正方形,∴∠ABO=45°,∴点B的坐标为(6,0),直线AB的函数表达式为y=﹣x+6.∵点M到y轴的距离为3,∴点M的坐标为(3,3).∵点M,N的“X矩形”的面积为4,∴点N的横坐标为3﹣2=1或3+2=5,∴点N的坐标为(1,5)或(5,1).∴经过点N的反比例函数的表达式为y=.②如图1,取AB的中点E,当点E为MN的中点时,⊙O与点M,N的“X矩形”相交有最小值,此时r=OE﹣MN=3﹣,∴0<r<3﹣;如图2,当点N与点B重合(或点M与点A重合)时,⊙O与点M,N的“X矩形”相交有最大值,∵MN=3,∴BF=MN=.在Rt△OBF中,OB=6,BF=,∴OF==,∴r>.故答案为:0<r<3﹣或r>.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.第21页(共21页)。
2020年中考数学压轴题专题复习:一次函数与反比例函数-答案
2020年中考数学压轴题专题复习:一次函数与反比例函数一、选择题(本大题共6道小题)1. 如图,A 、B 两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A. 4B.143 C. 163D. 62. 已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 24. 设函数y =kx (k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x 的函数图象可能为( )5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax+b 与反比例函数y =cx的图象可能是( )6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()二、填空题(本大题共5道小题)7. 已知反比例函数y =k x的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.8. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.9. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.10. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB =MC .求此时点M 的坐标.11. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y =b x的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.三、解答题(本大题共4道小题)12. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1). (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE相似时,求点E的坐标.13. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.14. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.15. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.2. 【答案】A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,∴满足题意的k 、b 情况为k >1,b <0.3. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x 的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .4. 【答案】D 【解析】函数y =k x(k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x=xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b 过第一、三、四象限,反比例函数y =cx位于第二、四象限,故答案为C.6. 【答案】C 【解析】式子k -1+(k -1)0有意义,则k >1,所以1-k <0,k -1>0,所以一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.二、填空题(本大题共5道小题)7. 【答案】y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x的增大而增大,∴k <0,∴k 可取-2(答案不唯一).8. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.9. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标,再由已知条件列出关于b 的不等式组,便可求出结果.由⎩⎪⎨⎪⎧y =2y =|2x +b|,得⎩⎪⎨⎪⎧y =2y =2x +b或⎩⎪⎨⎪⎧y =2y =-2x -b ,解得x =2-b 2或x =-2+b2,∵0<x<3,∴⎩⎨⎧2-b2<3-b +22>0,解得-4<b<-2.10. 【答案】(1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5, ∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴反比例函数的解析式为y =12x, ∴所求函数表达式分别为y =2x -5和y =12x.(4分) (2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),∴x 轴是线段BC 的垂直平分线, ∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)11. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.三、解答题(本大题共4道小题)12. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0), 将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,∴直线AD 的解析式为y =12x +1.(3分) (2)直线AD 的解析式为y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3,∴C(3,0),即BC =5,设E(x ,12x +1), ①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC ,∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52, ∴E 1(3,52).(6分) ②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2,∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°.∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F, 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)13. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90),∴⎩⎪⎨⎪⎧b =4050k +b =90, 解得⎩⎪⎨⎪⎧k =1b =40, ∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140),∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分)当0≤x≤50时,w =(y -30)·p=(x +40-30)(-2x +200),=-2x 2+180x +2000,当50<x≤90时,w =(90-30)×(-2x +200)=-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是:w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分) (2)当0≤x≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分)当50<x≤90时,w =-120x +12000,∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元),∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x ≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x ≤60,∴30≤x ≤50;②当50<x ≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x ≤1603, ∴50<x ≤1603, 综合①②可得30≤x ≤1603, ∴从第30天到第53天共有24天利润不低于5600元.14. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上,∴方程x 2-(m +3)x +9=0有两个相等的实数根,∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9,又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎪⎨⎪⎧y =x 2-6x +9y =x +3, 解得⎩⎪⎨⎪⎧x =1y =4或⎩⎪⎨⎪⎧x =6y =9, ∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15, S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分)又∵S △PAB =2S △ABC ,∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上,∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1,∴a =7-732, ∴b =15+7-732=37-732.(10分)15. 【答案】解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0, 解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则 S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图②解法二:∵点C 在抛物线y =-12x 2+3x 上, ∴点C(x ,-12x 2+3x), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图③。
2020年中考数学总复习初中三年全部必考重点题库(精华版)
2020年中考数学总复习初中三年全部必考重点题库(精华版)目录第一部分数与代数第一章数与式第1讲实数83第2讲代数式84第3讲整式与分式85第1课时整式85第2课时因式分解86第3课时分式87第4讲二次根式89第二章方程与不等式第1讲方程与方程组90第1课时一元一次方程与二元一次方程组90第2课时分式方程91第3课时一元二次方程93第2讲不等式与不等式组94第三章函数第1讲函数与平面直角坐标系97第2讲一次函数99第3讲反比例函数101第4讲二次函数103第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线106第2讲三角形108第1课时三角形108第2课时等腰三角形与直角三角形110第3讲四边形与多边形112第1课时多边形与平行四边形112第2课时特殊的平行四边形114第3课时梯形116第五章圆第1讲圆的基本性质118第2讲与圆有关的位置关系120第3讲与圆有关的计算122第六章图形与变换第1讲图形的轴对称、平移与旋转124第2讲视图与投影126第3讲尺规作图127第4讲图形的相似130第5讲解直角三角形132第三部分统计与概率第七章统计与概率第1讲统计135第2讲概率137第四部分中考专题突破专题一归纳与猜想140专题二方案与设计141专题三阅读理解型问题143专题四开放探究题145专题五数形结合思想147基础题强化提高测试中考数学基础题强化提高测试1149中考数学基础题强化提高测试2151中考数学基础题强化提高测试3153中考数学基础题强化提高测试4155中考数学基础题强化提高测试5157中考数学基础题强化提高测试61592020年中考数学模拟试题(一)1612020年中考数学模拟试题(二)165第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .-1B .0C .1D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( )A .3B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1 A.a<b B.|a|>|b|C.-a<-b D.b-a>012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0.15.(2012年浙江绍兴)计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a 万人2.若x =m -n ,y =m +n ,则xy 的值是( )A .2 mB .2 nC .m +nD .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )A .3B .-3C .1D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________.7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12 C .1 D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题16.(2012年山东东营)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( )A .x 5B .-x 5C .x 6D .-x 62.(2012年四川广安)下列运算正确的是( )A .3a -a =3B .a 2·a 3=a 5C .a 15÷a 3=a 5(a ≠0)D .(a 3)3=a 63.(2012年广东汕头)下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3yD .3xy5.(2012年江苏杭州)下列计算正确的是( )A .(-p 2q )3=-p 5q 3B .(12a 2b 3c )÷(6ab 2)=2abC .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( )A .-10a 5B .10a 6C .-25a 5D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+49.计算: (1)(3+1)(3-1)=____________;(2)(2012年山东德州)化简:6a 6÷3a 3=________.(3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________. 10.化简:(a +b )2+a (a -2b ).B 级 中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1 A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a =1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x 的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.B 级 中等题11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( )A .(x -1)(x -2)B .x 2C .(x +1)2D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x 有意义,x 的取值范围满足( ) A .x =0 B .x ≠0 C .x >0 D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12 D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b 2(2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z =____________; x 2-9x 2-2x -3=____________.5.已知a -b a +b=15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________.B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题 15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x 2的值.17.(2012年四川内江)已知三个数x ,y ,z 满足xy x +y =-2,yzz +y=34,zx z +x =-34,则xyzxy +yz +zx 的值为____________.第4讲 二次根式A 级 基础题1.下列二次根式是最简二次根式的是( )A.12 B. 4 C.3 D.8 2.下列计算正确的是( ) A.20=2 10 B.2·3= 6 C.4-2= 2 D.(-3)2=-33.若a <1,化简(a -1)2-1=( ) A .a -2 B .2-a C .a D .-a4.(2012年广西玉林)计算:3 2-2=( ) A .3 B. 2 C .2 2 D .4 25.如图X1-3-3,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )图X1-3-3A.-2- 3 B.-1- 3C.-2+ 3 D.1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-4 10.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9 B .±3 C .3 D .514.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 5 16.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )A .3B .9C .12D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩ C.5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A.50,6()320x y x y +=⎧⎨+=⎩ B.50,610320x y x y +=⎧⎨+=⎩ C.50,6320x y x y +=⎧⎨+=⎩ D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组:4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a .若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x=2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C 级 拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时一元二次方程A级基础题1.(2011年江苏泰州)一元二次方程x2=2x的根是()A.x=2B.x=0C.x1=0,x2=2 D.x1=0,x2=-22.方程x2-4=0的根是()A.x=2B.x=-2C.x1=2,x2=-2D.x=43.(2011年安徽)一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和24.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1 B.-1C.0 D.无法确定5.(2012年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B.2C.3 D.16.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )A .m ≤-1B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-14 8.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c 的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x1,x2是方程x2+x-1=0的两个实数根,则x21+x22=__________.14.(2011年江苏苏州)已知a,b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( )A .x >2B .x ≥2C .x <2D .x ≤22.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩ B.2,1x x <⎧⎨>-⎩ C.2,1x x <⎧⎨≥-⎩ D.2,1x x <⎧⎨≤-⎩ 3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________. 6.若关于x 的不等式组2,x x m ⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________. 9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?B级中等题11.(2012年湖北荆门)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%13.(2012年湖北黄石)若关于x 的不等式组233,35x x x a >-⎧⎨->⎩有实数解,则实数a 的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C 级 拔尖题15.试确定实数a 的取值范围,使不等式组1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B 种板材40 m 2.请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房 A 种板材/m 2 B 种板材/m 2 安置人数/人甲型 108 61 12乙型 156 51 10问这400间板房最多能安置多少灾民?选做题17.若关于x ,y 的二元一次方程组31,33x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则实数a 的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别 冰箱 彩电 进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为() A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1 A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2 A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A 的坐标是(1,2),则点A′的坐标是()图X3-1-3 A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5 A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-7 14.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A 的对应点A′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.。
2020年九年级数学中考复习: 四边形专题复习教案
2020年九年级数学中考复习:四边形专题复习教案一、教学目标通过本教案的学习,学生将能够:1.了解四边形的定义和性质;2.掌握四边形的分类和特征;3.理解四边形的面积和周长的计算方法;4.能够解决与四边形相关的问题。
二、知识概述四边形是指由四条线段组成的封闭图形。
常见的四边形包括矩形、正方形、平行四边形和菱形等。
在九年级数学中,掌握四边形的定义、分类和性质是非常重要的,同时还需要熟练掌握四边形的面积和周长的计算方法。
2.1 四边形的定义和性质四边形是由四条线段构成的封闭图形,它有以下性质:•四边形的内角和等于360°;•对角线互相垂直的四边形是矩形;•有一对对边相等且互相平行的四边形是平行四边形;•有4个边长相等的四边形是正方形;•有一对对边相等且对角线互相垂直的四边形是菱形。
2.2 四边形的分类和特征根据边长和角度的特征,四边形可以分为以下几类:•矩形:具有四个内角都是直角的四边形;•正方形:具有四个边长相等且四个内角都是直角的四边形;•平行四边形:具有相对的两边平行的四边形;•菱形:具有四个边长相等且对角线互相垂直的四边形。
2.3 四边形的面积和周长的计算方法•矩形的面积等于长乘以宽;•正方形的面积等于边长的平方;•平行四边形的面积等于底边乘以高;•菱形的面积等于对角线的乘积的一半。
四边形的周长等于各边长的和。
三、教学重点与难点3.1 教学重点•四边形的定义和性质;•四边形的分类和特征;•四边形的面积和周长的计算方法。
3.2 教学难点•理解和应用四边形的性质;•熟练计算不同类型四边形的面积和周长。
4.1 导入与导入教师通过原生实例或者图片,引入四边形的概念,让学生了解四边形的定义。
4.2 教学内容4.2.1 四边形的定义和性质1.讲解四边形的定义和性质,介绍四边形的内角和等于360°的性质;2.分类介绍矩形、正方形、平行四边形和菱形的特征和性质。
4.2.2 四边形的面积和周长的计算方法1.讲解不同类型四边形的面积计算方法:矩形、正方形、平行四边形和菱形;2.讲解四边形的周长计算方法。
2020年中考数学人教版专题复习:有理数的加法
2020年中考数学人教版专题复习:有理数的加法一、学习目标:1. 理解有理数加法的意义,掌握有理数的加法法则,并能运用法则准确地进行有理数的加法运算.2. 掌握有理数加法运算律,并能运用运算律简化运算;运用正负数的实际意义和加法法则解决简单的实际问题.二、重点、难点:重点:有理数的加法法则,利用有理数加法的运算律简化运算.难点:正确掌握有理数的加法运算法则,特别注意异号两数相加时的方法.三、考点分析:有理数的加法是有理数运算的开始,它是进一步学习有理数运算的关键和基础.是从小学数学进入初中数学的一个重要的转折点.对有理数加法的考查主要以和其他内容相结合的形式出现,直接考查的题目不多见.知识梳理1. 有理数的加法运算法则:先确定类型,再确定符号,最后确定绝对值.(1)同号的两数相加,取相同的符号,并把绝对值相加若a >0且b >0,则a +b =+(︱a ︱+︱b ︱);若a <0且b <0,则a +b =-(︱a ︱+︱b ︱).(2)异号的两数相加①若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值 若a >0、b <0且︱a ︱>︱b ︱,则a +b =+(︱a ︱-︱b ︱);若a >0、b <0且︱a ︱<︱b ︱,则a +b =-(︱b ︱-︱a ︱).②若绝对值相等,则和为0,也就是互为相反数的两个数的和为0若a >0、b <0,且︱a ︱=︱b ︱,则a +b =0.(反过来,若a +b =0,说明a 与b 互为相反数.)(3)一个数与0的和仍得这个数,即a +0=a .2. 运用运算律对有理数的加法进行简便运算(1)加法交换律:a +b =b +a ;(2)加法结合律:(a +b )+c =a +(b +c ).典例精析知识点一:有理数的加法例1:计算:(1)(+3)+(+6);(2)(-4)+(-9);(3)(-4)+(+6);(4)(+213)+(-213);(5)(-35)+0.思路分析:题意分析:本题考查有理数的加法法则.解题思路:按照法则先分清类型,再确定和的符号和绝对值.解答过程:(1)(+3)+(+6)=+(3+6)=+9=9;(2)(-4)+(-9)=-(4+9)=-13;(3)(-4)+(+6)=+(6-4)=+2=2;(4)(+213)+(-213)=0;(5)(-35)+0=-35.解题后的思考:运用有理数的加法法则,进行有理数加法运算要遵循的一般步骤为“一观察,二确定,三求和”,即第一步先观察两个加数的符号是同号还是异号,有没有零;第二步确定用哪条法则进行运算;第三步求出结果.例2:填空题:(1)若a <0,b <0,则a +b _____0;(2)若a >0,b >0,则a +b _____0;(3)若a >0,b <0,且︱a ︱<︱b ︱,则a +b _____0;(4)若a >0,b <0,且︱a ︱>︱b ︱,则a +b _____0;(5)若a >0,b <0,且︱a ︱=︱b ︱,则a +b _____0.思路分析:题意分析:根据有理数加法法则填空.解题思路:先根据两个加数的符号确定和的符号,再判断和是大于0还是小于0. 解答过程:(1)因为a <0,b <0,则和的符号不变,所以a +b <0;(2)因为a >0,b >0,则和的符号不变,所以a +b >0;(3)因为a >0,b <0,且︱a ︱<︱b ︱,所以取b 的符号,所以a +b <0;(4)因为a >0,b <0,且︱a ︱>︱b ︱,所以取a 的符号,所以a +b >0;(5)因为a >0,b <0且︱a ︱=︱b ︱,所以a 、b 互为相反数,所以a +b =0. 解题后的思考:异号两数相加,取绝对值较大的加数的符号,而不是取较大的加数的符号.小结:两个有理数相加,和的符号由两个加数的符号共同确定.两个正数相加,和为正数;两个负数相加,和为负数;绝对值不相等的异号两数相加,和的符号与绝对值较大的加数的符号相同;互为相反数的两个数相加,和为0,结果前没有符号.知识点二:运用有理数的加法运算律化简计算例3:计算:(1)-213+5.5+213;(2)-3+5+(-4);(3)-713+612+223;(4)7.2+0.5+5.6+2.3;(5)3+(-2.3)+(-5)+6+7.2.思路分析:题意分析:在有理数的运算中,加法的交换律、结合律仍然成立.解题思路:(1)中-213与213互为相反数,先相加;(2)中把-3和-4两个负数先相加;(3)中-713和223分母相同,先相加;(4)中把7.2、0.5、2.3相加可得到一个整数,先相加;(5)中3、-5、6都是整数,-2.3和7.2都是小数,分别相加.解答过程:(1)-213+5.5+213=(-213+213)+5.5=0+5.5=5.5;(2)-3+5+(-4)=-3+(-4)+5=-7+5=-2;(3)-713+612+223=(-713+223)+612=-143+612=116;(4)7.2+0.5+5.6+2.3=(7.2+0.5+2.3)+5.6=10+5.6=15.6;(5)3+(-2.3)+(-5)+6+7.2=[3+(-5)+6]+[(-2.3)+7.2]=4+4.9=8.9.解题后的思考:在运用运算律时,一定要根据需要灵活运用,以达到简化运算的目的.例4:计算:(1)-316+(-734)+316+7.75;(2)(+1.125)+(-325)+(-18)+(-0.6);(3)(-234)+(+2.47)+(+112)+(-125)+(-1.07);(4)4.4+(-13)+(-13)+(-323)+(-2.4).思路分析:题意分析:本例算式中含有多个加数,且加数有正数,有负数,有小数,也有分数,计算时应进行合理的分类,正确运用运算律.解题思路:(1)-316与316互为相反数,-734与7.75互为相反数,可利用互为相反数之和为0的性质进行计算;(2)将代分数变为小数,凑整进行计算;(3)-234与+112易通分;+2.47、-125、-1.07的和为整数且是0;(4)-13与-323的和为整数,其余三数的和也为整数.解答过程:(1)原式=(-316+316)+(-734+734)=0;(2)原式=[1.125+(-18)]+[-3.4+(-0.6)]=1+(-4)=-3;(3)原式=[(-234)+124]+[2.47+(-1.4)+(-1.07)]=-114+[2.47+(-2.47)]=-114;(4)原式=[(-13)+(-323)]+[4.4+(-13)+(-2.4)]=(-4)+(-11)=-15.解题后的思考:(1)做带分数加法时,可将带分数化为整数和分数两部分,然后分别相加,再把结果相加,但要注意分开的整数部分和分数部分都要保持原带分数的符号.(2)运算符号和性质符号要区分开.如2-(-4)中前一个“-”号是运算符号,后一个“-”号是性质符号.运算中不要出现符号错误.小结:运用有理数的加法运算律时,通常有下列规律:①互为相反数的两个数先相加—“相反数结合法”;②符号相同的两个数先相加—“同号结合法”;③分母相同的数先相加—“同分母结合法”;④几个数相加得整数,则这几个数先相加—“凑整法”;⑤整数与整数、小数与小数相加—“同形结合法”.知识点三:有理数加法运算的综合运用例5:若︱x ︱=3,︱y ︱=2,且x <y ,求x +y 的值.思路分析:题意分析:先根据已知条件确定x 和y 的值,再求和.解题思路:由绝对值的意义可知x =±3,y =±2,要分情况计算x +y 的值.解答过程:因为︱x ︱=3,︱y ︱=2,所以x =±3,y =±2,又因为x <y ,所以x =-3,y =2,或x =-3,y =-2.当x =-3,y =2时,x +y =-3+2=-1;当x =-3,y =-2时,x +y =-3+(-2)=-5.所以x +y 的值是-1或-5.解题后的思考:由于绝对值等于正数的数有两个,所以关于绝对值的运算问题一定要分情况讨论.例6:某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休制,每日上班人数不一定相等,实际每日生产量与计划生产量相比情况如下表(增加的辆数记为正,减少的辆数记为负):(1(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少?(3)产量最多的一天比产量最少的一天多生产了多少辆?思路分析:题意分析:表格中的正、负数表示该厂每日实际生产摩托车的数量与计划生产摩托车的数量的差值情况,正数表示比计划生产的多,负数表示比计划生产的少.解题思路:(1)每天生产的摩托车数量等于计划每天生产的数量加实际每天的误差.本周三生产的数量为450+(-3)=447(辆).(2)计算出实际每天的误差和就可知道本周总生产量与计划生产量相比是增加还是减少,即误差和为正表示本周总生产量增加,误差和为负表示本周总生产量减少,误差和的绝对值就是增加或减少的数量.(3)由表中数据可知,周五的生产量最大,为450+(+10)=460(辆);周日的生产量最小为450+(-25)=425(辆).周五比周日多生产了460-425=35(辆). 解答过程:(1)450+(-3)=447(辆),即本周三生产了447辆摩托车.(2)(-5)+(+7)+(-3)+(+4)+(+10)+(-9)+(-25)=-21(辆),即本周总生产量与计划生产量相比减少了,减少了21辆.(3)450+(+10)=460(辆),450+(-25)=425(辆),460-425=35(辆),即产量最多的一天(周五)比产量最少的一天(周日)多生产了35辆.解题后的思考:遇到实际生活问题,要从题意出发,分析题目,寻找解决问题的切入点,在利用有理数加法进行计算时也要注意使用运算律使计算简便.小结:有理数加法运算贯穿于整个数学运算过程中,可以说它是解决各类问题的一种工具,有时可以进行多种数学知识的综合运用,也可以用来解决一些实际问题.提分技巧有理数的加法是在小学算术四则运算的基础上,将数的领域扩充到有理数以后学习的.它与小学的算术运算既有联系又有区别,小学的加法运算不需要确定和的符号,运算简单,而有理数的加法,既要确定和的符号,又要计算和的绝对值.实质上,有理数的加法运算,在确定了和的符号后,进行的是算术的加减运算,这里包含有数学的化归思想.同步测试一、选择题1. 计算-2+3的值是( )A . -5B . -1C . 1D . 52. 某天股票A 开盘价18元,上午11∶30跌1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A . 0.3元B . 16.2元C . 16.8元D . 18元3. 计算756+(-513)+214+(-434)=( )A . 18B . -9C . 0D . -184. 足球循环赛中,红队以4∶1胜黄队,黄队以1∶0胜蓝队,蓝队以1∶0胜红队,则红队.黄队.蓝队的净胜球数分别为( )A . 2,-2,0B . 4,2,1C . 3,-2,0D . 4,-2,1 5. 一个数是10,另一个数比10的相反数大2,则这两个数的和为( ) A . 18B . -2C . -18D . 2 6. 若x 是-3的相反数,︱y ︱=5,则x +y 的值为( )A . -8B . 2C . 8或-2D . -8或2 *7. 如果一个有理数与-7的和是正数,那么这个有理数一定是( )A . 负数B . 零C . 7D . 大于7的正数**8. 下列说法中正确的有( )①两正数相加,和为正;②两负数相加,和为负;③异号两数相加,和的符号与较大加数的符号相同;④两数和是正数,则这两个有理数都是正数;⑤两数的和大于每一个加数;⑥若两数的和小于每一个加数,则这两个数都是负数.A . 1个B . 2个C . 3个D . 4个二、填空题9. 比+7大-2的数是__________,比+1的相反数大3的数是__________.10. 数轴上A .B 两点所表示的有理数的和是__________.*11. 若︱a ︱=10,︱b ︱=12,且a >0,b <0,则a +b =__________.*12. 绝对值不小于3,但小于5的所有整数的和是__________.三、计算题13. 计算:(1)(-13)+(-34);(2)12+(-23);(2)(-34)+(+76);(4)(-334)+(+213).*14. 计算:(1)(+8.4)+(-12)+(-8)+(+3.6);(2)(-23)+12+45+(-12)+(-13); (3)12+(-16)+(-112)+(-120)+(-130)+(-142);(4)4.5+[(-2.5)+913+(-1523)]+213.*15. 一只蜗牛从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:cm ):+5,-3,+10,-8,-6,+12,-10.(1)蜗牛最后是否爬回出发点?(2)蜗牛在离开出发点O 最远时是多少cm ?(3)在爬行过程中,如果每爬1cm 奖励两粒芝麻,则蜗牛共得多少粒芝麻?**16. 若︱x -4︱与︱y +2︱互为相反数,求x +y +4的值.试题答案一、选择题1. C2. C3. C4. A5. D6. C 解析:根据题意x =3,y =5或-5,所以x +y =8或-2.7. D 解析:一个有理数与-7相加,和为正数.根据有理数的加法法则,这个数一定是绝对值大于︱-7︱的正数.8. C 解析:①②⑥都正确.③不正确,如2+(-5)=-3,和的符号为“-”,较大加数2的符号为“+”;④⑤也不正确.二、填空题9. 5,210. -111. -2 解析:因为︱a ︱=10,︱b ︱=12,所以a =±10,b =±12.因为a >0,b <0,所以a =10,b =-12,所以a +b =-2.12. 0 解析:可结合数轴观察,绝对值不小于3但小于5的所有整数有:+3和-3,+4和-4.其和为0.三、计算题13.(1)-1112;(2)-16;(3)42;(4)-1712.14.解:(1)原式=[(+8.4)+(+3.6)]+(-12)+(-8)=-8;(2)原式=[(-23)+(-13)]+[12+(-12)]+45=-15;(3)因为-16=13-12,-112=14-13,…,所以原式=12+13-12+14-13+…+17-16=17;(4)原式=4.5+(-2.5)+[(913+213)+(-1523)]=-2.15. 解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,故是爬回到出发点.(2)12cm .(3)把所有各数绝对值相加,再乘以2,故是108粒.16. 解:因为︱x -4︱≥0,︱y +2︱≥0,由题意得:︱x -4︱+︱y +2︱=0,只有当两个加数都为0时和才能为0.所以︱x -4︱=0,︱y +2︱=0,即x -4=0,y +2=0.所以x =4,y =-2,所以x +y +4=4+(-2)+4=6.解析:此题利用互为相反数的两个数的和为零,以及绝对值的非负性,求出x .y 的值,再利用有理数的加法法则进行计算.。
中考总复习数学第1节 一次方程(组)及其应用
【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.
2020年九年级中考数学专题复习:配方法解一元二次方程(含解析)
九年级中考数学专题训练:配方法解一元二次方程(含解析)班级:姓名:一、单选题1.将方程化成的形式是( )A. B. C. D.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=13.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定4.用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A. (x-2)2=1B. (x-2)2=-1C. (x-2)2=3D. (x+2)2=35.用配方法解方程:x2-4x+2=0,下列配方正确的是( )A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=66.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A. (x+1)2=7B. (x﹣1)2=7C. (x+2)2=10D.(x﹣2)2=107.用配方法解方程x2+4x﹣1=0,下列配方结果正确的是()A. (x+2)2=5B. (x+2)2=1C. (x﹣2)2=1D.(x﹣2)2=58.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A. (x+3)2=14B. (x﹣3)2=14C. (x+3)2=4D.(x﹣3)2=49.用配方法解方程x2+8x+7=0,则配方正确的是( )A. B. C. D.10.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是( )A. (x﹣2)2=3B. (x+2)2=3C. (x﹣2)2=1D.(x﹣2)2=﹣1二、填空题11.方程x2+4x﹣1=0的解是:________.12.把方程变形为的形式后,h=________,k=________.13.用配方法解方程x2+6x+3=0,方程可变为(x+3)2=________.14.解方程x2﹣4x+4=0,得________.15.将方程x2+2x﹣7=0配方为(x+m)2=n的形式为________ .16.用配方法解方程x2﹣4x﹣5=0,则x2﹣4x+________=5+________,所以x1=________,x2=________.17.一元二次方程x2﹣6x+1=0的根为________18.把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=________.三、计算题19.解方程:①4x2-4x+1=0 ②x2+2=4x20.x2﹣4x+1=0(用配方法)21.解方程:x(x﹣4)=1.22.解方程:x2+4x﹣4=0.23.配方法解:x2+3x﹣4=0.24.解方程:.四、解答题25.解方程:x2+4x=5.26.请选择适当的方法解下列一元二次方程:(1)x2﹣4=0(2)x(x﹣6)=5.答案解析部分一、单选题1.将方程化成的形式是( )A. B. C. D.【答案】D【考点】解一元二次方程-配方法【解析】【分析】先移项,然后方程两边同加一次项系数一半的平方,最后根据完全平方公式因式分解即可.【解答】故选D.【点评】配方法是初中数学学习中的重要方法,尤其在二次函数的应用问题中极为重要,因而是中考的热点,一般难度不大,需熟练掌握.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=1【答案】A【考点】解一元二次方程-配方法【解析】【解答】x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22 ,(x+2)2=9,故答案为:A.【分析】首先将常数移到等号的右边,然后,方程两边同时加上一次项系数一半的平方,最后,利用完全平方公式进行变形即可.3.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定【答案】B【考点】配方法解一元二次方程【解析】【解答】解:- +6x-10=-(-6x)-10=-(-6x+9-9)-10=- -1,∵-(≤0,∴- -1<0,即多项式- +6x-10的值是一个负数.故答案为:B【分析】根据配方法的特征,将代数式的二次项系数化为1,再配一个适当的常数项即加一次项系数一半的平方,结合平方的非负性即可求解。
2020年数学中考专题复习---图形规律专题
2020年数学中考专题复习---图形规律专题1、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第n个图案需棋子枚.2、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:第n个图案中有白色地面砖块。
3、观察下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有个★.4.如图是用五角星摆成的三角形图案,每条边上有n(n>1)个点(即五角星),每个图案的总点数(即五角星总数)用S表示.(1)观察图案,当n=6时,S= _________ ;(2)用n表示S,S=______ ___第4题图第5题图5.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为________ .6.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第n个图形有_________ 个小正方形.图案1 图案2 图案3……(1)(2) (3)(4)7、如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.8.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n (n ≥3)盆花,每个图案中花盆总数为S ,按照图中的规律可以推断S 与n (n ≥3)的关系是 _________ .9、观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有个.10、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积 个平方单位。
2020【新版上市】河南省年中考数学总复习 第二章 方程(组)与不等式(组)数学文化拓展素材
《九章算术》(涉及方程)《九章算术》是我国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就.《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次正式引入负数及其加减法运算法则.《九章算术》的出现标志着中国古代数学形成了完整的体系.1.我国古代数学名著《九章算术》记载了利用算筹表示方程组和解方程组的问题.算筹图表示的是方程组则算筹图表示的方程组的解是( )A. B.C. D.2.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问这个物品的价格是多少元.”该物品的价格是元.3.《九章算术》中的方程问题:今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50.则甲的钱数是,乙的钱数是.《算法统宗》(涉及方程)在中国古代数学的整个发展过程中,《算法统宗》是一部十分重要的著作.其作者程大位(1533—1606),字汝思,号宾渠,安徽休宁人.从二十多岁起他便在长江中下游一带经商,对数学产生了浓厚的兴趣.四十岁时,倦于外游,便弃商归故里,认真钻研古籍,撷取名家之长,历经二十年,于明万历壬辰年(1592)写就巨著《算法统宗》十七卷.在《算法统宗》这部著作中,许多数学问题都是以歌诀形式呈现的:(1)浮屠增级远看巍巍塔七层, 红光点点倍加倍.共灯三百八十一, 请问尖头几盏灯.这首歌诀的大意:远处有一座雄伟的佛塔,塔上挂了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯.(2)以碗知僧巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧.这首歌诀的大意:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚.(3)和尚分馒头一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?这首歌诀的大意:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人.1.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.2.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房间,房客人.3.《算法统宗》这部书里有这样一题,大意:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧?”牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的,连你牵着的这只肥羊也算进去,才刚好凑满一百只.”则这位牧羊人赶的这群羊共有只.《孙子算经》(涉及方程)《孙子算经》是我国古代重要的数学著作.传本的《孙子算经》共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法, 卷下对后世的影响最为深远.卷下的第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?下卷第26题“物不知数”为后来的“大衍求一术”的起源,被看作是中国数学史上最有创造性的成就之一,称为中国余数定理:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问物几何?显然,这相当于求不定方程组的正整数解n,《孙子算经》所给答案是n=23.1.《孙子算经》中有首歌谣,大意为:如图,有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A.五丈B.四丈五尺C.一丈D.五尺2.《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.问木长几何?”意思是“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺.”设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A. B.C. D.3.我国古代数学名著《孙子算经》中有“鸡兔同笼”数学名题,小敏将该题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?此时的答案是.4.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完.则城中有户人家.一元二次方程的几何解法你知道吗,对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!下面我们以方程x2+2x-35=0为例加以说明.(方程可转化为x2+2x=35,x(x+2)=35两种形式)图(1)三国时期的数学家赵爽(约公元3世纪)在其所著的《勾股圆方图注》中记载的方法是:如图(1),构造边长为(x+x+2)的正方形,则大正方形的面积(x+x+2)2,另一方面,大正方形是由四个长和宽分别为x+2,x的矩形和一个边长为2的小正方形组成的,所以大正方形的面积等于四个矩形加上中间小正方形的面积,即大正方形的面积为4×35+22,故(x+x+2)2=144,x>0,解得x=5.说明:赵爽的解法是把x2+2x=x(x+2)看作矩形的面积,然后用四个这样的矩形及一个边长为2的小正方形组成一个边长为(x+x+2)的正方形,再由面积公式求出x.图(2)公元9世纪,阿拉伯数学家阿尔·花拉子密采用的方法是:构造图(2),阿尔·花拉子密的方法直接从“形”上反映了配方法,一方面,正方形的面积为(x+1)2,即(x2+2x)+1;另一方面,它又等于36,即35+1,据此同样可得x=5.其实赵爽的方法和阿尔·花拉子密的方法本质上是一致的.利用几何法解一元二次方程,巧妙之处在于不用过多的语言和运算即可解决求方程的解的问题.赋予代数式的几何意义是解决这类问题的关键.需要指出的是,一元二次方程的几何解法,反映了古代数学家在探索一元二次方程的求解过程中留下的足迹,如果遇到负根,就无法求解,这也说明了这种方法的局限性.后来人们发现的一元二次方程ax2+bx+c=0(a≠0)的求根公式x=,克服了这种局限性.参考答案《九章算术》(涉及方程)1.C 由题意知,算筹图表示的方程组是解得故选C.2.53 设有x个人共同购买这个物品,根据题意得8x-3=7x+4,解得x=7.则8x-3=8×7-3=53(元),故该物品的价格是53元.3.37.5 25 设甲持钱为x,乙持钱为y,依题意列方程组为解得故甲的钱数为37.5,乙的钱数为25.《算法统宗》(涉及方程)1.20 15 设索长为x尺,竿子长为y尺,根据题意,得解得2.8 63 设该店有客房x间,根据题意得,7x+7=9(x-1),解得x=8,7×8+7=63.故该店有客房8间,房客63人.3.36 设这位牧羊人赶的这群羊共有x只,依题意,得x+x+x+x+1=100,解得x=36,故这位牧羊人赶的这群羊共有36只.《孙子算经》(涉及方程)1.B 设竹竿的长为x尺,根据题意得,竹竿的影长为一丈五尺,即15尺,标杆的长为一尺五寸,即1.5尺,标杆的影长为五寸,即0.5尺,则=,解得x=45.故选B.2.B 根据“用一根绳子去量一根长木,绳子还剩余4.5尺”可列方程y=x+4.5;根据“将绳子对折再量长木,长木还剩余1尺”可列方程y=x-1.故选B.3.鸡22只,兔11只设鸡有x只,兔有y只.依题意得方程组解得故鸡有22只,兔有11只.4.75 设城中有x户人家,根据题意,得x+=100,解得x=75.故城中有75户人家.。
2020年中考数学 考前大专题复习:函数(解析版)
2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。
2020年中考数学人教版专题复习练习题:命题
2020年中考数学人教版专题复习:命题一、教学内容:命题和命题的证明1.理解命题的含义,会区分命题的题设和结论,能根据已有的知识和经验判断一个命题的真假性.2.了解公理、定理、证明的概念,会对一个真命题进行证明.二、知识要点:1.命题的概念对一件事情作出判断的语句,叫做命题.命题都是由条件和结论两部分组成的,没有条件或没有结论的语句都不是命题.疑问句不是命题,祈使句也不是命题.命题常写成“如果……那么……”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论.2.真命题、假命题正确的命题叫做真命题,不正确的命题叫做假命题.3.判断一个命题是假命题判断一个命题是假命题,只要举出一个满足命题条件但结论不同于命题结论的例子就可以了,像这样的例子叫做反例.4.公理、定理、证明(1)一个命题的真假,常常需要进行有理有据的推理才能作出正确的判断.这个推理的过程叫做命题的证明.(2)我们把经过证明的真命题叫做定理.(3)经过实践检验公认是真命题的,我们把它叫做公理.(4)对一个名词或术语的含义加以描述、规定,就是这个名词和术语的定义.说明:(1)公理不需推理论证,可以作为判定其他命题真假的依据.定理也能作为判定其他命题真假的依据.(2)证明命题时,仅有已知条件作为证明的基础是不够的,还需要一些公理、定义和定理作为推理论证的依据.5. 一般地,证明一个几何命题有如下步骤: 第一步根据题意画出图形;第二步根据条件、结论和图形写出已知、求证; 第三步分析、探索写出证明过程.三、重点难点:重点是理解命题、公理、定理、证明的概念,掌握推理的基本方法及基本过程. 难点是如何判定一个命题是真命题,还是假命题.【典型例题】例1. 下列各语句中,哪些是命题,哪些不是命题?是命题的,请你先将它改写为“如果……那么……”的形式,再指出命题的条件和结论.(1)对顶角相等.(2)画一个半径为7cm 的圆. (3)偶数一定是合数吗? (4)偶数是合数.分析:(2)是祈使句,(3)是疑问句,不是命题. 改写命题时要注意把句子写完整. 解:(1)、(4)是命题. (2)、(3)不是命题. (1)改写为:如果两个角是对顶角,那么这两个角相等. 其中条件是“两个角是对顶角”,结论是“这两个角相等”. (4)改写为:如果一个数是偶数,那么这个数是合数. 其中“一个数是偶数”是条件,“这个数是合数”是结论.评析:误区一:把祈使句误判为判断句,识别祈使句的方法:句子的前面可以添加“请”字,如“连结A 、B 两点”句前加“请”为“请连结A 、B 两点”. 判断句的前面不能添加“请”字. 误区二:认为错误的判断不是命题,看一个语句是否是命题,就看它是否对一件事情作出了判断,而不管判断是否正确. 即只要对一件事情作出判断,这个语句就是一个命题.例2. 下列各语句哪些是命题,对于命题,请你先将它改写成“如果……那么……”的形式,再找出命题的条件和结论,并指出是真命题,还是假命题,并说明为什么是假命题.(1)你吃饭了吗?(2)你今年上8年级,明年一定上9年级; (3)作一个角的角平分线; (4)互为倒数的两个数的积为1; (5)内错角相等;(6)不等式的两边同时乘以一个数,不等号的方向改变.分析:命题是判断一件事情的语句,疑问句、陈述句都不是判断的语句,(1)是疑问句,(3)是陈述句. 改写命题时,要适当地增减语句,使语句通顺,但不能改变原意,命题的条件和结论要分清,通过举反例的方式来说明一个命题是假命题. 解:(1)(3)不是命题,(2)(4)(5)(6)都是命题. 改写如下:(2)如果你今年上8年级,那么明年一定上9年级.这个命题的条件是今年上8年级,结论是明年上9年级. 这个命题是假命题. 例如,明年可能因为某种原因休学或是其他情况.(4)如果两个数互为倒数,那么这两个数的乘积为1.这个命题的条件是两个数互为倒数,结论是这两个数的乘积为1. 这是一个真命题. (5)如果两个角是内错角,那么这两个角相等.这个命题的条件是两个角是内错角,结论是这两个角相等. 这个命题是假命题,例如,当被截两直线不平行时,内错角不相等.(6)如果不等式的两边同时乘以一个数,那么不等号的方向改变.这个命题的条件是不等式两边同时乘以一个数,结论是不等式的方向改变. 这个命题是假命题.例如,由2x >1,可得x >12,即同时乘以一个正数时,不等号的方向不变.例3. 已知命题“a 、b 是实数,若a >b ,则a 2>b 2”,若结论保持不变,怎样改变条件,命题才是真命题?以下四种说法:①a 、b 是实数,若a >b >0,则a 2>b 2; ②a 、b 是实数;若a >b 且a +b >0,则a 2>b 2; ③a 、b 是实数;若a <b <0,则a 2>b 2;④a 、b 是实数;若a <b 且a +b <0,则a 2>b 2. 其中真命题的个数是( ) A . 1个B . 2个C . 3个D . 4个分析:此题可对题设部分进行分类讨论说明,可结合数轴,利用数形结合的思想很容易得出结论. 在①中a -b >0且a +b >0,所以(a -b )(a +b )>0,即a 2>b 2;在②中由a >b ,得a -b >0,又因为a +b >0,故(a -b )(a +b )>0,即a 2-b 2>0,故a 2>b 2;在③中a -b <0且a +b <0,所以(a +b )(a -b )>0,即a 2+b 2>0;在④中,由a <b ,得a -b <0,又a +b <0,故(a +b )(a -b )>0,即a 2-b 2>0,故a 2>b 2. 故选D . 解:D例4. 如图所示,AB ⊥BC ,DC ⊥BC ,∠1=∠2. 求证:BE ∥CF .A B CDEF 12证明:∵AB ⊥BC ,DC ⊥BC ( ),∴∠ABC =∠BCD =90°( ). ∵∠2=∠1( ), ∴∠EBC =∠FCB ( ).∴BE ∥CF ( ). 评析:证明的依据是已知条件或定义定理、公理等.例5. 试证明同角(或等角)的补角相等.已知:如图,∠1+∠α=180°,∠2+∠α=180°. 求证:∠1=∠2.分析:一般地,证明一个几何命题必须先根据题意画出图形,再根据条件、结论写出已知、12α求证,最后在分析、探索的基础上,写出证明过程.证明时不必写出分析过程.证明:∵∠1+∠α=180°(已知),∴∠1=180°-∠α(等式的性质).∵∠2+∠α=180°(已知),∴∠2=180°-∠α(等式的性质).∴∠1=∠2(等量代换).评析:误区①:不画图形,这是不允许的.画出准确、清晰、与题意相符的图形,不仅是必要的,且有助于在证明中进行观察分析.误区②:推理缺乏依据.对于证明的每一步,必须有推理依据,不能“想当然”,这些依据可以是已知的条件,也可以是定义、公理和已学过的定理.【方法总结】1.命题与定理既互相独立,又相互依存.定理是某些真命题的独立表现形式,命题与定理是一般与特殊的关系,并不是每个命题都能形成“定理”,而任何一个“定理”都是命题,只有反复理解概念,才能做到不混淆.2.证明的必要性.因为我们经常采用观察、测量、归纳、类比的方法来探索结论,发现命题,但是这些方法得到的命题可能是真命题,也可能是假命题.【模拟试题】(答题时间:45分钟)一、选择题1.下列命题中,假命题是()A.对顶角相等B.相等的角是对顶角C.若a>0,则-a<0D.不相等的两个角不是对顶角2.下列命题中,真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角3.两个角的两边互相垂直,则这两个角()A.相等B.互补C.相等或互补D.无法判断4.“同位角相等”是()A.平行线的性质B.平行线的判断方法C.公理D.假命题5.下列说法正确的是()A.不是邻补角的两个角不互补B.两个角的余角相等,那么它们的补角也相等C.同位角相等D.相等的角是对顶角*6.下列不是命题的是()A.作直线a的平行线bB.若ab>0,则a>0,b>0C.两点之间,线段最短D.两直线相交成90°,则两直线平行*7.如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互余C.互补D.无法判断AB CDE*8.如图所示,OB⊥OD,OC⊥OA,∠BOC=43°,则∠AOD等于()A. 137°B. 143°C. 133°D. 90°ABCD O二、填空题1.命题“若a+b=0,则a、b互为相反数”的条件是__________,结论是__________.2.写出命题“若a2=b2,则a=b”不成立的反例__________.3.“全等三角形的面积相等”的条件是__________.结论是__________.4.若OC是∠AOB的平分线,那么∠AOC=∠BOC,理由是____________________.三、解答题1. 指出下列命题的条件部分和结论部分. (1)直角都相等;(2)互为邻补角的两个角的平分线互相垂直;(3)直线外一点与直线上各点连结的所有线段中,垂线段最短; (4)两个角的和等于平角时,这两个角互为补角. 2. 比较下面两句话,是不是命题?是不是真命题? (1)我吃大米饭; (2)我是大米饭.*3. 如图所示,已知AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角. 求证:∠ACD =∠B . 证明:∵AC ⊥BC (已知),∴∠ACB =90°( ). ∴∠BCD 是∠DCA 的余角( ). ∵∠BCD 是∠B 的余角(已知),∴∠ACD =∠B ( ).ABCD**4. 两条平行线被第三条直线所截,你如何证明同位角的平分线平行.【试题答案】一、选择题1. B2. C3. C4. D5. B6. A7. B8. A二、填空题1.a+b=0 a、b互为相反数2.a=-2,b=23.两个三角形全等这两个三角形的面积相等4.角平分线定义三、解答题1.(1)条件:两个角都是直角;结论:这两个角相等.(2)条件:互为邻补角的两个角的两条角平分线;结论:这两个角平分线互相垂直.(3)条件:直线外一点与直线上各点连结的所有线段;结论:垂线段最短.(4)条件:两个角的和等于平角;结论:这两个角互补.2.(1)不是命题(2)是命题,是假命题.3.垂直定义余角定义同角的余角相等4.提示:这是一个文字命题,应该结合题意,画出图形,写出证明过程.。
2020年中考数学一次函数专题复习(含答案)
2020年中考数学一次函数专题复习【名师精选全国真题,值得下载练习】第Ⅰ卷(选择题)一.选择题1.已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=1.5x﹣3 C.y=﹣1.5x+3 D.y=﹣1.5x﹣3 2.如图,直线y=kx+b与直线y=3x﹣2相交于点(,﹣),则不等式3x﹣2<kx+b 的解为()A.x>B.x<C.x>﹣D.x<﹣3.如图,一次函数y=x+6的图象与x轴,y轴分别交于点A,B,过点B的直线l平分△ABO的面积,则直线l相应的函数表达式为()A.y=x+6 B.y=x+6 C.y=x+6 D.y=x+6 4.已知点(1,y1),(﹣1,y2),(﹣2,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y2 5.已知一次函数y=(m+1)x+m2﹣1的图象经过原点,则m的值为()A.1 B.﹣1 C.±1 D.06.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A.甲的速度保持不变B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人不相遇D.在起跑后第50秒时,乙在甲的前面7.若点P在一次函数y=﹣4x+2的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8.关于函数y=﹣2x﹣1,下列结论正确的是()A.图象必经过(﹣2,1)B.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1<y2C.函数的图象向下平移1个单位长度得y=﹣2x﹣2的图象D.当x>0.5时,y>09.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x 的关系如下表,则y与x的关系式是()x/g0 20 40 60 ……y/cm10 11 12 13 ……A.y=x B.y=0.1x+10 C.y=0.05x+10 D.y=0.2x+10 10.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<1 11.如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B',则点B'的坐标是()A.(7,3)B.(4,5)C.(7,4)D.(3,4)12.如图,已知平面直角坐标系中,A点在x轴上,C点在y轴上,OC=6,OA=OB =10,且BC∥OA,PQ∥AB交AC于D点,且∠ODQ=90°,则D点的坐标为()A.B.C.D.第Ⅱ卷(非选择题)二.填空题13.已知一次函数y=kx+b的图象经过点A(0,﹣3)和B(1,﹣1),则此函数的表达式为.14.已知函数y=(k﹣1)x﹣1,若y随x的增大而减小,则k的取值范围为.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:则正确的序号有.①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.16.如图,OA和BA分别表示甲、乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定快者比慢者每秒多跑米.17.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为.18.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越丛林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的倍匀速按原路赶往铁山坪,由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的部分图象如图所示,则乙车出发小时到达目的地.三.解答题19.如图,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)若点D在x轴上,使得S△DOC=2S△BOC的值,请求出D点的坐标;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,则k的值为.20.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?21.某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90,x为整数)天的售价y 与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(200﹣2x)件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润;22.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(,),B(,);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.23.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.参考答案一.选择题1.解:设这个一次函数的表达式为y=kx+b(k≠0),与x轴的交点是(a,0).∵一次函数y=kx+b(k≠0)图象过点(0,3),∴b=3.∵这个一次函数与两坐标轴所围成的三角形面积为3,∴×3×|a|=3,解得:a=2或﹣2.∵一次函数的图象与两坐标轴在第一象限围成的三角形,∴a=﹣2把(﹣2,0)代入y=kx+3,得k=1.5,则函数的解析式是y=1.5x+3.故选:A.2.解:不等式3x﹣2<kx+b的解集为x<.故选:B.3.解:∵一次函数y=x+6的图象与x轴,y轴分别交于点A,B,∴令y=0,则求得x=﹣8,令x=0,求得y=6,∴A(﹣8,0),B(0,6),∵过点B的直线l平分△ABO的面积,∴AC=OC,∴C(﹣4,0),设直线l的解析式为y=kx+6,把C(﹣4,0)代入得﹣4k+6=0,解得k=,∴直线l的解析式为y=x+6,故选:D.4.解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1<y2<y3.故选:B.5.解:∵一次函数y=(m+1)x+m2﹣1的图象经过原点,∴,解得m=1.故选:A.6.解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C 正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.7.解:∵﹣4<0,2>0,∴一次函数y=﹣4x+2的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=﹣4x+2的图象上,∴点P一定不在第三象限.故选:C.8.解:A、把x=﹣2代入函数y=﹣2x﹣1得,(﹣2)×(﹣2)﹣1=3≠1,故点(﹣2,1)不在此函数图象上,故本选项错误;B、∵函数y=﹣2x+1中.k=﹣2<0,∴y随x的增大而减小,若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1>y2,故本选项错误;C、根据平移的规律,函数y=﹣2x﹣的图象向下平移1个单位长度得y=﹣2x﹣1﹣1,即y=﹣2x﹣2,故本选项正确;D、把x=0.5代入函数y=﹣2x﹣1=﹣2,故本选项错误.故选:C.9.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.10.解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,不等式组的解集即为:x<﹣2,故选:B.11.解:当x=0时,y=4,所以B点坐标为(0,4),所以OB=4,当y=0时,x=3,所以A点坐标为(3,0),所以OA=3.根据旋转的性质可知:O′A=OA=3,O′B′=OB=4,且O′A⊥x轴,O′B′∥x轴,∴B′点到x轴距离为3,到y轴距离为4+3=7,因为B′点在第一象限,所以点B′的坐标为(7,3).故选:A.12.解:如图,作BH⊥OA于H.作DK⊥OA于K.∵BC∥OA,BH∥OC,∴四边形OCBH是平行四边形,∵∠AOC=90°,∴四边形OCBH是矩形,∴OC=BH=6,∵OA=OB=10,∴OH===8,∴AH=OA﹣BH=2,∵C(0,6),A(10,0),∴直线AC的解析式为y=﹣x+6,∵∠ODQ=90°,∴∠DOQ+∠OQD=90°,∵AB∥PQ,∴∠BAH=∠OQD,∵∠BAH+∠ABH=90°,∴∠DOK=∠ABH,∵∠OKD=∠AHB=90°,∴△OKD∽△BHA,∴=,∴==,设DK=m,则OK=3m,∴D(3m,m),代入y=﹣x+6,可得m=,∴D(,),故选:A.二.填空题(共6小题)13.解:由题意可得方程组,解得,则此函数的解析式为:y=2x﹣3,故答案为y=2x﹣3.14.解:∵一次函数y=(k﹣1)x﹣1,当k﹣1<0时,即k<1时,一次函数图象经过第二、四象限,y随x的增大而减小,所以k的取值范围为k<1.故答案为k<1.15.解:∵直线y1=kx+b经过第一、三象限,∴k<0,所以①正确;∵直线y2=x+a与y轴的交点在x轴下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴关于x的方程kx+b=x+a的解是x=3,所以③正确;当x>3时,y1<y2,所以④正确.故答案为①③④.16.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),8﹣6.5=1.5(米),所以快者比慢者每秒多跑1.5米.故答案为:1.517.解:将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4﹣x,则[(4﹣x)+3]×3÷2=5,解得,x=,∴点B的坐标为(,3),设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=,故答案为:y=.18.解:设甲车的速度为a千米/小时,乙车回家时的速度是b千米/小时,a=b,,设a=8m,b=9m(m>0),由图象得乙车行驶小时两边相距千米,﹣=,m=5,∴a=40,b=45,设t小时两车相距3千米,=+3+(t﹣)×40,t=,故答案为:.三.解答题(共5小题)19.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,在y=﹣x+5中,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∵S△DOC=2S△BOC,∴OD×4=2×,∴OD=5,∴D点的坐标为(5,0)或(﹣5,0);(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣,故答案为或2或﹣.20.解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.21.解:(1)当0≤x≤50时,设y与x的解析式为:y=kx+40,则50k+40=90,解得k=1,∴当0≤x≤50时,y与x的解析式为:y=x+40,∴售价y与x之间的函数关系式为:y=;(2)y=x+40,∵k=1>0,y随x的增大而增大,∴x=50时,该商品在销售过程中的利润最大,最大值为:(90﹣30)×(200﹣2×50)=6000(元).答:第50天时,该商品在销售过程中的利润最大,最大利润为6000元.22.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)23.解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°∠ACD+∠BCE=180°﹣90°=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵,y=0,x=﹣3∴A(﹣3,0),x=0,y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),直线l2表达式中的k为:﹣7,点C(﹣4,7),则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.。