高三数学解答题难题突破—圆锥曲线过定点问题探究
圆锥曲线中的定点问题(解析版)
圆锥曲线中的定点问题一、考情分析定点问题一直是圆锥曲线中的热点问题,高考主要考查直线过定点问题,有时也会涉及圆过定点问题.二、解题秘籍(一)求解圆锥曲线中定点问题的思路与策略1.处理定点问题的思路:(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线F x ,y =0的联系,得到有关k 与x ,y 的等式(3)所谓定点,是指存在一个特殊的点x 0,y 0 ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与x ,y 的等式进行变形,直至易于找到x 0,y 0.常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“k ⋅ ”的形式,从而x 0,y 0只需要先让括号内的部分为零即可②若等式为含k 的分式,x 0,y 0的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)2.处理定点问题两个基本策略:(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例1】(2023届河南省顶级名校高三上学期月考)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点,MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N ,且直线MN 的斜率为24.(1)求椭圆C 的离心率;(2)设D 0,1 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于A ,B 两点,证明直线AB 过定点,并求出定点坐标.【解析】(1)由题意知,点M 在第一象限,∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c .当x =c 时,y =b 2a ,即M c ,b 2a.又直线MN 的斜率为24,所以tan ∠MF 1F 2=b 2a2c =b 22ac =24,即b 2=22ac =a 2-c 2,即c 2+22ac -a 2=0,则e 2+22e -1=0,解得e =22或e =-2(舍去),即e =22.(2)已知D 0,1 是椭圆的上顶点,则b =1,由(1)知e =22=1-b a 2,解得a =2,所以,椭圆C 的方程为x 22+y 2=1,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +m x 2+2y 2=2可得1+2k 2 x 2+4km x +2m 2-1 =0* ,所以x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-1 1+2k 2,又DA =x 1,y 1-1 ,DB=x 2,y 2-1 ,DA ⋅DB=x 1x 2+y 1-1 y 2-1 =x 1x 2+kx 1+m -1 kx 2+m -1 =k 2+1 x 1x 2+k m -1 x 1+x 2 +(m -1)2=k 2+1 ⋅2m 2-1 1+2k 2+k m -1 ⋅-4km 1+2k2+(m -1)2=2m 2-1 k 2+1 -4k 2m 2-m +1+2k 2 (m -1)21+2k 2=0,化简整理有3m 2-2m -1=0,得m =-13或m =1.当m =1时,直线AB 经过点D ,不满足题意;.当m =-13时满足方程* 中Δ>0,故直线AB 经过y 轴上定点G 0,-13.【例2】椭圆C 的焦点为F 1-2,0 ,F 22,0 ,且点M 2,1 在椭圆C 上.过点P 0,1 的动直线l 与椭圆相交于A ,B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(1)求椭圆C 的标准方程;(2)证明:直线AD 恒过定点,并求出定点坐标.【解析】(1)设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),由已知得c =2,2a =MF 1 +MF 2 =2-2 2+1+2+2 2+1=4.所以a =2,b 2=a 2-c 2=2,所以椭圆C 的标准方程为x 24+y 22=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +1(k ≠0).由x 24+y 22=1y =kx +1得(2k 2+1)x 2+4kx -2=0.设A (x 1,y 1),B (x 2,y 2),D (-x 2,y 2),则Δ=16k 2+82k 2+1 >0x 1+x 2=-4k2k 2+1x 1x 2=-22k 2+x,特殊地,当A 的坐标为(2,0)时,k =-12,所以2x 2=-43,x 2=-23,y 1=43,即B -23,43 ,所以点B 关于y 轴的对称点为D 23,43,则直线AD 的方程为y =-x +2.当直线l 的斜率不存在时,直线AD 的方程为x =0.如果存在定点Q 满足条件,则为两直线交点Q (0,2),k QA =y 1-2x 1=y 1-1-1x 1=k -1x 1,k QD =y 2-2-x 2=-k +1x 2,又因为k QA -k QD =2k -1x 1+1x 2 =2k -x 1+x 2x 1x 2=2k -2k =0.所以k QA =k QD ,即A ,D ,Q 三点共线,故直线AD 恒过定点,定点坐标为(0,2).【点评】本题是先根据两条特殊的曲线的交点Q (0,2),然后再根据A ,D ,Q 三点共线,判断直线AD 恒过定点,(二)直线过定点问题1.直线过定点问题的解题模型2.求解动直线过定点问题,一般可先设出直线的一般方程:y =kx +b ,然后利用题中条件整理出k ,b 的关系,若b =km +n m ,n 为常数 ,代入y =kx +b 得y =k x +m +n ,则该直线过定点-m ,n .【例3】(2023届福建省泉州市高三毕业班质量监测(一))已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点A -2,0 .右焦点为F ,纵坐标为32的点M 在C 上,且AF ⊥MF .(1)求C 的方程:(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.【解析】(1)设点F c ,0 ,其中c =a 2-b 2>0,则M c ,32,因为椭圆C 过点A -2,0 ,则a =2,将点M 的坐标代入椭圆C 的方程,可得c 2a 2+94b 2=1可得4-b 24+94b2=1,解得b =3,因此,椭圆C 的标准方程为x 24+y 23=1.(2)证明:由对称性可知,若直线PQ 过定点T ,则点T 必在x 轴上,设点T t ,0 ,设点P x 0,y 0 x 0≠±2,y 0≠0 ,则k PA =y 0x 0+2,所以,直线PA 的垂线的斜率为k =-x 0+2y 0,故直线FQ 的方程为y =-x 0+2y 0x -1 ,在直线FQ 的方程中,令x =-2,可得y =3x 0+2 y 0,即点Q -2,3x 0+2y 0,所以,直线PQ 的方程为y -y 0=y 0-3x 0+2y 0x0+2x -x 0 ,因为点T 在直线PQ 上,所以,-y 0=y 0-3x 0+2 y 0x 0+2t -x 0 ,即y 20t +2 =3x 0+2 t -x 0 ,①又因为x 204+y 203=1,所以,y 20=3-3x 204,②将②代入①可得3-3x 204t +2 =3x 0+2 t -x 0 ,即t -2 x 0+2 2=0,∵x 0≠-2,则t =2,所以,直线PQ 过定点2,0 .(三)圆过定点问题圆过定点问题的常见类型是以AB 为直径的圆过定点P ,求解思路是把问题转化为PA ⊥PB ,也可以转化为PA ⋅PB =0【例4】(2022届广西“智桂杯”高三上学期大联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),与x 轴不重合的直线l 过焦点F ,l 与椭圆C 交于A ,B 两点,当直线l 垂直于x 轴时,AB =3.(1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为P ,PA ,PB 的延长线分别交直线x =4于M ,N 两点,证明:以MN 为直径的圆过定点.【解析】(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (1,0),则半焦距c =1,当l ⊥x 轴时,弦AB 为椭圆的通径,即|AB |=2b 2a ,则有2b 2a =3,即b 2=32a ,而a 2=b 2+c 2,于是得a 2-32a -1=0,又a >0,解得a =2,b =3,所以椭圆C 的方程为:x 24+y 23=1.(2)依题意,直线AB 不垂直于y 轴,且过焦点F (1,0),设AB 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12x =my +1 得3m 2+4 y 2+6my -9=0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,因点P (-2,0),则直线PA 的方程为y =y 1x 1+2(x +2),令x =4,得M 4,6y 1x 1+2 ,同理可得N 4,6y 2x 2+2 ,于是有FM =3,6y 1x 1+2 ,FN =3,6y 2x 2+2 ,则FM ⋅FN =9+6y 1x 1+2⋅6y 2x 2+2=9+36y 1y 2my 1+3 my 2+3 =9+36y 1y 2m 2y 1y 2+3m y 1+y 2 +9=9+36⋅-93m 2+4-9m 23m 2+4+-18m 23m 2+4+9=9+36×(-9)36=0,因此,FM ⊥FN ,即F 在以MN 为直径的圆上,所以以MN 为直径的圆过定点F (1,0).(四)确定定点使某个式子的值为定值求解此类问题一般先设出点的坐标,然后把所给式子用所设点的横坐标或纵坐标表示,再观察该式子为定值的条件,确定所设点的坐标.【例5】(2023届山西省山西大学附属中学校高三上学期9月诊断)如图,椭圆C :x 2a 2+y 2b2=1((a >b >0),|A 1B 1|=7,F 1是椭圆C 的左焦点,A 1是椭圆C 的左顶点,B 1是椭圆C 的上顶点,且A 1F 1 =F 1O ,点P (n ,0)(n ≠0)是长轴上的任一定点,过P 点的任一直线l 交椭圆C 于A ,B 两点.(1)求椭圆C 的方程;(2)是否存在定点Q (x 0,0),使得QA ⋅QB 为定值,若存在,试求出定点Q 的坐标,并求出此定值;若不存在,请说明理由.【解析】(1)由已知知a 2+b 2=7a -c =c a 2=b 2+c 2 ,解得a =2b =3c =1,所以椭圆方程为x 24+y 23=1;(2)假设存在Q (x 0,0)满足题意,设A (x 1,y 1),B (x 2,y 2),QA =(x 1-x 0,y 1),QB=(x 2-x 0,y 2),①当直线l 与x 轴不垂直时,设l :y =k (x -n ),代入x 24+y 23=1并整理得(4k 2+3)x 2-8k 2nx +4k 2n 2-12=0∴x 1+x 2=8k 2n 4k 2+3,x 1x 2=4k 2n 2-124k 2+3QA ⋅QB=(x 1-x 0)(x 2-x 0)+y 1y 2=(x 1-x 0)(x 2-x 0)+k 2(x 1-n )(x 2-n )=(k 2+1)x 1x 2-(k 2n +x 5)(x 1+x 2)-x 20+k 2n 2=k 2+1 4k 2n 2-124k 2+3-k 2n +x 0 8k 2n 4k 2+3-x 20+k 2v 2=7n 2-8nx 0+4x 20-12 k 2+3x 20-124k 2+3 (*)(*)式是与k 无关的常数,则3(7n 2-8nx 0+4x 20-12)=4(3x 20-12)解得x 0=12n +7n 8,此时QA ⋅QB =x 20-4=12n +7n 82-4为定值;②当直线l 与x 垂直时,l :x =n ,A n ,31-n 24 ,B n ,-31-n 24,QA ⋅QB =(n -x 0)2-31-n 24 =x 20-4=12n +7n 82-4也成立,所以存在定点Q 12n +7n 8,0 ,使得QA ⋅QB =12n +7n 82-4为定值.(五)与定点问题有关的基本结论1.若直线l 与抛物线y 2=2px 交于点A ,B ,则OA ⊥OB ⇔直线l 过定点P 2p ,0 ;2.若直线l 与抛物线y 2=2px 交于点A ,B ,则k OA ⋅k OB =m ⇔直线l 过定点P p +m +p 2,0 ;3.设点P 2pt 02,2pt 0 是抛物线y 2=2px 上一定点,M ,N 是该抛物线上的动点,则PM ⊥PN ⇔直线MN 过定点Q 2p +2pt 02,-2pt 0 .4.设点A x 0,y 0 是抛物线y 2=2px 上一定点,M ,N 是该抛物线上的动点,则k AM ⋅k AN =m ⇔直线MN 过定点P x 0-2pm ,-y 0 ;5.过椭圆x 2a 2+y 2b2=1a >b >0 的左顶点P 作两条互相垂直的直线与该椭圆交于点A ,B ,则PA ⊥PB ⇔直线AB 过点Q -a a 2-b 2a 2+b 2,0;6.过双曲线x 2a 2-y 2b2=1a >0,b >0 的左顶点P 作两条互相垂直的直线与该椭圆交于点A ,B ,则PA ⊥PB ⇔直线AB 过点Q -a a 2+b 2a 2-b 2,0;7.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1a >b >0 上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =λλ≠0 ,则直线AB 过定点m -2n λ,-n -2b 2ma 2λ;8.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =λλ≠0 ,则直线AB 过定点m -2n λ,-n +2b 2ma 2λ .【例6】(2023届山西省长治市高三上学期9月质量检测)已知点P 1,32 在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,且点P 到椭圆右顶点M 的距离为132.(1)求椭圆C 的方程;(2)若点A ,B 是椭圆C 上不同的两点(均异于M )且满足直线MA 与MB 斜率之积为14.试判断直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.【解析】(1)点P 1,32 ,在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上代入得:1a 2+94b2=1,点P 到椭圆右顶点M 的距离为132,则132=a -1 2+94,解得a =2,b =3,故椭圆C 的方程为x 24+y 23=1.(2)由题意,直线AB 的斜率存在,可设直线AB 的方程为y =kx +m (k ≠0),M 2,0 ,A x 1,y 1 ,B x 2,y 2 .联立y =kx +m3x 2+4y 2=12得3+4k 2 x 2+8km x +4m 2-12=0.Δ=64k 2m 2-43+4k 2 4m 2-12 =484k 2-m 2+3 >0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,∵直线MA 与直线MB 斜率之积为14.∴y 1x 1-2⋅y 2x 2-2=14,∴4kx 1+m kx 2+m =x 1-2 x 2-2 . 化简得4k 2-1 x 1x 2+4km +2 x 1+x 2 +4m 2-4=0,∴4k 2-1 4m 2-123+4k 2+4km +2 -8km 3+4k 2+4m -4=0, 化简得m 2-2km -8k 2=0,解得m =4k 或m =-2k .当m =4k 时,直线AB 方程为y =k x +4 ,过定点-4,0 .m =4k 代入判别式大于零中,解得-12<k <12(k ≠0).当m =-2k 时,直线AB 的方程为y =k x -2 ,过定点2,0 ,不符合题意. 综上所述:直线AB 过定点-4,0 .【例7】(2022届海南华侨中学高三上学期月考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点M 0,-1 是椭圆的一个顶点,△F 1MF 2是等腰直角三角形.(1)求椭圆的方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,求证:直线AB 过定点12,1.【解析】(1)由题意可得b =1c =b a 2=b 2+c 2,解得a =2,b =1,所以椭圆的方程为x 22+y 2=1.(2)设A x 1,y 1 ,B x 2,y 2 .①当直线AB 斜率存在时,设直线AB 方程为y =kx +m ,联立y =kx +mx 22+y 2=1得2k 2+1 x 2+4km x +2m 2-2=0.由Δ=16k 2m 2-42k 2+1 2m 2-2 =82k 2-m 2+1 >0,得2k 2+1>m 2.所以x 1+x 2=-4km 2k 2+1,x 1⋅x 2=2m 2-22k 2+1.所以k 1+k 2=y 1+1x 1+y 2+1x 2=kx 1+m +1x 1+kx 2+m +1x 2=2k +m +1 x 1+x 2x 1x 2=4,即2k -2km m -1=4,所以kmm -1=k -2,即km =k -2 m -1 =km -k -2m +2,所以m =1-k 2,所以y =kx +m =kx +1-k 2=k x -12 +1,所以直线AB 过定点12,1 .②当直线AB 斜率不存在时,A x 1,y 1 ,B x 1,-y 1 ,则k 1+k 2=y 1+1x 1+-y 1+1x 1=2x 1=4,所以x 1=12,则直线AB 也过定点12,1 .综合①②,可得直线AB 过定点12,1 .三、跟踪检测1.(2023届江苏省金陵中学、海安中学高三上学期10月联考)在一张纸上有一个圆C :x +5 2+y 2=4,定点M 5,0 ,折叠纸片使圆C 上某一点M 1好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线M 1C 的交点为T .(1)求证:TC -TM 为定值,并求出点T 的轨迹C 方程;(2)设A -1,0 ,M 为曲线C 上一点,N 为圆x 2+y 2=1上一点(M ,N 均不在x轴上).直线AM ,AN 的斜率分别记为k 1,k 2,且k 2=-14k 1,求证:直线MN 过定点,并求出此定点的坐标.【解析】(1)由题意得TM =TM 1 ,所以TC -TM =TC -TM 1 =2<25=CM ,即T 的轨迹是以C ,M 为焦点,实轴长为2的双曲线,即C:x 2-y 24=1;(2)由已知得l AM :y =k 1x +1 ,l AN :y =k 2x +1 ,联立直线方程与双曲线方程y =k 1x +1x 2-y 24=1⇒4-k 21 x 2-2k 21x -k 21-4=0,由韦达定理得x A x M =-k 21-44-k 21,所以x M =k 21+44-k 21,即y M =k 1x M +1 =8k 14-k 21,所以M k 21+44-k 21,8k 14-k 21,联立直线方程与圆方程y =k 2x +1 x 2+y 2=1⇒1+k 22 x 2+2k 22x +k 22-1=0,由韦达定理得x A x N =k 22-11+k 22,所以x N =-k 22+11+k 22,即y N =k 2x N +1 =2k 21+k 22,因为k AN =-14k AM ,即k 2=-14k 1,所以N -k 21+1616+k 21,-8k 116+k 21,若直线MN 所过定点,则由对称性得定点在x 轴上,设定点T t ,0 ,由三点共线得k MT =k NT ,即8k 14-k 21k 21+44-k 21-t =-8k 116+k 21-k 21+1616+k 21-t ⇒k 21+4+k 21-4 t =k 21-16+k 21+16 t ⇒t =1,所以直线MN 过定点T 1,0 .2.(2023届广东省广东广雅中学高三上学期9月测试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22.圆O (O 为坐标原点)在椭圆C 的内部,半径为63.P ,Q 分别为椭圆C 和圆O 上的动点,且P ,Q 两点的最小距离为1-63.(1)求椭圆C 的方程;(2)A ,B 是椭圆C 上不同的两点,且直线AB 与以OA 为直径的圆的一个交点在圆O 上.求证:以AB 为直径的圆过定点.【解析】(1)设椭圆的长半轴为a ,短半轴为b ,半焦距为c ,由圆的性质,|PQ |≥|PO |-63当点P 在椭圆上运动时,当P 处于上下顶点时|PO |最小,故|PQ |≥|PO |-63≥b -63,即b -63=1-63依题意得c a =22b -63=1-63a 2=b 2+c2,解得a =2b =1c =1,所以C 的方程为x 22+y 2=1.(2)因为直线AB 与以OA 为直径的圆的一个交点在圆O 上,所以直线AB 与圆O 相切.(i )当直线AB 垂直于x 轴时,不妨设A 63,63,B 63,-63 ,此时OA ⋅OB=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .(ii )当直线AB 不垂直于x 轴时,设直线AB 的方程为y =kx +m ,A x 1,y 1 ,B x 2,y 2 .因为AB 与圆O 相切,所以O 到直线AB 的距离|m |k 2+1=63,即3m 2-2k 2-2=0.由y =kx +m ,x 22+y 2=1,得2k 2+1 x 2+4km x +2m 2-2=0,所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1,OA ⋅OB=x 1x 2+y 1y 2=x 1x 2+kx 1+m kx 2+m =1+k 2 x 1x 2+km x 1+x 2 +m 2=1+k 2 2m 2-22k 2+1 +km -4km2k 2+1+m 2=1+k 2 2m 2-2 +km (-4km )+m 22k 2+1 2k 2+1=3m 2-2k 2-22k 2+1=0,所以OA ⊥OB ,故以AB 为直径的圆过点O .综上,以AB 为直径的圆过点O .3.(2023届湖南省永州市高三上学期第一次考试)点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72.(1)求双曲线C 的方程;(2)A ,B 是双曲线C 上的两个动点(异于点P ),k 1,k 2分别表示直线PA ,PB 的斜率,满足k 1k 2=32,求证:直线AB 恒过一个定点,并求出该定点的坐标.【解析】(1)由题意点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72可得;16a 2-9b 2=1a 2+b 2a =72,解出,a =2,b =3,所以,双曲线C 的方程是x 24-y 23=1(2)①当直线AB 的斜率不存在时,则可设A n ,y 0 ,B n ,-y 0 ,代入x 24-y 23=1,得y 02=34n 2-3,则k 1k 2=y 0-3n -4⋅-y 0-3n -4=9-y 20(n -4)2=12-34n 2(n -4)2=32,即9n 2-48n +48=0,解得n =43或n =4,当n =4时,y 0=±3,A ,B 其中一个与点P 4,3 重合,不合题意;当n =43时,直线AB 的方程为x =43,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y =kx +m 代入x 24-y 23=1,整理得,3-4k 2 x 2-8km x -4m 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=8km 3-4k 2,x 1x 2=-4m 2+123-4k 2,由Δ=(-8km )2-43-4k 2 -4m 2-12 >0,∴m 2+3>4k 2,所以k 1k 2=y 1-3x 1-4⋅y 2-3x 2-4=kx 1+m -3x 1-4⋅kx 2+m -3x 2-4=k 2x 1x 2+k m -3 x 1+x 2 +(m -3)2x 1x 2-4x 1+x 2 +16=32所以,2k 2-3 x 1x 2+2km -6k +12 x 1+x 2 +2m 2-12m -30=0,即2k 2-3 ⋅-4m 2-123-4k 2+2km -6k +12 ⋅8km 3-4k 2+2m 2-12m -30=0,整理得3m 2+16k -6 m +16k 2-9=0,即3m +4k +3 m +4k -3 =0,所以3m +4k +3=0或m +4k -3=0,若3m +4k +3=0,则m =-4k +33,直线AB 化为y =k x -43 -1,过定点43,-1 ;若m +4k -3=0,则m =-4k +3,直线AB 化为y =k x -4 +3,它过点P 4,3 ,舍去综上,直线AB 恒过定点43,-1 4.(2023届陕西师范大学附属中学、渭北中学等高三上学期联考)已知抛物线C :y 2=2px (p >0),O 是坐标原点,F 是C 的焦点,M 是C 上一点,|FM |=4,∠OFM =120°.(1)求抛物线C 的标准方程;(2)设点Q x 0,2 在C 上,过Q 作两条互相垂直的直线QA ,QB ,分别交C 于A ,B 两点(异于Q 点).证明:直线AB 恒过定点.【解析】(1)由|FM |=4,∠OFM =120°,可得M p2+2,±23 ,代入C :12=2p p2+2=p 2+4p .解得p =2或p =-6(舍),所以抛物线的方程为:y 2=4x .(2)由题意可得Q (1,2),直线AB 的斜率不为0,设直线AB 的方程为x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,由y 2=4x x =my +n,得y 2-4my -4n =0,从而Δ=16m 2+16n >0,则y 1+y 2=4m y 1y 2=-4n.所以x 1+x 2=m y 1+y 2 +2n =4m 2+2n ,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=n 2,∵QA ⊥QB ,∴QA ⋅QB=x 1-1 x 2-1 +y 1-2 y 2-2 =0,故x 1x 2-x 1+x 2 +1+y 1y 2-2y 1+y 2 +4=0,整理得n 2-4m 2-6n -8m +5=0.即(n -3)2=4(m +1)2,从而n -3=2(m +1)或n -3=-2(m +1),即n =2m +5或n =-2m +1.若n =-2m +1,则x =my +n =my -2m +1=m (y -2)+1,过定点(1,2),与Q 点重合,不符合;若n =2m +5,则x =my +n =my +2m +5=m (y +2)+5,过定点(5,-2).综上,直线AB 过异于Q 点的定点(5,-2).5.(2023届四川省部分重点中学高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右顶点是M(2,0),离心率为12.(1)求椭圆C 的标准方程.(2)过点T (4,0)作直线l 与椭圆C 交于不同的两点A ,B ,点B 关于x 轴的对称点为D ,问直线AD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【解析】(1)由右顶点是M (2,0),得a =2,又离心率e =12=ca,所以c =1,所以b2=a2-c2=3,所以椭圆C的标准方程为x24+y23=1.(2)设A x1,y1,B x2,y2,显然直线l的斜率存在.直线l的方程为y=k x-4,联立方程组y=k x-4, 3x2+4y2=12消去y得4k2+3x2-32k2x+64k2-12=0,由Δ>0,得-12<k<12,所以x1+x2=32k24k2+3,x1x2=64k2-124k2+3.因为点D x2,-y2,所以直线AD的方程为y=y1+y2x1-x2x-x1+k x1-4.又y1+y2=k x1+x2-8,所以直线AD的方程可化为y=24kx2-x14k2+3x+kx1x1+x2-8x2-x1+k x1-4x2-x1x2-x1,即y=24kx2-x14k2+3x-24kx2-x14k2+3=24kx2-x14k2+3x-1,所以直线AD恒过点(1,0).(方法二)设A x1,y1,B x2,y2,直线l的方程为x=my+4,联立方程组x=my+4,3x2+4y2=12消去x得3m2+4y2+24my+36=0,由Δ>0,得m>2或m<-2,所以y1+y2=-24m3m2+4,y1y2=363m2+4.因为点D x2,-y2,则直线AD的方程为y=y1+y2x1-x2x-x1+y1.又x1-x2=my1+4-my2-4=m y1-y2,所以直线AD的方程可化为y=-y1+y2m y2-y1x-my1-4+y1=-y1+y2m y2-y1x+y1+y2my1+4+y1m y2-y1m y2-y1=-y1+y2m y2-y1x+2my1y2+4y1+y2m y2-y1=243m2+4y2-y1x-1,此时直线AD恒过点(1,0),当直线l的斜率为0时,直线l的方程为y=0,也过点(1,0).综上,直线AD恒过点(1,0).6.(2023届安徽省滁州市定远县高三上学期9月月考)设直线x=m与双曲线C:x2-y23=m(m>0)的两条渐近线分别交于A,B两点,且三角形OAB的面积为3.(1)求m的值;(2)已知直线l与x轴不垂直且斜率不为0,l与C交于两个不同的点M,N,M关于x轴的对称点为M ,F为C的右焦点,若M ,F,N三点共线,证明:直线l经过x轴上的一个定点.【解析】(1)双曲线C:x2-y23=m(m>0)的渐近线方程为y=±3x,则不妨令点A(m,3m),B(m,-3m),|AB|=23m,而点O到直线AB的距离为m,因此S△OAB=12⋅23m⋅m=3m2=3,解得m=1,所以m=1.(2)由(1)知,双曲线C 的方程为C :x 2-y 23=1,右焦点F (2,0),因直线l 与x 轴不垂直且斜率不为0,设直线l 与x 轴交于点(t ,0),直线l 的方程为y =k (x -t )(k ≠0),设M x 1,y 1 ,N x 2,y 2 ,则Mx 1,-y 1 ,由y =k (x -t )x 2-y 23=1消去y 并整理得3-k 2 x 2+2tk 2x -k 2t 2+3 =0,显然有3-k 2≠0且Δ=2tk 2 2+43-k 2 k 2t 2+3 >0,化简得k 2≠3且t 2-1 k 2+3>0,则x 1+x 2=-2tk 23-k 2,x 1x 2=-k 2t 2+33-k 2,FM=(x 1-2,-y 1),FN =(x 2-2,y 2),而M,F ,N 三点共线,即FM ⎳FN,则-y 1x 2-2 =y 2x 1-2 ,因此-k x 1-t x 2-2 =k x 2-t x 1-2 ,又k ≠0,有x 1-t x 2-2 +x 2-t x 1-2 =0,整理得2x 1x 2-(t +2)x 1+x 2 +4t =0,于是得2⋅-k 2t 2+33-k 2 -(t +2)-2tk 23-k 2+4t =0,化简得t =12,即直线l :y =k x -12 ,k ≠0过定点12,0 ,所以直线l 经过x 轴上的一个定点12,0 .7.(2023届江西省智慧上进高三上学期考试)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS 长度的最小值为2,C 的离心率为22.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,P (2,0),且总存在实数λ∈R ,使得PF=λPA PA +PB PB,问:l 是否过一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.【解析】(1)由线段RS 长度的最小值为2,得2b 2a=2,又c a =22,所以a 2-b 2a 2=12,解得a 2=2,b 2=1, 所以C 的标准方程为x 22+y 2=1.(2)由PF =λPA PA +PBPB ,可知PF 平分∠APB ,∴k PA +k PB =0.设直线AB 的方程为x =my +t ,A my 1+t ,y 1 ,B my 2+t ,y 2 ,由x =my +t x 2+2y 2=2得m 2+2 y 2+2mty +t 2-2=0,Δ=8m 2-t 2+2 >0,即m 2>t 2-2,∴y 1+y 2=-2mt m 2+2,y 1y 2=t 2-2m 2+2,∴k PA +k PB =y 1my 1+t -2+y 2my 2+t -2=0,∴2my 1y 2+t -2 y 1+y 2 =0,∴2m t 2-2 -t -2 ⋅2mt =0,整理得4m t -1 =0,∴当t =1时,上式恒为0,即直线l 恒过定点Q 1,0 .8.(2023届山西省高三上学期第一次摸底)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别是F 1-1,0 ,F 21,0 ,点A 0,b ,若△AF 1F 2的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点F 1作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE ⋅MN =0,证明:直线PQ 过定点.【解析】(1)由题设c =1,又|F 1F 2|=2c ,|AF 1|=|A 1F 2|=a ,若内切圆半径为r ,则外接圆半径为2r ,所以12r ×2(a +c )=12×2c ×b ,即r (a +c )=bc ,c 2+(2r -b )2=4r 2,而a 2=b 2+c 2,即a 2=4rb ,综上,a 2(a +c )=4b 2c ,即a 2(a +1)=4b 2=4a 2-4,可得a =2,所以a 2=4,b 2=3,则C :x 24+y 23=1.(2)当直线斜率都存在时,令DE 为x =ky -1,联立C :x 24+y 23=1,整理得:(3k 2+4)y 2-6ky -9=0,且Δ=144(k 2+1)>0,所以y D +y E =6k 3k 2+4,则x D +x E =k (y D +y E )-2=-83k 2+4,故P -43k 2+4,3k3k 2+4,由DE ⋅MN =0,即DE ⊥MN ,故MN 为x =-y k-1,联立C :x 24+y 23=1,所以3k 2+4 y 2+6k y -9=0,有y M +y N =-6k 3+4k 2,则x M +x N=-y M +y N k -2=-8k 23+4k 2,故Q -4k 23+4k 2,-3k3+4k 2 ,所以k PQ =7k 4(k 2-1),则PQ 为y -3k 3k 2+4=7k 4(k 2-1)x +43k 2+4,整理得k (7x +4)=4(k 2-1)y ,所以PQ 过定点-47,0 ;当一条直线斜率不存在时P ,Q 对应O ,F 1,故PQ 即为x 轴,也过定点-47,0 ;综上,直线PQ 过定点.9.(2023届湖北省“宜荆荆恩”高三上学期考试)已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ⋅DF=0,DG ⊥EF 于G ,证明:存在定点H ,使|GH |为定值.【解析】(1)因为双曲线C 与已知双曲线有相同的渐近线,设双曲线C 的标准方程为x 2-4y 2=λ代入点A 坐标,解得λ=4所以双曲线C 的标准方程为x 24-y 2=1(2)(i )当直线EF 斜率存在时,设EF :y =kx +m ,设E x 1,y 1 F x 2,y 2 ,联立y =kx +m 与双曲线x 24-y 2=1,化简得4k 2-1 x 2+8km x +4m 2+1 =0,Δ=(8km )2-44m 2+4 4k 2-1 >0,即4k 2-m 2-1<0,则有x 1+x 2=-8km4k 2-1x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,因为DE ⋅DF=x 1-2 x 2-2 +y 1y 2=0,所以k 2+1 ⋅x 1x 2+km -2 ⋅x 1+x 2 +m 2+4=0,所以k 2+1 ⋅4m 2+44k 2-1+km -2 ⋅-8km 4k 2-1+m 2+4=0,化简,得3m 2+16km +20k 2=0,即3m +10k m +2k =0,所以m 1=-2k ,m 2=-103k ,且均满足4k 2-m 2-1<0,当m 1=-2k 时,直线l 的方程为y =k x -2 ,直线过定点2,0 ,与已知矛盾,当m 2=-103k 时,直线l 的方程为y =k x -103 ,过定点103,0 (ii )当直线EF 斜率不存在时,由对称性不妨设直线DE :y =x -2,与双曲线C 方程联立解得x E =x F =103,此时EF 也过点M 103,0 ,综上,直线EF 过定点M 103,0 .由于DG ⊥EF ,所以点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.10.(2023届江苏省南京市高三上学期9月学情调研)已知抛物线C :y 2=2px p >0 的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点.(1)求p 的值;(2)是否存在定点T ,使得TA ⋅TB为常数?若存在,求出点T 的坐标及该常数;若不存在,说明理由.【解析】(1)因为F p 2,0 ,P 0,2 ,且点A 恰好为线段PF 中点,所以A p4,1 ,又因为A 在抛物线上,所以12=2p ⋅p4,即p 2=2,解得P =2(2)设T m ,n ,可知直线l 斜率存在;设l :y =kx +2,A x 1,y 1 ,B x 2,y 2 联立方程得:y 2=22xy =kx +2 ,所以k 2y 2-22y +42=0,所以y 1+y 2=22k ,y 1y 2=42k,又:TA ⋅TB =x 1-m x 2-m )+(y 1-n y 2-n=24y 21-m 24y 22-m +y 1-n y 2-n=18y 21y 22-24m y 21+y 22 +m 2-n y 1+y 2 +n 2=4k 2-24m 8k 2-82k +m 2+42k -22n k +n2=4-22m k 2+4m +42-22n k +m 2+n 2,令4m +42-22n =04-22m =0,解之得:m =2n =4 ,即T 2,4 ,此时TA ⋅TB =m 2+n 2=1811.(2023届江苏省百校联考高三上学期第一次考试)设F 为椭圆C :x 22+y 2=1的右焦点,过点F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点.(1)当BF=2FA 时,求FA ;(2)在x 轴上是否存在异于F 的定点Q ,使k QAk QB为定值(其中k QA ,k QB 分别为直线QA ,QB 的斜率)?若存在,求出Q 的坐标;若不存在,请说明理由.【解析】(1)设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,联立x =my +1x 2+2y 2=2,得m 2+2 y 2+2my -1=0,又因为BF=2FA ,所以y 1+y 2=-2m m 2+2y 1y 2=-1m 2+2y 2=-2y 1,解得m 2=27,y 1 =2m m 2+2=148,所以FA =1+m 2y 1 =328,即FA =328.(2)假设在x 轴上存在异于点F 的定点Q t ,0 t ≠1 ,使得k QAk QB为定值.设直线AB 的方程为x =my +1,联立x 22+y 2=1x =my +1,得m 2+2 y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,所以y 1+y 2=2my 1y 2.所以k QA k QB =y 1x 1-t y 2x 2-t=y 1⋅x 2-t y 2⋅x 1-t =y 1my 2+1-t y 2my 1+1-t =my 1y 2+(1-t )y 1my 1y 2+(1-t )y 2=2my 1y 2+2(1-t )y 12my 1y 2+2(1-t )y 2=(3-2t )y 1+y 2y 1+(3-2t )y 2.要使k QA k QB为定值,则3-2t 1=13-2t ,解得t =2或t =1(舍去),此时k QAk QB=-1.故在x 轴上存在异于F 的定点Q 2,0 ,使得k QAk QB为定值.12.(2022届辽宁省名校联盟高三上学期12月联考)已知抛物线C :y 2=2px p >0 的焦点为F ,点M (x 0,4)在C 上,且MF =5p2.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于A ,B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【分析】(1)利用抛物线定义求出x 0,进而求出p 值即可得解.(2)设出直线l 的方程x =my +n ,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系,再根据k MA ⋅k MB =1求解.【解析】(1)抛物线C :y 2=2px 的准线:x =-p 2,于是得MF =x 0+p 2=5p 2,解得x 0=2p ,而点M 在C 上,即16=4p 2,解得p =±2,又p >0,则p =2,所以M 的坐标为4,4 ,C 的方程为y 2=4x .(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为x =my +n ,由x =my +ny 2=4x消去x 并整理得:y 2-4my -4n =0,则Δ=16m 2+n >0,y 1+y 2=4m ,y 1y 2=-4n ,因此,k MA ⋅k MB =y 1-4x 1-4⋅y 2-4x 2-4=y 1-4y 214-4⋅y 2-4y 224-4=4y 1+4⋅4y 2+4=1,化简得y 1y 2+4y 1+y 2 =0,即n =4m ,代入l 方程得x =my +4m ,即x -m y +4 =0,则直线l 过定点0,-4 ,所以直线l 过定点0,-4 .13.(2022届广东省茂名市五校联盟高三上学期联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.离心率等于63,点P 在y 轴正半轴上,△PF 1F 2为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.【解析】(1)根据题意,由对称性得△PF 1F 2为等腰直角三角形,且∠F 1PF 2=90°,因为△PF 1F 2的面积等于2,所以F 1F 2 =22,即c =2,因为椭圆C 的离心率等于63,即e =63=2a,解得a =3,所以b 2=a 2-c 2=1,所以椭圆C 的标准方程为:x 23+y 2=1.(2)由(1)得P 0,2 ,设直线l 的方程为y =kx +m k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,因为点A 关于y 轴的对称点在直线PB 上,所以直线PB 与直线PA 的斜率互为相反数,即k PB +k PA =0,因为k AP =y 1-2x 1,k BP =y 2-2x 2,所以y 1-2x 1+y 2-2x 2=0,整理得x 2(y 1-2)+x 1(y 2-2)=0又因为y 1=kx 1+m ,y 2=kx 2+m ,所以2kx 1x 2+m -2 x 1+x 2 =0,由y =kx +m x 2+3y 2=3消去y 得(3k 2+1)x 2+6km x +3m 2-3=0,所以Δ>0,即m 2<3k 2+1,x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-33k 2+1,所以2k ⋅3m 2-33k 2+1+(m -2)⋅-6mk3k 2+1 =0,整理得2k ⋅(3m 2-3)-6mk (m -2)=0,由于k ≠0,故解方程得m =22,此时直线l 的方程为y =kx +22,过定点0,22 所以直线l 恒过定点0,22 .14.(2022届江苏省南通市高三上学期期末)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a 、b 为正常数)的右顶点为A ,直线l 与双曲线C 交于P 、Q 两点,且P 、Q 均不是双曲线的顶点,M 为PQ 的中点.(1)设直线PQ 与直线OM 的斜率分别为k 1、k 2,求k 1·k 2的值;(2)若AM PQ=12,试探究直线l 是否过定点?若过定点,求出该定点坐标;否则,说明理由.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),因为P 、Q 在双曲线上,所以x 12a 2-y 12b 2=1,x 22a 2-y 22b2=1,两式作差得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2=2y 0(y 1-y 2)b 2,即y 0(y 1-y 2)x 0(x 1-x 2)=b 2a2,即k 1·k 2=b 2a 2;(2)因为AM PQ=12,所以△APQ 是以A 为直角顶点的直角三角形,即AP ⊥AQ ;①当直线l 的斜率不存在时,设l :x =t ,代入x 2a 2-y 2b2=1得,y =±bt 2a 2-1,由|t -a |=b t 2a2-1得,(a 2-b 2)t 2-2a 3t +a 2(a 2+b 2)=0,即[(a 2-b 2)t -a (a 2+b 2)](t -a )=0,得t =a (a 2+b 2)a 2-b 2或a (舍),故直线l 的方程为x =a (a 2+b 2)a 2-b 2;②当直线l 的斜率存在时,设l :y =kx +m ,代入x 2a 2-y 2b2=1,得(b 2-k 2a 2)x 2-2km a 2x -a 2(m 2+b 2)=0,Δ=a 2b 2(m 2+b 2-k 2a 2)>0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2km a 2b 2-k 2a 2,x 1x 2=-a 2(m 2+b 2)b 2-k 2a 2;因为AP ⊥AQ ,所以AP ·AQ=0,即(x 1-a ,y 1)·(x 2-a ,y 2)=0,即x 1x 2-a (x 1+x 2)+a 2+y 1y 2=0,即x 1x 2-a (x 1+x 2)+a 2+(kx 1+m )(kx 2+m )=0,即(km -a )(x 1+x 2)+(k 2+1)x 1x 2+m 2+a 2=0,即-2km a 3-k 2a 2b 2-m 2a 2+m 2b 2-k 2a 4b 2-k 2a 2=0,即a 2(a 2+b 2)k 2+2ma 3k +m 2(a 2-b 2)=0,即[a (a 2+b 2)k +m (a 2-b 2)](ak +m )=0,所以k =-m (a 2-b 2)a (a 2+b 2)或k =-ma ;当k =-m a 时,直线l 的方程为y =-ma x +m ,此时经过A ,舍去;当k =-m (a 2-b 2)a (a 2+b 2)时,直线l 的方程为y =-m (a 2-b 2)a (a 2+b 2)x +m ,恒过定点a (a 2+b 2)a 2-b 2,0,经检验满足题意;综上①②,直线l 过定点a (a 2+b 2)a 2-b 2,0.15.已知抛物线C :y 2=2px p >0 的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l ⊥x 轴时,AB=2.(1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.②求证:S △QAF ⋅S △QBF 为定值.【解析】(1)当l ⊥x 轴时,易得AB =2p ,所以2p =2,解得p =1,所以抛物线C 的方程为y 2=2x ;(2)①解:易知直线l 的斜率存在且不为0,设直线l 的方程为x =my +12m ≠0 ,代入抛物线C 的方程y 2=2x ,并整理得y 2-2my -1=0,设A x 1,y 1 ,B x 2,y 2 ,由根与系数的关系得y 1+y 2=2m ,y 1y 2=-1.所以x 1+x 22=my 1+my 2+12=2m 2+12,所以线段AB 的中点N 的坐标为2m 2+12,m ,连接QM ,若四边形AQBM 为平行四边形,则N 是QM 的中点,易知D 0,-12m ,因此P 18m2,-12m ,设直线PQ 的方程为x =ty +12,代入抛物线C 的方程y 2=2x ,整理得y 2-2ty -1=0,所以y P y Q =-12m ⋅y Q=-1, 故y Q =2m ,因此Q 2m 2,2m ,故可得x M =2m 2+12×2-2m 2=1,y M =2m -2m =0,故点M 的坐标为M 1,0 ,因此存在定点M 1,0 ,使得四边形AQBM 为平行四边形;②证明:点Q2m2,2m到直线l:x=my+12的距离d=2m2-m⋅2m-12m2+1=12m2+1,由A x1,y1,F12,0,可得AF =m2+1y1 ,因此S△QAF=12AF⋅d=14y1 ,同理可得S△QBF=14y2 ,所以S△QAF⋅S△QBF=116y1y2=116,为定值.。
第09讲 高考难点突破一:圆锥曲线的综合问题(定点问题) (精讲)(含答案解析)
第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)-2第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)题型三:抛物线中的定点问题角度1:抛物线中的直线过定点问题典型例题例题1.(2022·辽宁·建平县实验中学模拟预测)1.已知点()1,M p p -在抛物线()2:20C y px p =>上.(1)求抛物线C 的方程;(2)过点M 作斜率分别为12,k k 的两条直线12,l l ,若12,l l 与抛物线C 的另一个交点分别为,A B ,且有122k k +=,探究:直线AB 是否恒过定点?若是,求出该定点;若否,说明理由.例题2.(2022·陕西西安·三模(理))2.已知抛物线()2:20C y px p =>上的点()()4,0G t t >到其准线的距离为5.不过原点的动直线交抛物线C 于A ,B 两点,M 是线段AB 的中点,点M 在准线l 上的射影为N .(1)求抛物线C 的方程;(2)当1NA NB ⋅=时,求证:直线AB 过定点.例题3.(2022·全国·高三专题练习)3.已知线段AB 是抛物线24y x =的弦,且过抛物线焦点F .(1)过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,求证:A O E 、、三点共线(O 为坐标原点);(2)设M 是抛物线准线上一点,过M 作抛物线的切线,切点为11A B 、.求证:(i )两切线互相垂直;(ii )直线11A B 过定点,请求出该定点坐标.同类题型归类练(2022·湖南·长沙一中高三开学考试)4.已知抛物线C :22y px =(0p >),直线1x =+交抛物线C 于A ,B 两点,且三角形OAB 的面积为O 为坐标原点).(1)求实数p 的值;(2)过点D (2,0)作直线L 交抛物线C 于P ,Q 两点,点P 关于x 轴的对称点为P '.证明:直线P 'Q 经过定点,并求出定点坐标.(2022·湖北武汉·高二期末)5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.(2022·江西景德镇·高二期末(文))6.已知抛物线C :()220y px p =>的焦点为F ,过焦点F 且垂直于x 轴的直线交C 于H ,I 两点,O 为坐标原点,OHI 的周长为8.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点?若过定点.求出其坐标;若不过定点,请说明理由.(2022·江西·上饶市第一中学模拟预测(文))7.已知抛物线()220y px p =>的焦点为F ,过焦点FA 、B 两点(点A 在第一象限),交抛物线准线于G ,且满足83BG =.(1)求抛物线的标准方程;(2)已知C ,D 为抛物线上的动点,且OC OD ⊥,求证直线CD 过定点P ,并求出P 点坐标;(3)在(2)的条件下,求PC PD ⋅的最大值.角度2:抛物线存在定点满足某条件问题典型例题例题1.(2022·内蒙古赤峰·高二期末(文))8.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N 两点,当l 与x 轴垂直时,4MN =.(1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.例题2.(2022·河南·开封市东信学校模拟预测(文))9.已知直线:10l x ky --=与抛物线2:2(0)N y px p =>交于A ,B 两点,当直线l x ⊥轴时,||4AB =.(1)求抛物线N 的标准方程;(2)在x 轴上求一定点C ,使得点(2,0)M p 到直线AC 和BC 的距离相等.例题3.(2022·贵州铜仁·高二期末(理))10.已知F 为抛物线2:2(0)C y px p =>的焦点,过F 的动直线交抛物线C 于,A B 两点.当直线与x 轴垂直时,||4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线,,PA PM PB 的斜率成等差数列,求点P 的坐标.同类题型归类练(2022·湖北·鄂南高中模拟预测)11.已知曲线2:2(0)C y px p =>的焦点为F ,曲线C 上有一点()0,Q x p 满足2QF =.(1)求抛物线C 的方程;(2)过原点作两条相互垂直的直线交曲线C 于异于原点的两点,A B ,直线AB 与x 轴相交于N ,试探究x 轴上存在一点是否存在异于N 的定点M 满足AM AN BMBN=恒成立.若存在,请求出M 点坐标;若不存在,请说明理由.(2022·全国·高三专题练习(理))12.已知抛物线2:2(0)E x py p =>的焦点为F ,过F 的直线交抛物线E 于1122(,),(,)A x y B x y 两点,11AF y =+.(1)求抛物线E 的标准方程;(2)在x 轴的正半轴上是否存在点P ,连接PA ,PB 分别交抛物线E 于另外两点C ,D ,使得4AB CD =?并说明理由.(2022·江苏省苏州实验中学高二阶段练习)13.已知抛物线2:8C y x =,点()(),00M a a >,直线l 过点M 且与抛物线C 相交于,A B 两点.(1)当a 为变量时,P 为抛物线C 上的一个动点,当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,请指出此时M 点运动的轨迹;(2)当a 为定值时,在x 轴上是否存在异于点M 的点N ,对任意的直线l ,都满足直线,AN BN 关于x 轴对称?若存在,指出点N 的位置并证明,若不存在请说明理由.(2022·重庆市育才中学高三阶段练习)14.已知抛物线2:4E x y =的焦点为F ,过F 的直线交抛物线E 于A 、B 两点.(1)当直线AB 的斜率为1时,求弦AB 的长度AB ;(2)在x 轴的正半轴上是否存在一点P ,连接PA ,PB 分别交抛物线E 于另外两点C 、D ,使得//AB CD 且4AB CD =?若存在,请求出点P 的坐标,若不存在,请说明理由.(2022·全国·高考真题(文))15.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.参考答案:1.(1)24y x=(2)直线AB 恒过定点()1,0-【分析】(1)将M 点坐标代入抛物线方程即可构造方程求得结果;(2)设()11,A x y ,()22,B x y ,利用斜率公式表示出122k k +=,得到124y y =;设:AB x my t =+,与抛物线方程联立可得韦达定理的形式,由此可得1t =-,可得:1AB x my =-,由此可得定点坐标.(1)()1,M p p - 在抛物线上,()221p p p ∴=-,解得:2p =,∴抛物线C 的方程为:24y x =.(2)由(1)得:()1,2M ;设()11,A x y ,()22,B x y ,则11121112241214y y k y x y --===-+-;同理可得:2242k y =+;122k k += ,1244222y y ∴+=++,整理可得:124y y =;当直线AB 斜率为0时,其与抛物线C 只有一个公共点,不合题意;当直线AB 斜率不为0时,设:AB x my t =+,由24y x x my t ⎧=⎨=+⎩得:2440y my t --=,则124y y t =-,44t ∴-=,解得:1t =-;:1AB x my ∴=-,则直线AB 过定点()1,0-;综上所述:直线AB 恒过定点()1,0-.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.2.(1)24y x =(2)证明见解析【分析】(1)由抛物线的定义可求解;(2)设直线AB ,并与抛物线联立,运用韦达定理、向量的数量积可求解.【详解】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)当直线AB 的斜率为0时,显然不符合题意;当直线AB 的斜率不为0时,设直线:(0)AB x my n n =+≠,211,4y A y ⎛⎫⎪⎝⎭、222,4y B y ⎛⎫ ⎪⎝⎭、()00,M x y ,由24y x x my n ⎧=⎨=+⎩化简得2440y my n --=,()2160m n ∆=+>,124y y m +=,124y y n =-,12022y y y m +==,所以()1,2N m -,所以2111,24y NA y m ⎛⎫=+- ⎪⎝⎭ ,2221,24y NB y m ⎛⎫=+- ⎪⎝⎭ ,所以()()222121112244y y NA NB y m y m ⎛⎫⎛⎫⋅=+++-- ⎪⎪⎝⎭⎝⎭()()222121221212122124164y y y y y y y y m y y m +-=+++-++()22222216814842114m n n n m m n n n +=++--+=-+=-若1NA NB ⋅= ,即()211n -=,解得2n =或0n =(舍去),所以直线AB 过定点()2,0.3.(1)证明见解析(2)证明见解析.【分析】(1)由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,故设直线AB 的方程为:1x my =+,()()1122,,,A x y B x y ,进而得()21,E y -,再结合韦达定理证明OA OE k k =即可;(2)(i)设()01,M y -,过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,切线11,MA MB 的切线斜率分别为12,k k ,进而结合韦达定理即可得121k k =-,进而证明;(ii )结合(i )得221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,进而得1102A B k y =,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理即可得()021y x y =-,进而得定点坐标.(1)解:由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,所以,设直线AB 的方程为:1x my =+,所以,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,设()()1122,,,A x y B x y ,则12124,4y y m y y +==-,因为过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,所以()21,E y -因为2114y x =,故2114y x =所以112211214444OA y y y y y x y k =====--,221OE k y y ==--,所以,OA OE k k =,即A O E 、、三点共线.(2)解:(i )设()01,M y -,所以,设过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,所以,()0214y y k x y x⎧-=+⎨=⎩得204440ky y y k -++=,所以,()0164440k y k ∆=-+=,即2010k ky +-=,设切线11,MA MB 的切线斜率分别为12,k k ,则12,k k 为方程2010k ky +-=的实数根,所以121k k =-,120k k y +=-,所以,两切线互相垂直.(ii)由(i )知204440ky y y k -++=,2010k ky +-=,所以,22204440k y ky ky k -++=,即()2224420k y ky ky -+=-=,所以221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,所以,1121121222210221122A B k k k k k k y k k k =+==--,所以,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理得()2022222020200200202222222221y k k y x x x y k y k y y k y y k y --=+-=+=+=-,即()021y x y =-所以,直线11A B 过定点()1,0.4.(1)2p =;(2)证明见解析,定点()2,0-.【分析】(1)设()()1122,,,A x y B x y ,联立直线和抛物线方程得到韦达定理,求出12y y -即得解;(2)设()()3344,,,P x y Q x y ,不妨令43y y >,设直线L 的方程为2x ty =+,联立直线和抛物线的方程得到韦达定理,求出直线P Q '的方程即得解.(1)解:由题得直线1x =+过点()1,0,.设()()1122,,,A x y B x y ,联立21,2,x y px ⎧=+⎪⎨=⎪⎩得220y p --=,所以1212,2y y y y p +==-,所以122y y -=所以三角形OAB的面积12112S y y =⨯⨯-==又0p >,解得2p =(30p =-<舍去).所以2p =.(2)证明:由(1)抛物线C 的方程为24y x =,设()()3344,,,P x y Q x y ,不妨令43y y >,则()33,P x y '-,设直线L 的方程为2x ty =+,联立22,4,x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则34344,8y y t y y +==-,则直线P Q '的方程为()()433343y y y y x x x x +--=--,即()()43434343x x y x y y y x y x -+=+-,则()()()()4343434322ty ty y ty y y y x y ty -++=+-+,即()()()4343433422t y y y y y x ty y y y -=+--+,即()()43433422y y y x ty y y y =+--+,所以()42824y tx t t =-⨯--⨯,即()2y t x =+,令20,0,x y +=⎧⎨=⎩解得2,0,x y =-⎧⎨=⎩所以直线P Q '恒过定点()2,0-5.(1)24y x=(2)证明见解析,定点110,33⎛⎫- ⎪⎝⎭;【分析】(1)设圆心(),C x y ,圆的半径为R ,依题意得到方程,整理即可;(2)设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,即可得到直线EF 的方程,同理可得直线DE与直线DF 的方程,再根据直线DE 过点()3,2B --,直线DF 过点()2,1C ,即可消去0y ,从而求出EF 过定点坐标;(1)解:设圆心(),C x y ,圆的半径为R ,则()()22222220R x x y =+=-+-,整理得24y x =.所以动圆圆心的轨迹方程为24y x =.(2)证明:抛物线的方程为24y x =,设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,则直线EF 的方程为()1211221244y y y y x x y y --=--,得2111211121212124444x y y y x x x y y y y y y y y y y +-=-+=+++++,又2114y x =,所以直线EF 的方程为1212124y y xy y y y y =+++.同理可得直线DE 的方程为1010104y y xy y y y y =+++,直线DF 的方程为0022024y y xy y y y y =+++因为直线DE 过点()3,2B --,所以()1101222y y y -=+;因为直线DF 过点()2,1C ,所以()22081y y y -=-.消去0y ,得()121210433y y y y =++.代入EF 的方程,得12411033y x y y ⎛⎫=++ ⎪+⎝⎭,所以直线EF 恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)28y x=(2)直线PQ 过定点()6,0【分析】(1)将2px =代入抛物线22y px =中,得出HI 的长度,再由勾股定理得出OH ,结合条件建立关于p 的方程,得出答案.(2)由题意设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线AB 的方程与抛物线的方程,由韦达定理得出P 点坐标,同理得出Q 点坐标,从而得出直线PQ 方程,得出答案.(1)由题意,02p F ⎛⎫⎪⎝⎭,在22y px =中代入2p x=,得222p y p =⋅,解得y p =±,所以2HI p =.由勾股定理得|OH OI p ===,则OHI 的周长为2822p p p ++=,解得4p =,故抛物线C 的方程为28y x =.(2)由题意可知()2,0F ,直线AB 的斜率存在,且不为0.设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y .联立22,8,x my y x =+⎧⎨=⎩消去x ,得28160y my --=,264640m ∆=+>,则128y y m +=,从而()21212484x x m y y m +=++=+.因为P 是弦AB 的中点,所以()242,4P m m +,同理可得2442,Q mm ⎛⎫+- ⎪⎝⎭.当21m ≠,即1m ≠±时,直线PQ 的斜率2224441422PQm m m k m m m ⎛⎫-- ⎪⎝⎭==-⎛⎫+-+ ⎪⎝⎭,则直线PQ 的方程为()224421my m x m m -=---,即()()216m y m x -=-.故直线PQ 过定点()6,0;当21m =,即1m ≠±时,直线PQ 的方程为6x =,也过点()6,0.综上所述,直线PQ 过定点()6,0.7.(1)24y x=(2)证明见解析;P 点坐标为(4,0)(3)16-【分析】(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M ,由直线的斜率得出倾斜角,利用三角函数及抛物线的定义求出||MF 即可得解;(2)设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,联立方程组,由根与系数的关系求出12y y ,再由OC OD ⊥建立斜率的方程即可得解;(3)由向量的数量积坐标运算化简,利用二次函数求最值.(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M,如图,由题知,直线l 的倾斜角为π3.∴在R t BGH 中,π3GBH ∠=,又∵83BG =,∴43BH =,∴43BF =.∴4GF BG BF =+=,∴在R t GFM 中,又3MFG π∠=,∴2MF =,∴2p =,∴抛物线的标准方程为24y x =.(2)由(1)可知,抛物线方程为24y x =,设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,直线与抛物线联立:24x my ty x=+⎧⎨=⎩,得:2440y my t --=,则124y y m +=,124y y t =-,∵14OC k y =,24OD k y =且OC OD ⊥,∴12161614OC OD k k y y t ⋅===--则4t =,∴直线CD 过定点(4,0),即P 点坐标为(4,0),(3)由(2)可知P 点坐标为(4,0),∴()2222212121216161616y y PC PD y y y y m ⋅=-+++=-- ,∴PC PD ⋅的最大值为16-.8.(1)22y x =(2)存在,()2,0-【分析】(1)易知||4MN ==,求出p 即可;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,由OPM OPN ∠=∠可得0MP NP k k +=,利用斜率公式,根与系数的关系求解即可【详解】(1)当l 与x轴垂直时,由题意易得||MN =,从而4=,解得p =1,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=12121020102022MP NP y y y y k k x x x x my x my x +=+=+--+-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入上式,得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-,因此存在点P ,且满足题意,P 点坐标为()2,0-.9.(1)24y x =(2)(1,0),(1,0),(4,0)-【分析】(1)直线l x ⊥轴时,将1x =代入抛物线方程求得,A B 纵坐标,得出AB ,从而可得p 值,得抛物线方程;(2)设()()(),,,,,0A A B B C A x y B x y C x ,直线方程与抛物线方程联立,消元后应用韦达定理得A B y y +,A B y y ,题意即为0AC BC k k +=,代入韦达定理的结论可求得C x ,同时注意,,A B C 共线或C 与M 重合的情形,从而得出结论.(1)当直线l x ⊥轴时,方程为1x =,代入抛物线方程得22y p =,y =,∴||4AB ==,解得2p =.∴抛物线N 的标准方程为24y x =;(2)设()()(),,,,,0A A B B C A x y B x y C x .联立210,4,x ky y x --=⎧⎨=⎩得2440y ky --=.∴4,4A B A B y y k y y +=⋅=-.①由题意可知()()()()0A B C B A C A BAC BC A C B C A C B C y x x y x x y y k k x x x x x x x x -+-+=+==----,∴()()0A B C B A C y x x y x x -+-=,即()B A A B C A B x y x y x y y +=+.∴()()()11B A A B C A B ky y ky y x y y +++=+,即()()2A B A B C A B ky y y y x y y ++=+.∴844C k k kx -+=.∵0k ≠,可知1C x =-.∴点C 的坐标由抛物线的图象可知,还有点(1,0),(4,0)满足题意,故这样的点有3个,坐标分别为(1,0),(1,0),(4,0)-.10.(1)24y x =(2)(1,2)P ±【分析】(1)求出抛物线的焦点坐标,根据题意,令2px =,求出纵坐标的值,再根据AB 4=进行求解即可;(2)设直线AB 的方程,与抛物线方程联立,求出直线PA ,PM ,PB 的斜率表达式,结合等差数列和一元二次方程根与系数关系,得到一个等式,根据等式成立进行求解即可.(1)因为(,0)2pF ,在抛物线方程22y px =中,令2p x =,可得y p =±,所以当直线与x 轴垂直时24AB p ==,解得2p =,抛物线的方程为24y x =.(2)(2)因为抛物线24y x =的准线方程为=1x -,由题意可知直线AB 的方程为1x y =+,所以(1,2)M --.联立241y x x y ⎧=⎨=+⎩消去x ,得2440y y --=,设11(,)A x y ,22(,)B x y ,则124y y +=,124y y =-,若存在定点00(,)P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--,因为点,,P A B 均在抛物线上,所以222012012,444y y y x x x ===.代入化简可得00122200120122(2)24()y y y yy y y y y y y +++=++++,将124y y +=,124y y =-代入整理可得002200022444y y y y y ++=++-,即202(4)0y -=,所以2040y -=,解得02y =±,将02y =±代入抛物线方程,可得01x =,于是点(1,2)P ±即为满足题意的定点.11.(1)24y x =(2)存在,()4,0M -【分析】(1)由焦半径公式代入求解p ,从而得抛物线方程;(2)设直线方程,联立方程组,将韦达定理代入所给条件求解.(1)Q 在曲线C 上,则202p px =,则02px =,而022pQF x p ==+=,故抛物线C 的方程为24y x =.(2)易知直线AB 的斜率不为0,故设()()()1122:,,,,,,0AB l x ty n A x y B x y M m =+联立:224404x ty ny ty n y x=+⎧⇒--=⎨=⎩,故12124,4y y t y y n +==-.222121244y y x x n =⋅=,因为OA OB ⊥,则2121240OA OB x x y y n n ⋅=+=-=则4n =或0n =(舍),故()4,0N .因为,M N 都在x 轴上,要使得AM AN BMBN=,则x 轴为AMB ∠的角平分线,若1m x =,则AM 垂直于x 轴,x 轴平分AMB ∠,则BM 垂直于x 轴,则直线AB 的方程为4x =,此时4m n ==,而,M N 相异,故1m x ≠,同理2m x ≠故AM 与BM 的斜率互为相反数,即12122112120y y x y x y m x m x m y y ++=⇒=--+()()1221121212442324444ty y ty y ty y t m y y y y t+++-⇒==+=+=-++为定值.故当()4,0M -时,有AM AN BMBN=恒成立.【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.12.(1)24x y =(2)见解析【分析】(1)根据点A 到点F 的距离等于点A 到直线1y =-,结合抛物线的定义得出抛物线E 的标准方程;(2)设()()330,,,0C x y P x ,由4PA PC = 结合抛物线方程得出12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,并与抛物线方程24x y =联立结合韦达定理得出点P 坐标.(1)因为点F 是抛物线2:2(0)E x py p =>的焦点,且11AF y =+所以点A 到点F 的距离等于点A 到直线1y =-所以由抛物线的定义可知1,22pp ==所以抛物线E 的标准方程为24x y =(2)设()()330,,,0C x y P x 由4AB CD = 得://AB CD ,且4AB CD =,得4PA PC= 即()()101303,4,x x y x x y -=-,所以101333,44x x yx y +==代入抛物线方程24x y =,得221011344x x x y +⎛⎫==⎪⎝⎭整理得221010230x x x x --=,同理可得222020230x x x x --=故12,x x 是方程2200230x x x x --=的两根,20160x ∆=>由韦达定理可得21201202,3x x x x x x +==-①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+与抛物线方程24x y =联立可得2440x kx --=由韦达定理可得12124,4x x k x x +==-②由①②可得033x k ==故在x 轴的正半轴上存在一点,03P ⎛⎫⎪ ⎪⎝⎭满足条件.13.(1)M 点的运动轨迹是x 轴的(]0,4部分的线段;(2)存在点(),0N a -,证明见解析.【分析】(1)设2,8y P y ⎛⎫ ⎪⎝⎭,可表示出2MP ,根据线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处可确定对称轴位置,由此可得轨迹;(2)当l 斜率不存在时知x 轴上任意异于点M 的点N 均满足题意;当l 斜率存在时,假设l 方程,与抛物线方程联立后可得韦达定理的形式,代入0AN BN k k +=中整理可得定点;综合两种情况可得结论.(1)设2,8y P y ⎛⎫ ⎪⎝⎭,则224222218644y y a MP a y y a ⎛⎫⎛⎫=-+=+-+ ⎪ ⎪⎝⎭⎝⎭, 当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,即当0y =时,线段MP 的长度取最小值a ;140132a-∴-≤,解得:4a ≤,04a ∴<≤;M ∴点的运动轨迹是x 轴的(]0,4部分的线段.(2)①当直线l 斜率不存在时,对于x 轴上任意异于点M 的点N ,都满足直线,AN BN 关于x 轴对称;②当直线l 斜率存在时,设:l x ty a =+,()11,A x y ,()22,B x y ,由28x ty a y x=+⎧⎨=⎩得:2880y ty a --=,则,设(),0N n ,直线,AN BN 关于x 轴对称,0AN BN k k ∴+=,()()()()2212121221121212221212121212880y y y y n y y x y n y y x y y y x n x n x x n x x n x x n x x n -++-++∴+===---+--+-,即()()()12121288808y y y y n y y at nt n a t +-+=--=-+=,∴当n a =-时,0AN BN k k +=恒成立,即(),0N a -;综上所述:存在点(),0N a -,对任意的直线l ,都满足直线,AN BN 关于x 轴对称.【点睛】思路点睛:本题考查直线与抛物线综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程或得到恒成立的式子;④求解定点得到结果.14.(1)8(2)存在,,03P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)由题意得到直线AB 的方程10x y -+=,与抛物线2:4E x y =联立,再利用抛物线的定义求解;(2)由//AB CD 且4AB CD =,得到4PA PC =,表示点C 的坐标,代入抛物线方程,整理得到221010230x x x x --=,同理得到222020230x x x x --=,12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立,由韦达定理求解.(1)解:设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x ,由题意知,点F 的坐标为()0,1,直线AB 的方程为10x y -+=.与抛物线2:4E x y =联立可得2610y y -+=.由韦达定理有126y y +=,故1228AB y y =++=.(2)设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x .由//AB CD 且4AB CD =,得4PA PC = ,即()()101303,4,x x y x x y -=-.所以10334x x x +=,134y y =.代入抛物线2:4E x y =,得221011344x x x y +⎛⎫== ⎪⎝⎭,整理可得221010230x x x x --=,同理可得222020230x x x x --=,故12,x x 是方程2200230x x x x --=的两根,20120x ∆=>,由韦达定理有1202x x x +=,21203x x x =-,①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立可得2440x kx --=,由韦达定理有124x x k +=,124x x =-,②由①②可得0x =,3k =,故x轴的正半轴上存在一点3P ⎛⎫ ⎪ ⎪⎝⎭满足条件.15.(1)22143y x +=(2)(0,2)-【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M ,N ,代入AB 方程223y x =-,可得(3,T -,由MT TH = 得到(5,H -.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34k x y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)
高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
圆锥曲线的热点问题—定点、定值、探索性问题
索引
1.定点问题 圆锥曲线中的定点问题是高考命题的一个热点,也是圆锥曲线问题中的一个 难点.解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的, 定点问题必然是在变化中所表现出来的不变的量,那么就可以用变量表示问 题中的直线方程、数量积、比例关系等,而这些直线方程、数量积、比例关 系中不受变量影响的某个点,就是要求的定点.求解这类难点问题的关键就是 引进变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立、数 式变换等寻找不受参数影响的量.
索引
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变 化的量与参数何时没有关系,找到定点. (2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与 变量无关.
索引
类型二 定值问题
例 2 已知椭圆的中心为坐标原点 O,焦点在 x 轴上,斜率为 1 且过椭圆右焦点 →→
索引
代入椭圆方程整理得 λ2(x21+3y21)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2. 又∵x21+3y21=3b2,x22+3y22=3b2, x1x2+3y1y2=4x1x2-3c(x1+x2)+3c2=32c2-92c2+3c2=0, ∴λ2+μ2=1,故 λ2+μ2 为定值.
索引
又∵O→N∥a,∴13=ba22,∴a2=3b2, 故椭圆方程为 x2+3y2=3b2. 又过右焦点的直线 AB 的方程为 y=x-c. 联立yx=2+x3-y2c=,3b2, 得 4x2-6cx+3c2-3b2=0. ∴x1+x2=32c,x1x2=3c2-4 3b2=38c2. 设 M(x,y),则由O→M=λO→A+μO→B可得xy==λλyx11++μμyx22,,
高三数学解答题难题突破—圆锥曲线中直线过定点问题探究
高三数学解答题难题突破—圆锥曲线中直线过定点问题探究【题型综述】直线过定点的解题策略一般有以下几种:(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点.(3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过顶点坐标,并带入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.【典例指引】类型一 椭圆中直线过未知顶点问题例1 【2017课标1,理20】已知椭圆C :2222=1x y a b(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.类型二 椭圆中直线过已知定点问题例2. 【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =。
(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。
【解析】(1)设出点P 的坐标,利用=NP得到点P 与点,M 坐标之间的关系即可求得轨迹方程为222x y +=。
(2)由题意知()1,0F -。
设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---。
2020年高考圆锥曲线综合-定点、定值、探索性问题
专题 圆锥曲线综合应用(3)- 定点、定值、探索性问题一、 高考题型特点:定点、定值、探索性问题是高考圆锥曲线大题中的常考题型,难度中等偏上。
二、重难点:1. 定点的探索与证明问题:(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b , k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 2. 解答圆锥曲线的定值,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以求出定值.3. 存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组). (2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论. 三、易错注意点:本部分对学生的能力要求较高,解题中主要数形结合及各种方法的综合应用,同时对数学推理运算能力有很高的要求。
解决定值、定点问题,不要忘记特值法。
四、典型例题:例1.(2019北京卷)已知抛物线2:2C x py =-经过点(2,-1). (I) 求抛物线C 的方程及其准线方程;(II) 设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两上定点. 【解析】(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (II )抛物线C 的焦点为()0,1-,设直线l 的方程为()10y kx k =-≠.由241x y y kx ⎧=-⎨=-⎩,得2440x kx +-=. 设()()1122,,,,Mx y N x y 则124x x=-.直线OM 的方程为11y y x x =,令1y =-,得点A 的横坐标为11A x x y =- 同理可得点B 的横坐标22B x x y =-. 设点()0,D n ,则()()2212122212121144x x x x DA DB n n y y x x ⋅=++=++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭uu u r uu u r ()()221216141n n x x =++=-++. 令0,DA DB ⋅=uu u r uu u r 即()2410n -++=,得1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点()()0,10,-3和.例2.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP =u u u r u u u r错误!未找到引用源。
圆锥曲线定点问题含详解
圆锥曲线定点问题一、求解圆锥曲线中定点问题的两种求法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关. (2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 变成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0,g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.二、[典例] (2020·高考全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a2 +y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG → ·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)由题设得A (-a ,0),B (a ,0),G (0,1).则AG → =(a ,1),GB → =(a ,-1).由AG → ·GB → =8,得a 2-1=8,即a =3.所以E 的方程为x 29+y 2=1.(2)证明:设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 由于直线PA 的方程为y =t 9 (x +3),所以y 1=t9 (x 1+3).直线PB 的方程为y =t 3 (x -3),所以y 2=t3 (x 2-3). 可得3y 1(x 2-3)=y 2(x 1+3).由于x 22 9+y 22 =1,故y 22 =-(x 2+3)(x 2-3)9,可得27y 1y 2=-(x 1+3)(x 2+3),即(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.①将x =my +n 代入x 29+y 2=1得(m 2+9)y 2+2mny +n 2-9=0.所以y 1+y 2=-2mn m 2+9 ,y 1y 2=n 2-9m 2+9.2222解得n =-3(舍去)或n =32 .故直线CD 的方程为x =my +32,即直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0 . 综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 三、好题对点训练1.设椭圆2222:1(0)x y E a b a b+=>>过M N ,两点,O 为坐标原点(1)求椭圆E 的方程;(2)设E 的右顶点为D ,若直线:l y kx m =+与椭圆E 交于A ,B 两点(A ,B 不是左右顶点)且满足DA DB DA DB +=-,证明:直线l 过定点,并求该定点坐标.2.已知抛物线2:2(0)C y px p =>的焦点F 到双曲线2213x y -=的渐近线的距离为1.(1)求抛物线C 的方程;(2)若抛物线C 上一点P 到F 的距离是4,求P 的坐标;(3)若不过原点O 的直线l 与抛物线C 交于A 、B 两点,且OA OB ⊥,求证:直线l 过定点.3.如图,已知抛物线()220y px p =>上一点()2,M m 到焦点F 的距离为3,直线l 与抛物线交于()11,A x y ,()22,B x y 两点,且10y >,20y <,12OA OB ⋅=(O 为坐标原点).(1)求抛物线的方程; (2)求证直线l 过定点;4.已知椭圆()222210x y a b a b+=>>的离心率e =,上顶点是P ,左、右焦点分别是1F ,2F ,若椭圆经过点⎭.(1)求椭圆的方程;(2)点A 和B 是椭圆上的两个动点,点A ,B ,P 不共线,直线PA 和PB 的斜率分别是1k 和2k ,若1223k k =,求证直线AB 经过定点,并求出该定点的坐标. 5.已知点P 到直线y =-3的距离比点P 到点A (0,1)的距离多2. (1)求点P 的轨迹方程;(2)经过点Q (0,2)的动直线l 与点P 的轨迹交于M ,N 两点,是否存在定点R 使得∠MRQ =∠NRQ ?若存在,求出点R 的坐标;若不存在,请说明理由.6.已知焦点在x 轴上的椭圆C :222210)x y a b a b+=>>(,短轴长为左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.7.已知经过圆2221:C x y r +=上点00(,)x y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点00(,)x y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,求证:直线AB 过定点.8.已知抛物线C :()220y px p =>的焦点F 是椭圆22143x y +=的一个焦点. (1)求抛物线C 的方程;(2)设P ,M ,N 为抛物线C 上的不同三点,点()1,2P ,且PM PN ⊥.求证:直线MN 过定点.9.已知椭圆E :22221(0)x y a b a b +=>>E 的长轴长为.(1)求椭圆E 的标准方程;(2)设()0,1A -,()0,2B ,过A 且斜率为1k 的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交☉C :()2211x y +-=于异于点B 的点P ,Q ,设直线PQ 的斜率为2k ,直线BM ,BN 的斜率分别为34,k k . ①求证:34k k ⋅为定值; ②求证:直线PQ 过定点.10.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点()0,1M -是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆的方程;(2)过点M 分别作直线,MA MB 交椭圆于,A B 两点,设两直线的斜率分别为12,k k ,且124k k +=,求证:直线AB 过定点1,12⎛⎫⎪⎝⎭.11.已知抛物线2:4C y x =上有一动点()()000,0P x y y >,过点P 作抛物线C 的切线l 交x 轴于点M .(1)判断线段MP 的中垂线是否过定点?若过,求出定点坐标;若不过,请说明理由; (2)过点P 作l 的垂线交抛物线C 于另一点N ,求PMN 的面积的最小值. 12.已知动点M 到点()1,0的距离比它到y 轴的距离大1. (1)求动点M 的轨迹W 的方程;(2)若点()()001,0P y y >、M 、N 在抛物线上,且12PM PN k k =-⋅,求证:直线MN 过定点.13.已知抛物线22(0)y px p =>的焦点为F ,点(1,)M m 为抛物线上一点,且2MF =. (1)求抛物线的标准方程;(2)直线l 交抛物线于不同的,A B 两点,O 为坐标原点,且4OA OB ⋅=-求证:直线l 恒过定点,并求出这个定点.14.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-. (1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.15.已知点P 与定点F 的距离和它到定直线x = (1)求点P 的轨迹方程C ;(2)点M ,N 在C 上,(2,1)A 且,AM AN AD MN ⊥⊥,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.16.已知点(0,2)A -,(0,2)B ,动点P 满足直线PA 与PB 的斜率之积为23-.记点P 的轨迹为曲线C . (1)求C 的方程;(2)过x 轴上一点Q 且不与坐标轴平行的直线与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于点R ,若|||MN QR =,求点Q 的坐标. 17.已知双曲线2214x y -=.(1)过(1,0)P -的直线1l 与双曲线有且只有一个公共点,求直线1l 的斜率;(2)若直线2:l y kx m =+与双曲线相交于,A B 两点(,A B 均异于左、右顶点),且以线段AB 为直径的圆过双曲线的左顶点C ,求证:直线2l 过定点.18.已知点P 是曲线C 上任意一点,点P 到点()1,0F 的距离与到直线y 轴的距离之差为1.(1)求曲线C 的方程;(2)设直线1l ,2l 为曲线C 的两条互相垂直切线,切点为A ,B ,交点为点M . (i )求点M 的轨迹方程;(ii )求证:直线AB 过定点,并求出定点坐标.19.1.双线曲2222:1x y C a b-=经过点(2,3),一条渐近线的倾斜角为3π,直线l 交双曲线于A 、B .(1)求双曲线C 的方程;(2)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB →→⋅=成立?若存在,求出M 的坐标,若不存在,请说明理由. 20.如图:已知抛物线C :2y x =与()1,2P ,Q 为不在抛物线上的一点,若过点Q 的直线的l 与抛物线C 相交于AB 两点,直线PA 与抛物线C 交于另一点M ,直线PB 与抛物线C 交于另一点N ,直线MB 与NA 交于点R .(1)已知点A 的坐标为(9,3),求点M 的坐标;(2)是否存在点Q ,使得对动直线l ,点R 是定点?若存在,求出所有点Q 组成的集合;若不存在,请说明理由.21.已知动点P 到点(的距离与到直线x =(1)求动点的轨迹C 的标准方程;(2)过点(4,0)A -的直线l 交C 于M ,N 两点,已知点(2,1)B --,直线BM ,BN 分别交x 轴于点E ,F .试问在轴上是否存在一点G ,使得0BE GF GE BF ⋅+⋅=?若存在,求出点G 的坐标;若不存在,请说明理由.参考答案1.(1)22184x y += (2)证明见解析, 【分析】(1)将椭圆上的两点代入椭圆方程中,再解方程即可;(2)先将DA DB DA DB +=-转化为DA DB ⊥,再直线与椭圆联立,建立方程后进一步化简直线方程即可获得解决. (1)因为椭圆E : 22221x y a b+=(a ,b >0)过M N ,两点,所以2222421611a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22118114a b⎧=⎪⎪⎨⎪=⎪⎩,得2284a b ⎧=⎨=⎩,所以椭圆E 的方程为22184x y +=. (2)由(1)知D ,设1122(,),(,)A x y B x y由DA DB DA DB +=-可知,DA DB ⊥,所以,0DA DB ⋅=即:1212(0x x y y --+=所以221212(1)()80k x x km x x m ++-+++= (※) 联立直线和椭圆方程,消去y ,得:222(12)4280k x kmx m +++-= 由22Δ0,84m k ><+得所以2121222428,1212km m x x x x k k -+=-=++0=,即得22380m k ++=所以,()(3)0m m ++=所以,m m =-=或 所以,直线l的方程为y kx y kx =-=或 所以,过定点0)或,根据题意,舍去0)所以,直线过定点 2.(1)28y x = (2)(2,)4± (3)证明见解析 【分析】(1)利用点到直线距离得到参数即可; (2)利用抛物线定义即可得到P 的坐标;(3)联立方程,利用韦达定理表示垂直关系,即可得到直线l 过定点. (1)抛物线的焦点F 为,02p ⎛⎫ ⎪⎝⎭,双曲线的渐近线方程为:y x =,即:0x =1=,解得4p =故抛物线C 的方程为:28y x =; (2)设()00,P x y ,由抛物线的定义可知:042p x +=,即0442x +=,解得:02x =将02x =代入方程28y x =得:04y =±,即P 的坐标为(2,)4±; (3)由题意可知直线l 不能与x 轴平行,故方程可设为(0)x my n n =+≠与抛物线方程联立得28x my ny x =+⎧⎨=⎩,消去x 得:2880y my n --=设()()1122,,A x y B x y ,则12128,8y y m y y n +==- 由OA OB ⊥可得:12120x x y y +=,即()21212064y y y y +=即:12121064y y y y ⎛⎫+= ⎪⎝⎭亦即:881064n n -⎛⎫-+= ⎪⎝⎭,又0n ≠,解得:8n =所以直线l 的方程为8x my =+,易得直线l 过定点(8,0).3.(1)24y x =;(2)证明见解析.【分析】(1)根据抛物线的焦半径公式,求p ,得到抛物线的方程;(2)首先设直线方程x my t =+,()0t >,与抛物线方程联立,利用韦达定理表示OA OB ⋅的坐标表示,求得t ,即可说明直线过定点. 【详解】(1)由题意可得232p+=,2p = 抛物线方程为24y x =(2)设直线l 方程为x my t =+,()0t >,代入抛物线方程24y x =中,消去x 得,2440y my t --= 124y y t ,()221212116x x y y t ==. 22212121212·41244y y OA OB x x y y y y t t ⋅=+=+=-=解得6t =或2t =-(舍去)直线l 方程为6x my =+,直线过定点()6,0Q . 4.(1)2213x y +=;(2)直线AB 过定点(0,3)-【分析】(1)因为椭圆的离心率e,椭圆经过点,列方程组,解得2a ,2b ,2c ,即可得出答案.(2)设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,结合韦达定理可得12x x +,12x x ,再计算1223k k ⋅=,解得b ,即可得出答案. 【详解】解:(1)因为椭圆的离心率e,椭圆经过点⎭,所以222231c e a a b ⎧==⎪⎪⎨⎪⎪+=⎩,又222a b c =+, 解得23a =,21b =,22c =, 所以椭圆的方程为2213x y +=.(2)证明:设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立2213x y y kx b ⎧+=⎪⎨⎪=+⎩,得222(13)6330k x kbx b +++-=,所以122613kb x x k +=-+,21223313b x x k -=+,所以1111y k x -=,2221y k x -=,所以222121212122121211(1)()(1)(1)23(1)3kx b kx b k x x k b x x b b k k x x x x b +-+-+-++--⋅=⋅===-, 解得3b =-,所以直线AB 过定点(0,3)-.5.(1)x 2=4y ;(2)存在,定点R (0,-2). 【分析】(1)由|PA |等于点P 到直线y =-1的距离,结合抛物线的定义得出点P 的轨迹方程; (2)由对称性确定点R 必在y 轴上,再由∠MRQ =∠NRQ 可得k MR +k NR =0,联立直线l 与抛物线方程,结合韦达定理求出定点R (0,-2). 【详解】(1)由题知,|PA |等于点P 到直线y =-1的距离,故P 点的轨迹是以A 为焦点,y =-1为准线的抛物线,所以其方程为x 2=4y .(2)根据图形的对称性知,若存在满足条件的定点R ,则点R 必在y 轴上,可设其坐标为(0,r )此时由∠MRQ =∠NRQ 可得k MR +k NR =0.设M (x 1,y 1),N (x 2,y 2),则11y rx -+22y r x -=0由题知直线l 的斜率存在,设其方程为y =kx +2,与x 2=4y 联立得x 2-4kx -8=0, 则x 1+x 2=4k ,x 1x 2=-811y r x -+22y r x -=112kx r x +-+222kx r x +-=2k +1212(2)()r x x x x -+=2k -(2)2k r -=0故r =-2,即存在满足条件的定点R (0,-2). 【点睛】关键点睛:解决问题一时,关键是由抛物线的定义得出轨迹方程;解决问题二时,关键是由对称性得出点R 必在y 轴上,进而设出其坐标. 6.(1)22143x y +=;(2)证明见解析,(6,0).【分析】(1)利用已知和,,a b c 的关系,列方程组可得椭圆C 的标准方程;(2)直线l 斜率存在时,设出直线方程与椭圆方程联立, APE OPF ∠=∠可得0PE PF k k +=,利用根与系数的关系代入化简,可得直线l 所过定点. 【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=. (2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k -=+.因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033mkx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0). 7.(1)00221x x y ya b+=;(2)证明见解析. 【分析】(1)根据已知直接类比求解即可;(2)根据(1),根据题意,得到方程组,根据方程组的特征求出A 、B 两点坐标特征,最后可以求出直线AB 过定点. 【详解】(1)类比上述性质知:切线方程为00221x x y ya b+=.(2)设切点为1222(,),(,)A x y B x y ,点(3,)P t , 由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⋅⎧+⋅=⎪⎪⎨⋅⎪+⋅=⎪⎩,∴A ,B 满足方程:12xty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩,即直线AB 恒过点(2,0).8.(1)24y x =;(2)证明见解析. 【分析】(1)椭圆22143x y +=的焦点为()1,0±,由题意可知12p =,由此即可求出抛物线的方程;(2)设直线MN 的方程为x my n =+,与抛物线联立得,可得211244y y y y m n ==-+,,再根据PM PN ⊥,可得0PM PN ⋅=,列出方程代入211244y y y y m n ==-+,,化简可得2264850n n m m ---+=,再因式分解可得25n m =+或21n m =-+,再代入方程进行检验,即可求出结果. 【详解】(1)因为椭圆22143x y +=的焦点为()1,0±, 依题意,12p=,2p =,所以C :24y x =(2)设直线MN 的方程为x my n =+,与抛物线联立得2440y my n --=, 设()11,M x y ,()22,N x y , 则211244y y y y m n ==-+,,由PM PN ⊥,则0PM PN ⋅=,即()()11221,21,20x y x y --⋅--=, 所以()()()()121211+220x x y y ----=即()()()()121211+220my n my n y y +-+---=,整理得到()()()()22121212+140m y y mn m y y n ++--+-+=,所以()()()224142+140n m m mn m n -++---+=,化简得2264850n n m m ---+=即()()22341n m -=-, 解得25n m =+或21n m =-+.当25n m =+时,直线MN 的方程为25x my m =++,即为()52x m y -=+,即直线过定点()5,2-;当21n m =-+时,直线MN 的方程为21xmy m ,即为()12x m y -=-,即直线过定点()1,2,此时与点P 重合,故应舍去,所以直线MN 过定点()5,2-. 【点睛】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题. 9.(1)22164x y += (2)①证明见解析;②证明见解析 【分析】(1)由已知条件列出关于,,a b c 的方程组,解之可得;(2)设MN 的方程为11y k x =-,设11(,)M x y ,22(,)N x y ,直线方程代入椭圆方程,整理后由韦达定理得1212,x x x x +,然后计算34k k ⋅可得结论;②设PQ 的方程为2y k x t =+ ,设33(,)P x y ,44()Q x y ,,直线方程代入圆方程,整理后应用韦达定理得3434,x x x x +,由点的坐标求得BP BQ k k ⋅,利用它等于34k k ⋅可求得t 值,从而由直线方程得定点. (1)由题意2222a ca b c a⎧=⎪⎪=⎨⎪+=⎪⎩解得2b a c =⎧⎪=⎨⎪=⎩所以椭圆的标准方程为:22164x y +=;(2)① 设MN 的方程为11y k x =-,与22164x y +=联立得:2211(32)690k x k x +--=, 设11(,)M x y ,22(,)N x y ,则112212222111632932Δ72(21)0k x x k x x k k ⎧+=⎪+⎪⎪=-⎨+⎪⎪=+>⎪⎩,12111234121222(3)(3)y y k x k x k k x x x x ----⋅=⋅==2112112123()92k x x k x x x x -++=- ②设PQ 的方程为2,2y k x t t =+≠ ,与22(1)1y x +-=联立2222(1)2(1)(2)0k x k t x t t ++-+-=,设33(,)P x y ,44()Q x y ,,则23422342222222(1)1(2)1Δ4(2)0k t x x k t t x x k k t t =-⎧+-⎪+⎪-⎪=⎨+⎪⎪=-+>⎪⎩222232324422234342(2)(2)2(2)2(2)(1)(1)(2)(2)BP BQ y k x t k x t y k t t k t t k t k k x x x x t t -+-+------++-⋅=⋅==-2222222(1)(1)(2)2k t k t k t t t t--++--==由34BP BQ k k k k ⋅=⋅,即222,,3t t t -=-∴=此时22284()09k ∆=+>, 所以PQ 的方程为223y k x =+,故直线PQ 恒过定点2(0,)3.10.(1)2212x y +=(2)证明见解析 【分析】(1)根据题意列方程组求得,a b ,即可得到椭圆的标准方程;(2)设()()1122,,,A x y B x y ,分直线AB 斜率存在与不存在两种情况证明.当直线AB 的斜率存在时,设AB :y kx m =+,联立椭圆方程消元后利用韦达定理及判别式求得22212122242221,,2121km m k m x x x x k k -+>+=-⋅=++,由124k k +=求得12k m =-,代入直线方程可证得直线过定点1,12⎛⎫⎪⎝⎭,再考虑直线AB 的斜率不存在时情况,易证得结果.(1)由题意可得2221b c b a b c =⎧⎪=⎨⎪=+⎩,解得1,a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y .①当直线AB 斜率存在时,设直线AB 方程为y kx m =+, 联立2212y kx m x y =+⎧⎪⎨+=⎪⎩得()222214220k x kmx m +++-=. 由()()()222222Δ16421228210k m k m k m =-+-=-+>,得2221k m +>.所以2121222422,2121km m x x x x k k -+=-⋅=++.所以12121212121111y y kx m kx m k k x x x x +++++++=+=+()1212214x x k m x x +=++=, 即2241km k m -=-,所以21km k m =--,即()()2122km k m km k m =--=--+, 所以12k m =-,所以11122k y kx m kx k x ⎛⎫=+=+-=-+ ⎪⎝⎭,所以直线AB 过定点1,12⎛⎫⎪⎝⎭.②当直线AB 斜率不存在时,()()1111,,,A x y B x y -,则11121111124y y k k x x x +-++=+==,所以112x =,则直线AB 也过定点1,12⎛⎫⎪⎝⎭.综合①②,可得直线AB 过定点1,12⎛⎫⎪⎝⎭.11.(1)存在,过定点()1,0F (2【分析】(1)设直线MP 的方程为y kx b =+与抛物线方程联立方程组,消元后由判别式为0,得1kb =,这样可用k 表示出P 点坐标,从而也可得M 点坐标,然后求出MP 中垂线方程后可得定点;(2)由(1),求出PN 方程,与抛物线方程联立求得N 点坐标后,计算出PM ,PN ,从而得PMN 面积S 为k 的函数,其中0k >,利用导数可求得其最小值. (1)解:设直线MP 的方程为y kx b =+,和抛物线方程24y x =联立得:2440ky y b -+=, 由0k ≠,0∆=得1kb =,则2440ky y b -+=的解为2y k=, 由020y k =>得0k >,21y b x k k -==,得212,P k k ⎛⎫⎪⎝⎭, 在y kx b =+中,令0y =得21b x k k =-=-,所以21,0M k ⎛⎫- ⎪⎝⎭,MP 中点为1(0,)k ,所以线段MP 的中垂线方程为()11y x k=--,所以线段MP 的中垂线过定点()1,0F . (2)解:由(1)可知,直线NP 的方程为23112112y x x k k k k k k⎛⎫=--+=-++ ⎪⎝⎭将其与抛物线方程24y x =联立得:2311204y y k k k ⎛⎫+-+= ⎪⎝⎭,24,4N P N y y k y k k ⎛⎫∴+=-∴=-+ ⎪⎝⎭,22P M PM x k =-=,44N P PN y k k=-=-. 所以PMN 的面积为()()223410k S k k+=>,所以()()224413k k S k+-'=,当0k <<0S '<,S 单调递减,当k >0S '>,S 单调递增,所以k =min S =. 12.(1)24,00,0x x y x ≥⎧=⎨<⎩;(2)证明见解析. 【分析】(1)令(,)M x y ||1x =+,讨论0x ≥、0x <化简整理求轨迹方程.(2)由(1)得()1,2P ,设MN 为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立抛物线方程应用韦达定理得124y y m +=,124y y n =-,根据题设条件有()12122360y y y y +++=,进而可得,n m 的数量关系,即可证明结论. (1)由题设,(,)M x y 到点()1,0的距离比它到y 轴的距离大1,||1x =+,当0x ≥时,222(1)(1)x y x -+=+,整理得24y x =; 当0x <时,222(1)(1)x y x -+=-,整理得0y =;∴动点M 的轨迹W 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)证明:()()001,0P y y >,由(1)知:()1,2P ,设MN 的方程为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立24x my n y x =+⎧⎨=⎩,得2440y my n --=,∴124y y m +=,124y y n =-,由1211241214PM y k y y -==+-,同理242PN k y =+,又12PM PN k k =-⋅, ∴()()12161222y y =-++, ∴()12122360y y y y +++=,则290n m -++=,即29n m =+(满足Δ0>), 直线MN 的方程为()2929x my m m y =++=++, ∴直线MN 过定点()9,2-,得证. 13.(1)24y x =(2)直线过定点(2,0)【分析】(1)利用焦半径的定义可得P 的值,即可得到答案;(2)设()()1122,,,A x y B x y ,直线:l x my n =+,根据4OA OB ⋅=-可求得n 的值,即可得到答案; (1)2MF =,∴1222pp +=⇒=, ∴抛物线的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,直线:l x my n =+代入抛物线24y x =得: 2440y my n --=,∴121244y y my y n +=⎧⎨⋅=-⎩,12124OA OB x x y y ⋅=+=-,①又22112244y x y x ==,,()2212121616x x y y n ∴==,∴212x x n =,∴①等价于22440(2)02n n n n -+=⇒-=⇒=, ∴直线l 恒过定点(2,0).14. (1)2p = (2)证明见解析 【分析】(1) 设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 可求1212,x x x x +⋅,由4OA OB =-列方程求p 的值;(2) 设3344(,),(,)M x y N x y 利用导数的几何意义求切线12l l 和的方程,根据12l l ⊥可得344x x =-,化简直线MN 的方程,证明直线MN 过定点.(1)设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 整理可得2240.x pkx p --= 所以,12122,4x x pk x x p +=⋅=-,所以,221212122444 4.4x x OA OB x x y y p p p ⋅=+=-=-=- 所以, 2.p = (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设3344(,),(,)M x y N x y ,则抛物线在点M 处的切线方程为333()2xy y x x -=-,从而312x k =,同理422x k =, 因为12l l ⊥,所以121k k =-,即344x x =-, 又34343434223434()()4MN y y y y x x x x k x x x x --++===--, 从而直线MN 的方程为:3433()4x x y y x x +-=-, 将2334x y =,344x x =-带入化简得:3414x x y x +=+, 所以,直线MN 恒过定点(0,1). 15.(1)22163x y +=;(2)证明见解析. 【分析】(1)设(,)P x y ,利用两点距离公式及点线距,结合已知条件可得2226x y +=,即可写出P 的轨迹方程C .(2)由(1)易知A 在椭圆C 上,设1122(,),(,)M x y N x y ,讨论MN 斜率:存在时令MN 为y kx m =+,联立椭圆方程结合韦达定理及0AM AN ⋅=可得2310k m ++=,可知MN 过定点;斜率不存在时由0AM AN ⋅=求M 、N 的横坐标,判断是否过同一定点,最后根据AD MN ⊥确定D 的轨迹为圆,进而确定圆心即可证结论. (1)设(,)P x y ,由题设2222[(](x y x +=-,整理得:2226x y +=,∴P 的轨迹方程C 为22163x y +=.(2)由(1)知:A 在椭圆C 上,设1122(,),(,)M x y N x y ,当直线MN 斜率存在时,令MN 为y kx m =+,联立椭圆C 并整理得:222(21)4260k x kmx m +++-=,∴222222168(3)(21)488240k m m k k m ∆=--+=-+>,则122421km x x k +=-+,21222(3)21m x x k -=+,故121222()221m y y k x x m k +=++=+,222212121226()21m k y y k x x km x x m k -=+++=+, ∵AM AN ⊥,而11(2,1)AM x y =--,22(2,1)AN x y =--,∴121212121212(2)(2)(1)(1)2()()5AM AN x x y y x x x x y y y y ⋅=--+--=-++-++=0; ∴由上整理得:2234821(231)(21)0m k km m k m k m ++--=+++-=.由题设知:A 不在MN 上,即210k m +-≠,故2310k m ++=,则2133k m +=-,∴MN 过定点21(,)33E -,当直线MN 斜率不存在时,则11(,)N x y -,由2211(2)10AM AN x y ⋅=-+-=,又221126x y +=,可得2113840x x -+=,解得123x =或12x =(舍),∴此时MN 也过定点21(,)33E -,又AD MN ⊥,即90ADE ∠=︒,故D 在以AE 为直径的圆上且圆心为41(,)33.∴定点Q 41(,)33,使得||DQ 为定值,得证.【点睛】关键点点睛:第二问,讨论MN 斜率,联立椭圆方程及线段的垂直关系,利用向量垂直的坐标表示判断MN 所过的定点坐标,再由AD MN ⊥判断D 的轨迹为圆,找到圆心坐标,即为所要证的定点Q . 16.(1)221(2)64x y y +=≠±;(2)(Q . 【分析】(1)设(,)P x y ,应用斜率的两点式及已知条件可得222(2)3y y y x x +-⋅=-≠±,化简整理即可得C 的方程;(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y ,联立曲线C ,结合韦达定理求MN 的中点坐标,进而写出MN 垂直平分线方程即可得R 的坐标,根据弦长公式及|||MN QR =可得22(42)(23)0n m -+=,即可求Q 的坐标.(1)设(,)P x y ,则直线PA ,PB 的斜率之积为222(2)3y y y x x +-⋅=-≠±, ∴整理得222312+=x y ,即221(2)64x y y +=≠±,因此,点P 的轨迹曲线C 的方程为221(2)64x y y +=≠±.(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y .由2223120x my nx y =+⎧⎨+-=⎩,得222(23)42120m y mny n +++-=, 当2224(46)0m n ∆=-+>时,122423mn y y m -+=+,212221223n y y m -=+,∴||MN =又线段MN 的中点为22222,2323m n mn n m m ⎛⎫--+ ⎪++⎝⎭,即2232,2323nmn m m -⎛⎫ ⎪++⎝⎭, ∴线段MN 的垂直平分线为22232323mn n y m x m m -⎛⎫-=-- ⎪++⎝⎭,令0y =,得223R n x m =+,故2,023n m R ⎛+⎫⎪⎝⎭.由|||MN QR =223nm -+,整理得|2n =∴22(42)(23)0n m -+=,则有n =(Q . 17.(1)11,22-(2)证明见解析 【分析】(1)设出直线方程,与双曲线联立,利用判别式可求;(2)联立直线2l 与双曲线方程,利用韦达定理结合0AC BC ⋅=求出m 和k 关系即可证明. (1)由题意得直线1l 的斜率必存在,设()1:1l y k x =+,联立()22114y k x x y ⎧=+⎪⎨-=⎪⎩,得()2222148440k x k x k ----= 若2140k -=,即12k =±时,满足题意; 若2140k -≠,即12k ≠±时,令()()()22228414440k k k ∆=-----=,解之得k = 综上,1l的斜率为11,22-(2)证明:设()11,A x y ,()22,B x y ,联立2214y kx mx y =+⎧⎪⎨-=⎪⎩,得()()222148410k x kmx m ---+=,则:()()221222122164108144114m k mk x x k m x x k ⎧⎪∆=-+>⎪⎪+=⎨-⎪⎪-+⎪=-⎩以线段AB 为直径的圆过双曲线的左顶点C ()2,0-,∴0AC BC ⋅=,即()121212240x x x x y y ++++=,由韦达定理知,()()()2222121212122414m k y y kx m kx m k x x mk x x m k -=++=+++=-.则()2222224141640141414m m k mk k k k -+-+++=---, 整理得22316200m mk k -+=, 解得2m k =或103km =(均满足0∆>). 当2m k =时,直线l :()+2+2y kx m kx k k x =+==,此时,直线过点()2,0-,不满足题意,故舍去; 当103k m =时,直线l :1010++33y kx m kx k k x ⎛⎫=+== ⎪⎝⎭,此时,直线恒过点10,03⎛⎫- ⎪⎝⎭,满足题意.所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭.18.(1)24y x =或0(0)y x =<(2)(i)1x =-;(ii)证明见解析,定点为(1,0) 【分析】(1)设出P 点坐标,根据题意列式化简即可.(2) (i)设出切点,表示出切线方程,再联立两切线方程即可求出交点坐标;(ii)根据A 、B 两点坐标表示出直线AB 的点斜式方程,化简求出定点. (1)设(,)P x y ,则当0x ≥时,1PF x -=,1x =+,当x>0时化简得24y x =;当0x <时,由题意得0(0)y x =<,所以曲线C 的方程为:24y x =或0(0)y x =<.(2)(i)当0(0)y x =<时,不合题意,故设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,则过点A 的切线为:1122y y x y =+,同理可得过点B 的切线为:2222yy x y =+.根据12l l ⊥可得124y y =-. 所以联立两条切线方程11222222y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得1M x =-,所以M 的轨迹为1x =-(ii)由题意可得AB l 的直线方程为:()211211122221211444444y y y y y y y x x y y y y -⎛⎫--=-=+ ⎪---⎝⎭, 所以必过()1,0 【点睛】求曲线方程的题通常有两种做法,一种是直接根据题意列式化简即可,一种需要结合图像,先根据定义分析出曲线为何种曲线,再进行计算.证明直线过定点常用方法为设而不求,得出参数之间的关系即可求得定点. 19.(1)2213y x -=(2)存在;定点M 的坐标为(1,0)- 【分析】(1)根据倾斜角得出渐近线的倾斜角,求出渐近线方程,进而得到a ,b 的关系,再将点的坐标代入双曲线方程,最后解出a ,b 即可;(2)考虑直线的斜率存在和不存在两种情况,当直线斜率存在时,设出直线的点斜式方程并代入双曲线方程并化简,进而根据根与系数的关系与0MA MB →→⋅=得到答案. (1)双曲线的渐近线方程为by x a =±,因为两条渐近线的夹角为3π,故渐近线b y x a=的倾斜角为6π或3π,所以b a =b a =又22491a b -=,故22491b a b ⎧=⎪⎨-=⎪⎩或22491a a b ⎧⎪⎨-=⎪⎩(无解),故1a b =⎧⎪⎨=⎪⎩所以双曲线2213y x -=.(2)双曲线的右焦点为2(2,0)F ,当直线l 的斜率存在时,设直线l 的方程为:(2)y k x =-,设()11,A x y ,()22,B x y ,因为0MA MB →→⋅=,所以()()12120x m x m y y --+=,整理得到()()()222212121240k x x m k x x m k +-++++=…①,由22(2)33y k x x y =-⎧⎨-=⎩可以得到()222234430k x k x k -+--=, 因为直线l 与双由线有两个不同的交点,故()()422216434336450k k k k ∆=+-+=+>且230k -≠,所以k ≠由题设有①对任意的k ≠ 因22121222443,33k k x x x x k k ++=-=---, 所以①可转化为()()22222222434124033k k k m k m k k k+-+++++=--,整理得到()()22231540m m m k -++-=对任意的k ≠故2210540m m m ⎧-=⎨+-=⎩,故1m =-即所求的定点M 的坐标为(1,0)-. 当直线l 的斜率不存在时,则:2l x =,此时(2,3),(2,3)A B -或(2,3),(2,3)-B A , 此时330MA MB →→=-+=⋅. 综上,定点M 的坐标为(1,0)-. 【点睛】本题第(2)问是一道常规压轴题,根据向量数量积为0得到两点的坐标关系,然后结合根与系数的关系将式子化简,最后求出答案.20.(1)M (25,5);(2)存在,7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【分析】(1)设M (m 2,m ),因为A ,P ,M 三点共线,则斜率相等,代入计算可得m =5,从而求出点M 坐标;(2)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ),利用两点可求直线AM 的方程,代入P 点坐标,可解出212a m a -=-,同理解出212b n b -=-,联立直线AN 和BM ,解出R 的纵坐标,代入,m n ,得到(21)2(2)27R a b a y a b a --+=--+,直线AB 的方程过点Q (s ,t ),可通过代入Q 点建立,s t的关系,若R y 为定值,则得出比例关系为定值k ,从而找到,s t 的解的集合. 【详解】解:(1)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ), 因为A ,P ,M 三点共线, 所以2332991m m --=--,解得m =5, 所以点M (25,5).(2)直线AM 的方程为(a +m )y =x +am , 将点P 代入可得2(a +m )=1+am , 解得212a m a -=-,直线BM 的方程为:()b m y x bm +=+ 同理可得212b n b -=-,直线AN 的方程为:()a n y x an +=+ 再将直线AN 和BM 联立,得()()a n y x anb m y x bm+=+⎧⎨+=+⎩,解得n R a bmy a b n m-=-+-,代入得2121(2)(21)(2)(21)222121()(2)(2)(21)(2)(21)(2)22R b a a b a a b b n a b a y b a a b a b b a a b a b b a --⨯-⨯-------==-----+------+---2()2(21)2227(2)27ab a b a b a ab a b a b a -++--+==--+--+因为直线AB 的方程为(a +b )y =x +ab 过点Q (s ,t ), 则(a +b )t =s +ab , 解得at sb a t-=-, 代入上式得,22(21)2(21)(22)2(2)(7)27(2)27R at sa a t a s a s t a t y at s t a s a s t a a a t --⨯-+-+-+--==--+-+--⨯-+-为常数, 只需要212222727t s s tk t s s t---===---,即722212k s k k t k -⎧=⎪⎪-⎨-⎪=⎪-⎩(k ∈R 且k ≠2),所以存在点Q 满足的集合为7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【点睛】知识点点睛:定点定值问题若出现ax by cx d +=+为定值,则会有a b c d=为定值,即系数比为定值.21.(1)22182x y +=;(2)存在,点(4,0)G -. 【分析】(1)由直译法列出方程化简即可;(2)设出直线l 方程4x ty =-,以及11(,)M x y ,()()223,,,0N x y E x ,4(,0)F x ,0(,0)G x ,通过代换用t 表示0x ,化简得到一个常数即可. 【详解】(1)设点(,)P x y化简得22182x y += 故动点P 的轨迹C 的标准方程为22182x y += (2)设直线l 的方程为4x ty =-联立方程组224182x ty x y =-⎧⎪⎨+=⎪⎩,得22(4)880t y ty +-+=,22226432(4)3212832(4)0,t t t t ∆=-+=-=-> 得: 2t >或2t <-12284ty y t +=+,12284y y t =+. 设 34(,0),(,0)E x F x ,定点G 存在,其坐标为0(,0)x()2,1B --,1112BM y k ty +∴=-,2212BN y k ty +=- 则121211:(2)1,:(2)121y y BM y x BN y x ty ty ++=+-=+--- 令0y =,求出与x 轴的交点,E F()()1122334411221212210,2,210,22121y ty y ty x x x x ty y ty y +-+-+-=+=+-=+=-+-+ ()32,1BE x =+, ()42,1BF x =+, ()40,0GF x x =-, ()30,0GE x x =- 0BE GF GE BF ⋅+⋅= 即有: 340430(2)()(2)()0,x x x x x x +-++-=即343434022()(4)0x x x x x x x ++-++= 343403422()4x x x x x x x ++=++3434340343422(4)828244x x x x x x x x x x x +++--==+++++∴343434342(224)441624x x x x x x x x +++---=+++3434342(2)(2)4(4)24x x x x x x ++-++=+++34342(2)(2)2(2)(2)x x x x ++=-+++()()()()()()12121221221121222222112222212111y t ty ty ty y y y t ty ty y ty y y y --⋅⋅--++=-=----++-++++ 21212121222()422(2)()4t y y t y y ty y t y y ⎡⎤-++⎣⎦=-+-+-()2222222228816248844428288424444t t t t t t t t t t t t t t -⋅-⋅+++++=-=--⋅+-+++222222168(4)83222484(4)416t t t t t t -++-+=-=-=--+- 即04x =-当直线l 与x轴重合时,00()(2)0,BE GF GE BF x x ⋅+⋅=-+-= 解得 0 4.x =-所以存在定点G ,G 的坐标为(4,0)-. 【点睛】 关键点点睛: 本题中3434343403434282(224)44162244x x x x x x x x x x x x x -+++---=+=+++++3434342(2)(2)4(4)24x x x x x x ++-++=+++这一步是为了凑出34(2),(2)x x ++,然后作整体替换.。
高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc
专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。
设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。
解得。
∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN 的长为15. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4-【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值.【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+--()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k x k x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x k k x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=- ()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ;(2)求证: OA OB ⋅u u u v u u u v是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =- ()()1122,,,OA x y OB x y ==u u u v u u u v, ∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++u u u v u u u v,()212121222144143k y y k y y y y k k =++++=-++-=-, ∴OA OB ⋅u u u v u u u v是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的离心率为6,右焦点为(2,0).(1)求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 3【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 代入,得4 m 2=3 k 2+3原点到直线AB 的距离231m d k ==+ , 当AB 的斜率不存在时, 11x y = ,可得, 13x d == 依然成立.所以点O 到直线的距离为定值32. 点睛: 本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x y b a a b-=>>渐近线方程为3y x =, O 为坐标原点,点(3,3M 在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q 为双曲线上不同两点,点O 在以PQ 为直径的圆上,求2211OPOQ+的值.【答案】(Ⅰ)22126x y -=;(Ⅱ) 221113OP OQ+=. 【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M 的坐标求得参数即可;(2)由条件可得OP OQ ⊥,可设出直线,OP OQ 的方程,代入双曲线方程求得点,P Q 的坐标可求得221113OPOQ+=。
圆锥曲线中过定点问题的常见处理策略
犙(0,2)总是在直线犃犇 上,设直线 犃犅 的方程为狔= 犽狓+1,(斜率不存在时,已经讨论)与椭圆方程联立得 (2犽2 +1)狓2 +4犽狓-2=0.
设犃(狓1,狔1),犅(狓2,狔2),则犇(-狓2,狔2),由韦达
烄狓1 定理可知烅
+狓2
=2犽-24+犽1,
-2
烆狓1狓2
=2犽2
. +1
要证明定点犙(0,2)总是在直线犃犇 上,只需证明
综上:直线犃犇 恒过定点犙(0,2)
分析:此法适 用 于 特 殊 位 置 明 显 易 求,先 求 出 定
点,再证明定点在直线上即可.
对比两种方法,当 属 此 法 最 简 单,此 法 的 前 提 是
要有两种易求的特殊位置求出定点.
二、圆过定点问题探究
例题 已知双曲线犆:狓2-狔32 =1,若直线犾过双 曲线的右焦点犉1 且交双曲线于 犃,犅 两点,是否存在 一个定点犕,使得无论直线如何转动,以犃犅 为直径的 圆恒过定点 犕?若存在,请求出定点的坐标;若不存 在,请说明理由.
( ) A.(-
∞,-2)∪(2Biblioteka +∞) 8 B.e2
,2
( ) 4
C.e2
e2 +4
,+
∞
( ) D.2,e42
e2 +4
思路分析:这个问题其实就是研究2个方程,外层
的方程为狋2 -犽狋+1=0,设两根分别为狋1 和狋2,再研
究2个内层方程犳(狓)=狋1 和犳(狓)=狋2(狋1 ≤狋2),即
已知2个内层方程的根加起来共4个,结合图像,考查
1.法一:先引后消 右焦点犉1(2,0),当直线犾的斜率存在时,设直线方 程 为狔=犽(狓-2),与双曲线联立得(犽2-3)狓2-4犽2狓 +4犽2 +3=0,设 犃(狓1,狔1),犅(狓2,狔2),则狓1 +狓2 = 犽42犽-23,狓1狓2 =4犽犽22-+33,假设存在定 (下转第52页)
高中数学圆锥曲线定点问题解题策略
高中数学圆锥曲线定点问题解题策略圆锥曲线定点问题是数学中比较重要的一个问题,在高中数学中也是一个重点难点。
本文将从以下几个方面介绍圆锥曲线定点问题的解题策略。
一、什么是圆锥曲线定点问题圆锥曲线定点问题是指给定一条圆锥曲线上的一个点P,求该点在曲线上的位置是否固定,如果是,称该曲线有定点性质;如果不是,求解该点在曲线上的位置,即求解该点的坐标。
常见的圆锥曲线包括直线、双曲线、抛物线和椭圆。
根据曲线的不同,圆锥曲线定点问题的求解方法也不尽相同。
二、直线上的定点问题对于直线上的定点问题,首先需要明确的是,直线上的点具有对称性,即在直线上任意一点P的对称点P'也在直线上。
接着,我们考虑在直线y=kx+b上任取一点P(x1,y1),则该点在直线上的充要条件为:kx1+b=y1因此,如果直线上存在定点,则一定有k和b满足上述方程,即该直线的方程唯一确定。
根据此条件,我们可以得到直线上的任意一点P(x1,y1)与该点的对称点P'(x2,y2)的坐标:x2=x1-2b/(k^2+1)因此,我们可以利用该公式求解直线上的定点问题。
对于双曲线,我们可以利用另外一种对称性质来求解定点问题。
具体来说,对于标准双曲线x^2/a^2-y^2/b^2=1,我们设定点P(x1,y1)在双曲线上,以双曲线中心O为原点,设点P的极角为θ,则点P关于双曲线的一个渐近线对称点P'的极角为π-θ。
因此,点P和点P'的坐标可以表示为:P(a·secθ,b·tanθ)根据极角定义,tanθ=y1/x1,将该式代入上述公式,可以解出P'的坐标。
利用该方法,我们可以求解任意双曲线上的定点问题。
P(x1,y1)接着,我们根据点P''在抛物线上的充要条件得到:解得x1=2p,因此点P在抛物线上的位置是固定的。
利用该方法,我们可以快速求解任意抛物线上的定点问题。
对于椭圆,我们需要利用其代数性质和几何性质来求解定点问题。
高中数学圆锥曲线定点问题解题策略
高中数学圆锥曲线定点问题解题策略
高中数学圆锥曲线定点问题是数学中的一个重要知识点,涉及到直线与圆锥曲线的交点、定点问题等。
解题的策略一般包括以下几个方面:
1. 明确问题要求:首先要清楚问题要求求解什么,例如求交点的坐标、定点的坐标等,明确问题的目标是解决问题的第一步。
2. 寻找相关方程:根据问题所涉及的圆锥曲线类型,如抛物线、椭圆、双曲线等,
确定相应的方程。
对于抛物线可以使用一般方程y=ax^2+bx+c,对于椭圆可以使用标准方
程\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,对于双曲线可以使用标准方程
\frac{x^2}{a^2}-\frac{y^2}{b^2}=1等。
寻找到相关方程是解题的基础。
3. 解方程求解:根据问题所给的条件和方程,利用数学方法解方程组,求解出未知
数的值。
根据具体的题目要求,可能会涉及到一元二次方程、二元一次方程、高次方程等,可以利用因式分解、配方法、根的判别式等方法求解。
4. 计算坐标值:根据求解出的未知数的值,可以得到所求点的坐标。
根据坐标的定义,可以通过具体的计算将结果转化为坐标值,例如将x和y值代入方程,计算出相应的
坐标点。
5. 检查答案:在得到结果后,需要对结果进行检查,确保所得答案符合原题要求,
并且满足数学上的要求。
对于涉及到图形的问题,可以通过作图验证答案的正确性。
解决高中数学圆锥曲线定点问题的关键是明确问题要求,寻找相关方程,解方程求解,计算坐标值,最后进行答案的检查。
通过多进行练习和实践,加强对数学知识的理解和掌握,可以提高解决此类问题的能力。
一道圆锥曲线中直线过定点问题的解法探究
一道圆锥曲线中直线过定点问题的解法探究1. 引言圆锥曲线是数学中的重要内容之一,它在几何、代数和解析几何等多个领域有着广泛的应用和研究。
其中,圆锥曲线中直线过定点的问题一直以来都是研究和探讨的焦点之一。
在本文中,我们将从多个角度深入探讨这一问题,并寻找最优解。
2. 圆锥曲线的定义与性质我们来简单回顾一下圆锥曲线的一般定义和基本性质。
圆锥曲线是平面上的一类曲线,它们可以通过平面上的一个点和一条直线来定义。
常见的圆锥曲线包括圆、椭圆、抛物线和双曲线等。
这些曲线都有着独特的性质和方程形式,它们在几何和代数上都有着丰富的内涵和应用。
3. 直线过定点的问题接下来,我们将重点讨论直线过定点的问题。
具体而言,我们将探讨一道圆锥曲线中直线过定点的具体问题,分析其解法并深入理解其中涉及的数学原理和方法。
这个问题对于理解圆锥曲线的性质和运用是非常有帮助的。
4. 解法一:几何法我们可以尝试用几何的方法来解决这个问题。
通过构图和几何推理,我们可以找到直线过定点的具体形式和方程。
这种方法在直观理解上非常直接,能够帮助我们更好地理解圆锥曲线和直线的交点性质。
5. 解法二:代数法除了几何方法外,代数方法也是解决这类问题的重要手段之一。
我们可以通过代数方程和参数方程的分析,推导出直线过定点的具体条件和方程形式。
这种方法在理论推导和运算求解上有着独特的优势,能够帮助我们更深入地理解圆锥曲线的特性。
6. 解法三:解析几何法解析几何方法也是研究圆锥曲线的重要途径之一。
我们可以通过向量、坐标和方程等工具,对直线过定点的问题进行分析和求解。
这种方法在结合了几何和代数的特点上有着显著的优势,能够帮助我们更全面地理解这一问题。
7. 结论与展望通过对一道圆锥曲线中直线过定点问题的探究,我们不仅可以更加深入地理解圆锥曲线的性质和特点,同时也能够提升自己的数学分析和解决问题的能力。
在未来的学习和研究中,我们可以继续探讨更多类似的问题,以拓展自己的数学视野和应用能力。
高中数学圆锥曲线定点问题解题策略
高中数学圆锥曲线定点问题解题策略圆锥曲线定点问题是圆锥曲线中的常见问题之一,主要涉及定出圆锥曲线上满足特定条件的点的位置。
解决这类问题需要掌握一些基本的解题方法和策略。
1.利用圆锥曲线方程圆锥曲线方程是解决圆锥曲线定点问题的基本工具之一。
通过圆锥曲线方程可以得到曲线上某点的坐标,根据题目所给条件可以筛选出满足条件的点。
2.利用几何特征各种圆锥曲线均有其独特的几何特征,这些特征可以为解题提供有力的支持。
例如,椭圆的两个焦点到任意一点的距离之和是常数,圆的每一点都在圆心的同一距离之内等。
3.利用对称性许多圆锥曲线都具有对称性。
例如,椭圆具有2条对称轴,而双曲线具有两条渐近线。
通过利用对称性可以简化方程,以及得到更多的几何信息,从而帮助解题。
1.先确定曲线类型在解决圆锥曲线定点问题之前,需要先判断所给曲线的类型,例如椭圆、抛物线还是双曲线。
只有确定了曲线类型,才能确定问题的解题方案。
2.列出方程列出圆锥曲线方程是解决圆锥曲线定点问题的基本环节。
在列方程的过程中,需要对题目中所给的信息作出转化,利用已知信息来推导出方程式。
3.细心分析在解题的过程中,需要仔细分析已知条件的意义,并将其与所给的答案进行比较,找出其中的联系和异同,以及可能存在的规律。
4.利用可视化工具可视化工具如图形计算器、函数绘图工具等是解决圆锥曲线定点问题的有力助手。
通过可视化工具可以观察曲线的形态,直观地感受问题的需求,快速定位特殊点的位置等。
5.未知量的分类讨论在解决圆锥曲线定点问题时,有时需要在未知量的方程中进行分类讨论。
例如,判断曲线与坐标轴的交点位置,可以分别讨论两条直线是否相交,相交点是否在第一象限等。
6.曲线性质的应用每种圆锥曲线都有其独特的性质,不同的性质可以帮助我们更好地解决问题。
例如,对于抛物线上的点,它们到抛物线的焦点的距离与它们到抛物线的直线轴的距离是相等的。
总之,圆锥曲线定点问题需要我们灵活运用各种解题方法和策略,熟练掌握相关知识和技能才能解决。
圆锥曲线中的定点、定值、定线与探索性问题-专题突破
证明:点 P 在定直线上.
解 (1)设双曲线 C 的方程为ax22-by22=1(a>0,b>0),由焦点坐标可知 c=2 5,
则由 e=ac= 5可得 a=2,b= c2-a2=4, 故 C 的方程为x42-1y62 =1.
所以 y1y2=-8,又yy2122==22xx12,, 所以 y21y22=4x1x2=64,
即 x1x2=16,则 k1k2=yx11·yx22=-168=-12.
目录 精做大题 1 2 3 4 5 6 7 8
解
②设直线 PQ 的方程为 x=ty+n(n≠0),P(x3,y3),Q(x4,y4),
因为 A(-2,0),则直线 AP:y=x1y+1 2(x+2),
令 x=0,解得 y=x12+y12,即 M0,x12+y12,
目录 精做大题 1 2 3 4 5 6 7 8
解
同理可得 N0,x22+y22,
则x12+y12+2 x22+y22=k(x1x+1+2)2 +3+k(x2x+2+2)2 +3
解 (1)易知直线 2x+4y-1=0 与 x 轴交于点12,0, 即焦点坐标为12,0,所以p2=12,p=1,则抛物线 C 的标准方程为 y2=2x.
(2)证明:①设直线 MN 的方程为 x=my+4,M(x1,y1),N(x2,y2),
联立方程组yx2==m2yx+,4,得 y2-2my-8=0,Δ=4m2+32>0,
目录 精做大题 1 2 3 4 5 6 7 8
解
二、模拟大题 3.(2024·四川巴蜀中学高三适应性月考(二))如图 所示,点 F1,A 分别为椭圆 E:ax22+by22=1(a>b>0)的 左焦点和右顶点,点 F 为抛物线 C:y2=16x 的焦点, 且|OF|=2|OA|=4|OF1|(O 为坐标原点). (1)求椭圆 E 的方程; (2)过点 F1 作直线 l 交椭圆 E 于 B,D 两点,连接 AB,AD 并延长交抛物线的准线于点 M,N,求证:∠MF1N 为定值.
圆锥曲线中的定点问题及解决方法
圆锥曲线中的定点问题及解决方法全文共四篇示例,供读者参考第一篇示例:圆锥曲线可以说是数学中一个非常有趣且重要的概念,它是指在平面上的一条曲线,在解析几何中有着广泛的应用。
在圆锥曲线中,定点问题是一个非常常见的问题,它涉及到固定一个点或多个点,然后通过这些点来确定曲线的形状。
在本文中,我们将探讨圆锥曲线中的定点问题及其解决方法。
我们来介绍一下圆锥曲线中的常见曲线类型,包括圆、椭圆、双曲线和抛物线。
这些曲线都可以通过圆锥截面的方式来定义,它们在平面上的形状各有特点,而且在不同领域中都有着广泛的应用。
在解决圆锥曲线中的定点问题时,我们通常采用的方法是利用几何性质和数学公式来推导和计算。
下面我们以圆锥曲线中的圆和椭圆为例,来详细介绍一下定点问题的解决方法。
我们来看看圆的定点问题。
对于圆,我们知道它的定点是圆心,通过圆心我们可以确定圆的形状和大小。
如果要确定一个圆,我们只需要确定两个点即可,其中一个是圆心,另一个是圆上的一个点,通过这两个点我们就可以确定圆的位置和形状。
在解决圆锥曲线中的定点问题时,我们可以利用圆锥曲线的方程和性质来进行推导和计算,也可以通过几何分析和图形划分来解决问题。
我们还可以通过数学软件和计算工具来进行求解,提高求解的效率和准确性。
圆锥曲线中的定点问题是一个非常有趣和有挑战性的问题,通过研究和解决这些问题,我们可以进一步了解圆锥曲线的性质和特点,提高数学分析和推理的能力。
希望本文对大家对圆锥曲线中的定点问题有所启发和帮助,欢迎大家深入研究和探讨这一领域。
谢谢!第二篇示例:圆锥曲线是平面解析几何学中的重要内容,其中的定点问题一直是学习者们所关注的重点之一。
在圆锥曲线中,定点问题涉及到曲线上或者曲线的参数方程中的某一点,通常需要通过计算或者推导来确定这一点的具体位置或者性质。
在本文中,将讨论圆锥曲线中的定点问题及解决方法。
圆锥曲线包括圆、椭圆、双曲线以及抛物线四种类型,每种类型都有其特定的定点问题。
圆锥曲线解答题中的定点和定值问题的解题策略(解析版)
圆锥曲线解答题中的定点和定值问题的解题策略在圆锥曲线中有一类曲线,当参数取不同值时,曲线本身性质不变或形态发生变化时,其某些共同的性质始终保持不变,我们把这类问题成为圆锥曲线的定值问题.圆锥曲线中的定值问题是近几年高考的热点题型,解题过程中应注重解题策略,善于在动点的“变”中寻求定值的“不变”性.题型一:定值问题解答圆锥曲线定值问题的策略:1、把相关几何量用曲线系的参变量表示,再证明结论与参数无关.求解这类问题的基本方法是“方程铺路、参数搭桥”,解题的关键是对问题进行综合分析,挖掘题目中的隐含条件,恰当引参,巧妙化归.2、把相关几何量的变元特殊化,在特例中求出几何量的定值,再证明结论与特定状态无关,即特殊到一般的思想.1、两点间的距离为定值例1:(2021·广东中山市高三期末)已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x y a b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点2A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.【答案】(1)2212x y +=;(2.【详解】(1)由题意知2222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫- ⎪--⎝⎭,所以PQ =====为定值. 解题思路:设动点()00,P x y ,由题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可.2、求某一代数式为定值例2:(2021·全国高三模拟)已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,右焦点为F ,离心率2e =,焦距为4. (1)求双曲线C 的方程;(2)设M 是双曲线C 上任意一点,且M 在第一象限,直线MA 与MF 的倾斜角分别为1α,2α,求122αα+的值.【答案】(1)2213y x -=;(2)π. 【详解】(1)由242c c a=⎧⎪⎨=⎪⎩,得12a c =⎧⎨=⎩,所以2223b c a =-=,所以双曲线C 的方程为2213y x -=.(2)由(1)知双曲线C 的方程为2213y x -=,所以左顶点()1,0A -,右焦点()2,0F .设()()0000,0,0M x y x y >>,则22013y x -=.当02x =时,03y =,此时1MA k =,1π4α=,2π2α=, 所以122παα+=;当02x ≠,010tan 1MA y k x α==+,020tan 2MF yk x α==-.因为()220031y x =-,所以()()()()()00000001222220000000221211tan 22113111y x y x y x y x x y x x y x α+++-====-+-+--⎛⎫- ⎪+⎝⎭,又由点M 在第一象限,易知1π0,3α⎛⎫∈ ⎪⎝⎭,()20,πα∈,所以122παα+=. 综上,122αα+的值为π.解题思路:利用点在双曲线上,满足22013y x -=,利用整体代换思想求出1tan 2α和2tan α相反.例3:(2021·安徽安庆市高三一模(理))已知椭圆2222:1(0)x y C a b a b+=>>,过椭圆左焦点F 的直线0x -+=与椭圆C 在第一象限交于点M ,三角形MFO(1)求椭圆C 的标准方程;(2)过点M 作直线l 垂直于x 轴,直线MA 、MB 交椭圆分别于A 、B 两点,且两直线关于直线l 对称,求证∶直线AB 的斜率为定值.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)直线0x -+=过左焦点F ,所以()F ,c =又由124OMF M S y ∆==可知1=2M y从而椭圆经过点12M ⎫⎪⎭由椭圆定义知1242a =+=,即2a = 故椭圆的方程为22:14x C y +=.(2)由条件知,直线MA MB 、斜率存在,且两直线斜率互为相反数,设直线(12MA y k x -=:交椭圆于点()11,A x y ,直线(12MB y k x -=--:交椭圆于点()22,B x y ,由(221244y k x x y ⎧-=⎪⎨⎪+=⎩得()()22224141230k x k x k +-++--=1=1x =,112y =+故1)2A +,同理可得221)2B +,k ===即证直线AB. 解题思路:将直线(12MA y k x -=:与椭圆方程联立求出交点221)2A +的坐标,再将A 中的k 用k -替换,即可求出B 点坐标,,再利用斜率公式,化简,即可.例4.(2021·河南高三月考(理))已知点()2,0A -,()2,0B ,动点(),S x y 满足直线AS 与BS 的斜率之积为34-,记动点S 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么样的曲线;(2)设M ,N 是曲线C 上的两个动点,直线AM 与NB 交于点P ,90MAN ∠=︒. ①求证:点P 在定直线上;②求证:直线NB 与直线MB 的斜率之积为定值.【答案】(1)()221243x y x +=≠±,曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点;(2)①证明见解析;②证明见解析. 【详解】(1)解:由题意,得()32224y y x x x ⋅=-≠±+-, 化简,得()221243x y x +=≠±,所以曲线C 为中心在坐标原点,焦点在x 轴上的椭圆,不含A ,B 两点. (2)证明:①由题设知,直线MA ,NB 的斜率存在且均不为0. 设直线AM 的方程为()20x ty t =-≠,由AM AN ⊥,可知直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,{3412,x y t x y =--+=得()2243120t y ty ++=, 解得21243N ty t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t tt --+==--+, 则直线BN 的方程为()324y x t =-,将()324y x t=-代入2x ty =-,解得14x =-, 故点P 在直线14x =-上.②由(1),得34NA NB k k ⋅=-,34MA MB k k ⋅=-,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭.结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-为定值.即直线NB 与直线MB 的斜率之积为定值.解题思路:①设直线AM 的方程,由AM AN ⊥,可得直线AN 方程,与椭圆联立可求点N 坐标,进而可求得直线BN 方程,与AM 联立即可得证点P 在定直线上;②由(1)得34NA NB k k ⋅=-,34MA MB k k ⋅=-,又AM AN ⊥,进而可得直线NB与直线MB 的斜率之积.例5、(2021·江苏南通市高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMBAMNS S △△为定值.【答案】(1)22143x y +=;(2)53. 【详解】(1)因为椭圆的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭, 所以22911,214c a a b +==,又222a b c =+,解得224,3a b ==,所以椭圆C 的方程为22143x y +=; (2)设()()()112233,,,,,A x y B x y N x y ,因为点M 为线段OA 的中点,所以11,22x y M ⎛⎫⎪⎝⎭,因为B ,M ,N 三点共线,所以BN BM λ=, 所以()()3123121,122x x x y y y λλλλ=+-=+-,又因为A ,B 点在椭圆上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 又因为直线OA ,OB 的斜率之积为34-,所以1212340x x y y +=, 因为点N 在椭圆上,所以2233143x y +=,即()()()()()12122222221122341341482261x y x y x x y y λλλλ++-+-+=+,所以()22114λλ+-=,解得85λ=,所以85BN BM =,则53BM MN =,所以152132BOMB B AMNN N OM d BM Sd Sd MN AM d ⋅⋅====⋅⋅为定值.解题思路:设()()()112233,,,,,A x y B x y N x y ,根据M 为线段OA 的中点和B ,M ,N 三点共线,由BN BM λ=,表示点N 的坐标,再根据A ,B ,N 在椭圆上,结合直线OA ,OB 的斜率之积为34-,求得λ,从而得到BM 与MN 的比值,然后由1212BOMB B AMNN N OM d BM S dSd MN AM d ⋅⋅===⋅⋅求解. 例6、(2021·山东泰安市高三期末)已知椭圆)(2222:10x y C a b a b+=>>的左顶点为)(2,0A -,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上.(1)求椭圆C 的方程;(2)过橢圆C 的右焦点F 作斜率为)(0k k ≠的直线l ,交椭圆C 于M ,N 两点,直线AM ,AN 分别与直线2b x c=交于点P ,Q ,则FP FQ ⋅是否为定值?请说明理由.【答案】(1)22143x y +=;(2)是定值,94-. 【详解】(1)∵2a =,点31,2⎛⎫-⎪ ⎭⎝在椭圆C 上,∵219144b +=,∵23b =,∵椭圆C 的方程为:22143x y +=.(2)是定值94-,理由如下:设)(11,M x y ,)(22,N x y ,直线l 的方程为)()(10y k x k =-≠,由)(221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得)(22224384120k x k x k +-+-=,∵2122843k x x k +=+,212241243k x x k -=+,设)(3,P P y ,)(3,Q Q y ,则11322P y y x =++,∵)(111151522P k x y y x x -==++, 同理可得)(22512Q k x y x -=+,∵)(11512,2k x FP x ⎛⎫- =⎪⎪ +⎭⎝,)(22512,2k x FQ x ⎛⎫- =⎪⎪ +⎭⎝, ∵)()()()()()(212121221212122511144252224k x x x x x x FP FQ kx x x x x x ---++⋅=+=++++++222222222412819434342541216444343k k k k k k k k k --+++=+=--++++,∵FP FQ ⋅为定值94-.解题思路:设直线l 的方程,与椭圆方程联立,设)(3,P P y ,)(3,Q Q y ,由三点共线可得P y ,Q y ,结合韦达定理坐标表示FP FQ ⋅可得.3、求某一个量为定值例7、(2021·江苏盐城市伍佑中学高三期末)已知椭圆2222:1(0)x y C a b a b +=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为(1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ的交点为T ,求证:点T 横坐标为定值.【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【详解】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩ 故C 的标准方程为22195x y +=. (2)由(1)知()30A -,,()3,0B ,()2,0F , 设00,,()T x y ,11(,)P x y ,()22,Q x y ,由010133TA PA y yk k x x =⇒=++'①, 020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++, 又2211195x y +=,故2211195x y -=-,所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+.所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③ 由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点, 所以设直线PQ 的方程为2x my =+,(直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率)代入22195x y +=整理,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=解得092x =. 所以点T 横坐标为定值92. 解题思路:设00,,()T x y ,11(,)P x y ,()22,Q x y ,根据TA PA k k =,TB QB k k =可得0126123333x y x x x y --=⋅++,根据11(,)P x y 在椭圆C 上,代入方程化简整理可得0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---,设直线PQ 的方程为2x my =+,与椭圆C 联立,得到关于y 的一元二次方程,根据韦达定理,可得1212,y y y y +⋅的表达式,代入上式即可.例8、(2021·湖北武汉市高三月考)已知椭圆C :()222210x y a b a b +=>>的左右顶点分别为A ,B ,过椭圆内点2,03D ⎛⎫⎪⎝⎭且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,43PD BD ==. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线AP ,AQ 和直线l :x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【答案】(Ⅰ)22142x y +=;(Ⅱ)29t =-或103t =.【详解】(Ⅰ)由43BD =,得24233a =+=,故C 的方程为22214x y b+=,此时24,33P ⎛⎫ ⎪⎝⎭.代入方程2116199b +=,解得22b =,故C 的标准方程为22142x y +=. (Ⅱ)设直线PQ 方程为:23x my =+,与椭圆方程联立.得()224322039m m y y ++-=.设()11,P x y 、()22,Q x y ,则()()1221224323292m y y m y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩.①此时直线AP 方程为11(2)2y yxx ,与x t =联立.得点11(2),2t y M t x ⎛⎫+ ⎪+⎝⎭,同理,点22(2),2t y N t x ⎛⎫+ ⎪+⎝⎭.由MD ND ⊥,1MD ND k k ⋅=-.即()()1212(2)(2)1222233t y t y t x t x ++⋅=-⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭. 所以221212288(2)0333t y y t my my ⎛⎫⎛⎫⎛⎫++-++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.即()2221212122864(2)0339m t y y t m y y y y ⎛⎫⎡⎤++-+++= ⎪⎢⎥⎝⎭⎣⎦. 将①代入得:()()()222222232(2)2323264039929292t m m t m m m ⎡⎤-+-⎛⎫⎢⎥+--+= ⎪+++⎝⎭⎢⎥⎣⎦. 化简得:()22222232(2)323264203t t m m m ⎛⎫⎡⎤-++---++= ⎪⎣⎦⎝⎭. 即222(2)403t t ⎛⎫+--= ⎪⎝⎭.2223t t ⎛⎫+=±- ⎪⎝⎭.解得29t =-或103t =.解题思路:设直线PQ 方程为:23x my =+,与椭圆方程联立,结合韦达定理得1212,y y y y +,再联立AP 方程得M 同理得N 坐标,结合MD ND ⊥恒成立得1MD ND k k ⋅=-,化简计算可得参数t 值.例9、(2021·陕西榆林市高三一模(理))已知椭圆222:1(1)Γ+=>y x a a与抛物线2:2(0)C x py p =>有相同的焦点F ,抛物线C 的准线交椭圆Γ于A ,B 两点,且1AB =.(1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,若P 为椭圆Γ上任意一点,以P 为圆心,OP 为半径的圆P 与椭圆Γ的焦点F 为圆心,F 交于M ,N 两点,求证:MN 为定值.【答案】(1)椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)证明见解析. 【详解】(1)椭圆222:1(1)Γ+=>y x a a可得焦点(,抛物线2:2(0)C x py p =>的焦点为0,2p ⎛⎫ ⎪⎝⎭2p =①,由22221p y y x a ⎧=-⎪⎪⎨⎪+=⎪⎩可得22214p x a +=,解得x =,所以1AB ==②,由①②可得:24a =,p =所以椭圆Γ的方程为:2214y x +=,抛物线C的方程为:2x =;(2)设(,)P m n ,则2214+=n m ,圆P 的方程为:2222()()-+-=+x m y n m n ,圆F的方程为:22(5+-=x y ,所以直线MN的方程为:(10+--=mx n y , 设点F 到直线MN 的距离为d ,则2d ====.||2MN ==. 所以MN 为定值.解题思路:设(,)P m n ,则2214+=n m ,写出圆P 和圆F 的方程,两个圆的方程相减可得直线MN 的方程,计算点F 到直线MN 的距离为d ,再利用||MN =.题型二、证明动直线过定点或动点在定直线上的问题解答圆锥曲线的定点问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.1、直线过定点问题例10、(2020·江西吉安市高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>经过点12P ⎫⎪⎭,且离心率e =(1)求椭圆C 的方程;(2)已知斜率存在的直线l 与椭圆相交于A ,B 两点,点Q ⎫⎪⎪⎝⎭总满足AQO BQO ∠=∠,证明:直线l 过定点.【答案】(1)2214x y +=;(2)证明见解析.【详解】(1)因为椭圆()2222:10x y C a b a b +=>>的离心率e =所以22221b e a =-=⎝⎭,即224a b =, 又椭圆()2222:10x y C a b a b+=>>经过点12P ⎫⎪⎭,代入椭圆方程可得223114a b +=, 联立方程组可得222231144a b a b⎧+=⎪⎨⎪=⎩,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()222148440k x kmx m +++-=,()2216410k m ∆=-+>,即2241m k <+, 122814km x x k -+=+,21224414m x x k -=+,因为AQO BQO ∠=∠,所以0AQ BQ k k +=,AQ BQ k k +===,即()()1221kx m x kx m x ⎛⎛+++ ⎝⎭⎝⎭()121220kx x m x x ⎛⎫=+-+= ⎪ ⎪⎝⎭得()()22244814033k m km m m k ⎛⎫----+= ⎪ ⎪⎝⎭,化简得m =,直线l 的方程为(y k x =-,所以,直线l 恒过定点).解题思路: 设直线l 的方程为y kx m =+,()11,A x y ,()22,B x y ,将直线方程与椭圆方程联立,写出韦达定理,又因为AQO BQO ∠=∠,所以0AQ BQ k k +=,将韦达定理代入得出答案.例11、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.【答案】(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a =所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫⎪⎝⎭.解题思路:设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点.例12、(2021·山东德州市高三期末)已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=. (1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【答案】(1)22121x y +=;(2)证明见解析,(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a ⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=,所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线,所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mk km k m k k --+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0).解题思路:先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0)."设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.2、动点在定直线上的问题例13、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【答案】(1)22143x y +=;(2)证明见解析. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅= 解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=. 显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x =故点M 在定直线4x =上.解题思路:设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线BO 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果.例14、(2021·福建高三模拟)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,12P ⎛ ⎝⎭在C 上.(1)求椭圆C 的标准方程;(2),E F 设为短轴端点,过()0M ,1作直线l 交椭圆C 于AB 、两点(异于,E F ),直线AE BF 、交于点T .求证:点T 恒在一定直线上.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)因为点1,24P ⎛⎫ ⎪ ⎪⎝⎭在C 上,所以222141a b ⎝⎭+=, 又12c e a ==,222a b c =+,所以24a =,23b =, 故所求椭圆C 的方程为22143x y +=. (2)由题意知直线l 的斜率存在,设其方程为1y kx =+. 设()11,A x y ,()22,B x y ,(10x ≠,20x ≠).()222214388034120y kx k x kx x y =+⎧⇒++-=⎨+-=⎩, 122843kx x k -+=+,122843x x k -=+,且有1212x x kx x +=. 1122::AEBFy l y x x y l y x x ⎧=⎪⎪⎨+⎪+=⎪⎩(10x ≠,20x ≠) 11111y kx x x +====,故1y ⎤=⎥⎦2kx x xx x x +++-=3x x x x +-=3=故点T 恒在一定直线3y =上.解题思路:设出直线1y kx =+,联立直线与椭圆的方程结合韦达定理求出,AE BF 的直线方程,联立求出交点纵坐标为3,进而可得结果.3、圆过定点问题例14、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.【答案】(1)22143x y +=;(2)过定点,证明见解析,定点为(1,0),(1,0)-. 【详解】解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=,解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--. 在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.解题思路: 设00(,)P x y ,设过P 的椭圆的切线为y kx b =+,与椭圆方程联立由0∆=,求出切线的斜率0034x k y =-,得出切线方程000334x x y y y =-+,由条件求出12,B B 坐标,在x 轴上取点(),0M t ,由120MB MB ⋅=得出答案.【巩固训练】1、(2020·广东高三一模)已知点()2,1P --为椭圆2222:1x y C a b+=(0)a b >>上一点,且椭圆C的一个焦点与抛物线2y =的焦点重合,过点P 作直线PA ,PB ,与椭圆C 分别交于点A ,B .(1)求椭圆C 的标准方程与离心率;(2)若直线PA ,PB 的斜率之和为0,证明:直线AB 的斜率为定值.【答案】(1)22163x y +=,离心率为2;(2)证明见解析. 【详解】(1)由题设,得22411a b+== 由①②解得26a =,23b =,所以椭圆C 的标准方程为22163x y +=,椭圆C 的离心率为2c e a ===. (2)直线AB 的斜率为定值1.证明:设直线PA 的斜率为k ,则直线PB 的斜率为k -, 记11(,)A x y ,22(,)B x y .设直线PA 的方程为1(2)y k x +=+,与椭圆C 的方程联立,并消去y 得()()222212848840k x k k x k k ++-+--=,则2-,1x 是该方程的两根,则212884212k k x k ---=+,即21244212k k x k-++=+. 设直线PB 的方程为1(2)y k x +=-+,同理得22244212k k x k --+=+.因为()1112y k x +=+,()2212y k x +=-+,所以()()()212121212121228224121812ABkk x k x k x x y y k k k x x x x x x k +++++-+=====---+,因此直线AB 的斜率为定值.2、(2021·山西阳泉市高三期末(理))已知圆22:4C x y +=,点P 为圆C 上的动点,过点P 作x 轴的垂线,垂足为Q ,设D 为PQ 的中点,且D 的轨迹为曲线E (PQD 三点可重合). (1)求曲线E 的方程;(2)不过原点的直线l 与曲线E 交于M 、N 两点,已知OM ,直线l ,ON 的斜率1k 、k 、2k 成等比数列,记以OM ,ON 为直径的圆的面积分别为S 1,S 2,试探究12S S +是否为定值,若是,求出此值;若不是,说明理由.【答案】(1)2214x y +=;(2)12S S +是否为定值,为54π.证明过程见解析.【详解】(1)设(,)D x y ,则有(,2)P x y ,又P 在已知不上,∴2244x y +=,所以曲线E 的方程为2214x y +=;(2)设直线l 方程为y kx t =+,1122(,),(,)M x y N x y ,0t ≠,由2214y kx t x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x ktx t +++-=,2222644(14)(44)0k t k t ∆=-+->, ∴122814kt x x k +=-+,21224414t x x k-=+, 111y k x =,222y k x =,∵1k 、k 、2k 成等比数列,∴2121212y y k k k x x ==,∴2221212121212()()()kx t kx t k x x kt x x t k x x x x +++++==,212()0kt x x t ++=,又0t ≠,∴12()0k x x t ++=,228014k tt k -+=+,解得12k =±.1228414kt x x kt k +=-=-+,22122442214t x x t k-==-+, 22222222121212()2162(22)4444x x x x x x k t t t t +=+-=--=-+=,22222222121122()()2244OM ON S S OM ON x y x y ππππ⎛⎫⎛⎫+=⨯+⨯=+=+++ ⎪ ⎪⎝⎭⎝⎭, 222222222211221212124()()4()2()2x y x y kx t kx t k x x kt x x t +++=++++=+++++222244825k k t t =+-+=,∴1254S S π+=为定值. 3、(2021·湖北宜昌市高三期末)已知点A 、B坐标分别是(-,0),直线AP 、BP 相交于点P ,且它们斜率之积是12-.(1)试求点P 的轨迹Γ的方程;(2)已知直线:4l x =-,过点()2,0F -的直线(不与x 轴重合)与轨迹Γ相交于M .N 两点,过点M 作MD l ⊥于点D .求证:直线ND 过定点,并求出定点的坐标.【答案】(1)221(84x y x +=≠±;(2)证明见解析,()3,0-. 【详解】(1)设(),P x y ,由题意得:12PA PB k k ⋅=-12=-,化简得22184x y +=.又x ≠±,∴点P 的轨迹方程为221(84x y x +=≠±.(2)方法一:由椭圆的对称性知,直线ND 过的定点必在x 轴上, 由题意得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,∴()1212my y y y =-+,2112:(4)4y y ND y x y x -=+++,令0y =, ∴()()12122121424y x y my x y y y y +++=-=---()1211212121221y y y my y y y y y y -+++=-=-=--,3x =-,∴直线ND 过定点()3,0-.方法二:由题意可得直线MN 的斜率不为0,设:2MN x my =-,与22184x y +=联立消去x 得:()222440m y my +--=, ()23210m ∆=+>恒成立,设()11,M x y ,()22,N x y ,则()14,D y -,12242m y y m +=+,12242y y m -=+,()12422m y m -=+,()22422m y m +=+, ()2112121122(4)2:(4)42y y x my y y y y ND y x y x my -+++-=++=++2244)2222m x m m m my -+++++=+2222(4)3)2222x x m m my my +-+++==++ ∴3x =-时0y =, ∴直线ND 过定点()3,0-.4、(2021·安徽池州市高三期末(理))已知椭圆C :()222210x y a b a b+=>>的左顶点、右焦点分别为A ,F ,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上,且椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过点F 且斜率为()0k k ≠的直线l 与椭圆C 交于D ,E 两点,直线AD ,AE 斜率分别为1k ,2k ,证明:12kk kk +为定值.【答案】(1)22143x y +=;(2)证明见解析.【详解】(1)由题意可得2222222312112a b c a a b c ⎧⎛⎫⎪ ⎪⎝⎭⎪+=⎪⎪⎪=⎨⎪-=⎪⎪⎪⎪⎩,解得2a =,b =所以椭圆C 的方程为22143x y +=. (2)证明:由(1)可知()1,0F ,则直线l 的方程为()1y k x =-.联立22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+,所以()()1212121212112222k x k x y yk k x x x x --+=+=+++++12331122k x x ⎛⎫=-+- ⎪++⎝⎭()()()()()12121212123434222224x x x x k k x x x x x x ⎡⎤⎡⎤++++=-=-⎢⎥⎢⎥+++++⎣⎦⎣⎦2222228344324128244343k k k k k k k ⎡⎤⎛⎫+⎢⎥ ⎪+⎝⎭⎢⎥=-⎢⎥-+⨯+⎢⎥++⎣⎦()222223816122412161612k k k k k k ⎡⎤++⎢⎥=--+++⎢⎥⎣⎦ 222112k k k k ⎛⎫+=-=- ⎪⎝⎭, 所以1211kk kk k k ⎛⎫+=-=- ⎪⎝⎭(定值).5、(2021·安徽蚌埠市高三二模(理))已知圆()22:224E x y ++=,动圆N 过点()2,0F 且与圆E 相切,记动圆圆心N 的轨迹为曲线C . (1)求曲线C 的方程;(2)P ,Q 是曲线C 上的两个动点,且OP OQ ⊥,记PQ 中点为M ,OP OQ t OM ⋅=,证明:t 为定值.【答案】(1)22162x y +=;(2)证明见解析.【详解】解:(1)点()2,0F 在圆()22:224E x y ++=内,∴圆N 内切于圆E,∴NE NF EF +=>,所以N 点轨迹是以E ,F为焦点的椭圆,且a =2c =,从而b =故点N 的轨迹C 的方程为:22162x y +=.(2)设()11,P x y ,()22,Q x y ,若直线PQ 斜率存在,设直线PQ 方程为y kx m =+,联立22162y kx mx y =+⎧⎪⎨+=⎪⎩,整理得:()222136360k x kmx m +++-=,122613km x x k -+=+,21223613m x x k-=+ 因为OP OQ ⊥,所以0OP OQ ⋅=,即12220x x y y +=.化简得:()()22121210k x x km x x m ++++=,即()22222366101313m km k km m k k--+⋅+⋅+=++, 从而,222330m k --=,①因为OP OQ ⊥,且M 为PQ 中点,所以2PQ OM =, 在直角ABC 中,记原点O 到直线PQ 的距离为d ,则2OP OQ d PQ d OM ⋅==,由①知,原点O 到直线l的距离为d ===所以t.若直线PQ 斜率不存在,设直线PQ 方程为x n =,联立22162x n x y =⎧⎪⎨+=⎪⎩,解得p n ⎛ ⎝,,n ⎛ ⎝ 由OP OQ ⊥得n =t = 综上,t.6、(2021·江苏无锡市高三月考)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N .(1)求椭圆C 的标准方程和点A 的坐标; (2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.【答案】(1)22182x y +=,()4,0A ;(2)(4)6y x =±-;(3)PM 与QN 的交点恒在直线2x =上,理由见解析.【详解】(1)由题意,椭圆()2222:10,0x y C a b a b +=>>过点(2,1)-可得22411a b +=且2c e a ==,又由222c a b =-, 解得228,2a b ==,即椭圆C 的方程为22182x y +=,又由抛物线216y x =-,可得准线方程为:4l x =,所以()4,0A .(2)设()00,N x y ,则004,22x y M +⎛⎫⎪⎝⎭, 联立方程组()2200220018241328x y x y ⎧+=⎪⎪⎨+⎪+=⎪⎩,解得001,x y ==当5,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-;当5,,(1,2M N ⎛ ⎝⎭时,可得直线:4)MN y x =-; 所以直线MN的方程为4)y x =-. (3)设()()4,,4,P t Q t -,可得:4MN x ky =+, 设()()1122,,,M x y N x y联立方程组224480x ky x y =+⎧⎨+-=⎩,整理得()224880k y ky +++=,所以12122288,44k y y y y k k +=-=++,则1212y y ky y +=-, 又由直线111114:44y t tx y PM y x x x --=+--,222224:44y t y tx QN y x x x ++=---, 交点横坐标为()121212242ky y y y x y y ++==+,所以PM 与QN 的交点恒在直线2x =上.7、(2021·全国高三专题练习)已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程;(2)若直线l 的方程为1y x =-+,求1211λλ+的值; (3)若123,试证明直线l 恒过定点,并求此定点的坐标.【答案】(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,, 设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,, 可得(0,)(,0)P km Q m -,, 由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111xm x λ=-,同理222xm x λ=-,又123,∴212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=,则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③③代入①得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∴2m =,(满足②) 故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 8、(2020·湖北高三月考)已知抛物线2:2(0)C y px p =>的焦点F ,若平面上一点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7. (1)求抛物线C 的方程;(2)又已知点P 为抛物线C 上任一点,直线PA 交抛物线C 于另一点M ,过M 作斜率为43k =的直线MN 交抛物线C 于另一点N ,连接.PN 问直线PN 是否过定点,如果经过定点,则求出该定点,否则说明理由.【答案】(1)28y x =;(2)过定点,1,34⎛⎫⎪⎝⎭.【详解】(1)由已知,定点(2,3)A 到焦点F 与到准线:2pl x =-的距离之和等于7.272p ⎛⎫+= ⎪⎝⎭,则4p =,即抛物线的方程28y x =(2)设11(,)P x y ,22(,)M x y ,33(,)N x y ,则121211212222888PM y y y y k y y x x y y ++=-=+=-,同理:238MNk y y =+,138PN k y y =+, 由23843MN k y y ==+知:236y y +=,即236y y =- ① 直线11128:()PM y y x x y y -=-+,即1212()8y y y y y x +-=过(2,3)A 求得1211633y y y -=- ② 同理求直线PN 方程1313()8y y y y y x +-= ③ 由①②得13133()2y y y y =+- 代入③得1313()3()28y y y y y x +-++=13()(3)280y y y x +-+-=故3y =且280x -=时,直线PN 恒过点1,34⎛⎫⎪⎝⎭. 9、(2021·北京高三期末)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上. 【答案】(1)22143x y +=;(2)证明见解析.【详解】解:(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+, 直线BN 的方程是()322y x =-. 所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上. ②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩消去y ,整理得()2223484120kx k x k+-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834kx x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是()1122y y x x =++. 令4x =,得1162=+y y x . 直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-. 所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦. ()12122258k x x x x =-++⎡⎤⎣⎦ ()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.10、(2021·安徽高三月考(理))已知圆22:5O x y +=,椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点为12,F F ,过1F 且垂直于x 轴的直线被椭圆和圆所截得弦长分别为1和.(1)求椭圆的标准方程;(2)如图P 为圆上任意一点,过P 分别作椭圆两条切线切椭圆于A ,B 两点. (ⅰ)若直线PA 的斜率为2,求直线PB 的斜率; (ⅱ)作PQ AB ⊥于点Q ,求证:12QF QF +是定值.【答案】(1)2214x y +=;(2)(i )12-;(ii )证明见解析.【详解】解:(1)由题意得:222221a b c ba ⎧=+⎪⎪=⎨⎪=⎪⎩2,1,a b c ===得椭圆的标准方程为:2214x y +=(2)(ⅰ)设()00,P x y ,切线()00y y k x x -=-,则22005x y +=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学解答题难题突破—圆锥曲线过定点问题探究【题型综述】直线过定点问题在全国卷近几年高考中出现的频率较低,是圆锥曲线部分的小概率考点.此种平民解法思维上比较接地气,但是实际操作上属于暴力美学范畴.定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可.技巧在于:设哪一条直线?如何转化题目条件?【典例指引】例1、(“手电筒”模型)已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-.(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”)◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型).此模型解题步骤:Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,∆求出参数范围; Step2:由AP 与BP 关系(如1-=•BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(.例2、(切点弦恒过定点)有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+by y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A 、B .(1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积.◆方法点评:切点弦的性质虽然可以当结论用,但是在正式的考试过程中直接不能直接引用,可以用本题的书写步骤替换之,大家注意过程.例3、(相交弦过定点)如图,已知直线L :)0(1:12222>>=++=b a by a x C my x 过椭圆的右焦点F ,且交椭圆C 于A 、B 两点,点A 、B 在直线2:G x a =上的射影依次为点D 、E .连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由.法2:本题也可以直接得出AE和BD方程,令y=0,得与x轴交点M、N,然后两个坐标相减=0.计算量也不大.◆方法总结:方法1采用归纳猜想证明,简化解题过程,是证明定点问题一类的通法.这一类题在答题过程中要注意步骤.例4、已知椭圆C:2214xy+=,若直线:(2)l x t t=>与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论.方法1: 【思路引导】点A 1、A 2的坐标都知道,可以设直线PA 1、PA 2的方程,直线PA 1和椭圆交点是A 1(-2,0)和M ,通过韦达定理,可以求出点M 的坐标,同理可以求出点N 的坐标.动点P 在直线:(2)l x t t =>上,相当于知道了点P 的横坐标了,由直线PA 1、PA 2的方程可以求出P 点的纵坐标,得到两条直线的斜率的关系,通过所求的M 、N 点的坐标,求出直线MN 的方程,将交点的坐标代入,如果解出的t>2,就可以了,否则就不存在.方法总结:本题由点A 1(-2,0)的横坐标-2是方程222121(14)161640k x k x k +++-=的一个根,结合韦达定理,得到点M 的横纵坐标:211212814k x k -=+,1121414k y k =+;其实由222(2)44y k x x y =-⎧⎨+=⎩消y 整理得222222(14)161640k x k x k +-+-=,得到22222164214k x k -=+,即222228214k x k -=+,2222414k y k -=+很快.不过如果看到:将21121164214k x k --=+中的12k k 用换下来,1x 前的系数2用-2换下来,就得点N 的坐标2222222824(,)1414k k k k --++,如果在解题时,能看到这一点,计算量将减少,这样真容易出错,但这样减少计算量.本题的关键是看到点P 的双重身份:点P 即在直线1A M 上也在直线A 2N 上,进而得到12122k k k k t -=-+,由直线MN 的方程121121y y y y x x x x --=--得直线与x 轴的交点,即横截距211212x y x y x y y -=-,将点M 、N 的坐标代入,化简易得4x t =,由43t=解出433t =,到此不要忘了考察433t =是否满足2t >.◆方法总结:法2计算量相对较小,细心的同学会发现,这其实是上文“切点弦恒过定点”的一个特例而已.因此,法2采用这类题的通法求解,就不至于思路混乱了.相较法1,未知数更少,思路更明确.◆方法点评:相交弦性质实质是切点弦过定点性质的拓展,结论同样适用,但是具体解题而言,相交弦过定点涉及坐标较多,计算量相对较大,解题过程一定要注意思路,同时注意总结这类题的通法.例5、(动圆过定点)已知椭圆2222:1(0)x y C a b a b+=>> 2,2的离心率为y x b =+并且直线是抛物线x y 42=的一条切线. (I )求椭圆的方程;(Ⅱ)过点)31,0(-S 的动直线L 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 解:(I )由0)42(:4222=+-+⎩⎨⎧=+=b x b x y xy bx y 得消去 因直线x y b x y 42=+=与抛物线相切04)42(22=--=∆∴b b 1=∴b22222221,,,222c a b e a b c a a a -===+∴=∴=,故所求椭圆方程为.1222=+y x (II )当L 与x 轴平行时,以AB 为直径的圆的方程:222)34()31(=++y x◆方法总结:圆过定点问题,可以先取特殊值或者极值,找出这个定点,再证明用直径所对圆周角为直角.例6、如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率是2,12,A A 分别是椭圆C 的左、右两个顶点,点F 是椭圆C 的右焦点.点D 是x 轴上位于2A 右侧的一点,且满足121122A D A D FD+==.(1)求椭圆C 的方程以及点D 的坐标;(2)过点D 作x 轴的垂线n ,再作直线:l y kx m =+ 与椭圆C 有且仅有一个公共点P ,直线l 交直线n 于点Q .求证:以线段PQ 为直径的圆恒过定点,并求出定点的坐标.解:(1)12(,0),(,0),(,0)A a A a F c -,设(,0)D x , 由12112A D A D+=有112x a x a +=+-,又1FD =,法2:本题又解:取极值,PQ 与AD 平行,易得与X 轴相交于F (1,0).接下来用相似证明PF⊥FQ .;22,,0000=+y y x x PQ y x P 切线方程为易得)(设)1,0(0y x D -易得 FD PH ⊥设0090,;1;1;1;=∠∆∆==-=-==PFQ FDQ PHF FDDQPH HF DF y x DQ x HF y PH ,易得相似于固问题得证.◆方法总结:动圆过定点问题本质上是垂直向量的问题,也可以理解为“弦对定点张直角”的新应用.【扩展链接】已知椭圆E :13422=+y x ,左右焦点分别为)0,1(),0,1(21F F -,左、右顶点分别为)0,2('-A ,)0,2(A ,上、下顶点为)3,0(B ,)3,0('-B .过点)1,2(P 的直线l 交椭圆E 于),(11y x M ,),(22y x N 两点,过点N 作斜率为23-的直线交椭圆于另一点Q ,求证:直线MQ 过定点. 步骤 1(特殊化寻求定点坐标):当直线l 垂直于x 轴时,则N M ,重合于点)0,2(,直线MQ 的方程为:)2(23--=x y ;当直线l 经过原点时,则直线MN 的方程为:x y 21=,代入椭圆可得:)23,3(),23,3(--N M ,直线NQ 的方程为:3223--=x y ;代入椭圆可得: 3033212)343(3222-=⇒=++⇒=--+x x x x x ,则点)23,3(-Q ,点Q 与点N 重合,则直线MQ 的方程为:x y 21=,联立两个特殊位置的直线方程可得:定点可能为)43,23( 步骤 2(一般化探求题意韦达定理化):直线过定点)43,23( ,转化为交点N M ,坐标的韦达定理形式直线 NQ 的方程为:)(2322x x y y --=-代入椭圆13422=+y x可得:012)23()23(61212)233(32222222222=-+++-⇒=++-+y x x y x x y x x x423)22(232222322222232232232y x y x y x y y x x y x x x -=+-+-=⇒+=⇒+=+, 则点 Q 的坐标为)423,22(2222y x y x -+,则1221221313442423x y x y y x x x y y k MQ -+--=--=直线 MQ 的方程为:)23(44242343)43,23()(4424231122122111221221x x y x y y x y x x x y x y y x y y --+--=-⇐→--+--=-)23)(423()22)(43()23(22423431122122111221221x y y x x y x y x x y x y y x y ---=-+-⇔-⋅-+--=-⇔,直线l 的方程为:2+-=t ty x ,则)4223)(42633()42222)(43(11221211-+---+-=-+-++--t ty y y t ty t ty y t ty y)122)](2(34)23[(]22)2)[(43(112111-+-----=-+-+-⇔t ty t y y t t ty y t y)12)(2(3)12(4)23)(12()2(68)23(2)2(48)2(4)2(36)2(312121211212112-------+--+--=--+---+-+⇔t t y t y t t y t t ty y y t t y t ty y y t t ty y t0)2(6)4106()4106()886(1222212=-+--------⇔t t y t t y t t y y t t 0)2(3))(253()443(212212=-++-----⇔t t y y t t y y t t0)2(3))(2)(13()2)(23(2121=-++-+--+⇔t t y y t t y y t t 03))(13()23(2121=+++-+⇔t y y t y y t步骤 3(联立方程解方程组,韦达定理整体代入):直线 l 的方程为:)1(2-=-y t x 代入椭圆方程13422=+y x 可得:124)2(322=++-y t ty43)4(3,43)2(6012)2(3)2(6)43(221221222+-=+-=+⇒=--+-++⇒t t t y y t t t y y t y t t y t 0)43()2)(13(2)4)(23(0343)2(6)13(43)4(3)23(2222=++-+--+⇔=++-+-+-+⇒t t t t t t t t t t t t t t 0)43()4106(8103222=++-----⇔t t t t t (完美!)显然直线MN 垂直于y y 轴时,直线MQ 也经过定点)43,23(.【同步训练】1、设A 、B 是轨迹C :22(0)y px P =>上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且4παβ+=时,证明直线AB 恒过定点,并求出该定点的坐标.0,4παβ<<,所以直线AB 的斜率存在,否则,OA ,OB 直线的倾斜角之和为π从而设AB 方程为y kx b =+,显然221212,22y y x x p p==, 将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+= 由韦达定理知121222,p pby y y y k k+=⋅=① 由4παβ+=,得1=tantan()4παβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+- 将①式代入上式整理化简可得:212pb pk=-,所以22b p pk =+,此时,直线AB 的方程可表示为y kx =+22p pk +即()(2)20k x p y p +--= 所以直线AB 恒过定点()2,2p p -.2、已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8. (Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.解:(Ⅰ) A (4,0),设圆心C2222,2),,(EC ME CM CA MNME E MN y x +===,由几何图像知线段的中点为x y x y x 84)422222=⇒+=+-⇒((Ⅱ) 点B (-1,0),222121212122118,8,00),,(),,(x y x y y y y y y x Q y x P ==<≠+,由题知设.080)()(88811211221212222112211=+⇒=+++⇒+-=+⇒+-=+⇒y y y y y y y y y yy y x y x y 直线PQ 方程为:)8(1)(21121112121y x y y y y x x x x y y y y -+=-⇒---=-1,088)(8)()(122112112==⇒=++⇒-=+-+⇒x y x y y y y x y y y y y y所以直线PQ 过定点(1,0)3、已知点()()1,0,1,0,B C P -是平面上一动点,且满足||||PC BC PB CB ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点(,2)A m 在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD AE ⊥,判断:直线DE 是否过定点?试证明你的结论.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入 (5分)).2,1(,14)2,()2(2的坐标为点得代入将A m x y m A ∴== ,044,422=--=+=t mt y x y t my x DE 得代入的方程为设直线)((,则设*016)44,4),(),,(221212211>+-=∆-=⋅=+t m t y y m y y y x E y x D4)(21)()2)(2()1)(1(212121212121++-⋅+++-=--+--=⋅∴y y y y x x x x y y x x AE AD5)(2)44(44212122212221++-⋅++-⋅=y y y y y y y y5)(242)(16)(212121221221++-⋅+⋅-+-⋅=y y y y y y y y y ym m t t m t t m t 845605)4(2)4(4)4(2)4(16)4(2222+=+-=+--+----=化简得)1(23)1(43484962222+±=-∴+=-++=+-m t m t m m t t )即(即0*,1252>∆+-=+=∴)式检验均满足代入(或m t m t 1)2(5)2(+-=++=∴y m x y m x DE 或的方程为直线)不满足题意,定点((过定点直线21).2,5(-∴DE )4、已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图. (I )证明: OM OP ⋅为定值; (II )若△POM 的面积为25,求向量OM 与OP 的夹角; (Ⅲ)证明直线PQ 恒过一个定点.第22题3133222233131323133131311,,41444(1)()4,40.11y y y y y y y y y y y y y y y y y y -+==-++-∴++=-+++=即即即分,0444,4,432322121=+++⋅∴==y y y y y y y y 即 即.(*)04)(43232=+++y y y y,44432232232y y y y y y k PQ +=--=)4(422322y x y y y y PQ -+=-∴的方程是直线即.4)(,4))((323222322x y y y y y y x y y y y =-+-=+-即 由(*)式,,4)(43232++=-y y y y 代入上式,得).1(4))(4(32-=++x y y y 由此可知直线PQ 过定点E (1,-4).5、已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+ 又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.6、已知椭圆E 中心在坐标原点,焦点在坐标轴上,且经过(2,0)A -、(2,0)B 、31,2C ⎛⎫ ⎪⎝⎭三点.过椭圆的右焦点F 任做一与坐标轴不平行的直线l 与椭圆E 交于M 、N 两点,AM 与BN 所在的直线交于点Q .(1)求椭圆E 的方程:(2)是否存在这样直线m ,使得点Q 恒在直线m 上移动?若存在,求出直线m 方程,若不存在,请说明理由.直线AM 的方程为:1111(1)(2),(2)22y k x y x y x x x -=+=+++即 由直线AM 的方程为:22(2)2y y x x =--,即22(1)(2)2k x y x x -=-- 由直线AM 与直线BN 的方程消去y ,得121212122121222(3)2[23()4]34()24x x x x x x x x x x x x x x x -+-++==+-++-222222222222228(3)24462443434344846423434k k k x x k k k k k x x k k ⎡⎤⎛⎫-+-+-+ ⎪⎢⎥+++⎣⎦⎝⎭===+-+-+++ ∴直线AM 与直线BN 的交点在直线4x =上. 故这样的直线存在7、已知椭圆22122:1(0)x y C a b a b+=>>的右焦点2F 与抛物线22:4C y x =的焦点重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,25||3PF =.圆3C 的圆心T 是抛物线2C 上的动点,圆3C 与y 轴交于,M N 两点,且||4MN =.(1)求椭圆1C 的方程;(2)证明:无论点T 运动到何处,圆3C 恒经过椭圆1C 上一定点.解法2:∵抛物线22:4C y x =的焦点坐标为(1,0),∴点2F 的坐标为(1,0).∴ 抛物线2C 的准线方程为1x =-.设点P 的坐标为11(,)x y ,由抛物线的定义可知211PF x =+, ∵253PF =,∴1513x +=,解得123x =.由211843y x ==,且10y >得1263y =∴点P 的坐标为22(6)33.在椭圆1C :22221(0)x y a b a b +=>>中,1c =.由222221424199c ,a b c ,.ab ⎧⎪=⎪=+⎨⎪⎪+=⎩解得2,3a b ==∴椭圆1C 的方程为22143x y +=. (2)证法1: 设点T 的坐标为00(,)x y ,圆3C 的半径为r , ∵ 圆3C 与y 轴交于,M N 两点,且||4MN =,∴ 220||24MN r x =-=.∴204r x =+∴圆3C 的方程为222000()()4x x y y x -+-=+.()*∵ 点T 是抛物线22:4C y x =上的动点,∴ 204y x =(00x ≥).∴20014x y =. 把20014x y =代入()* 消去0x 整理得:22200(1)2()024x y yy x y +---+=.()**方程()**对任意实数0y 恒成立,∴2210,220,40.x y x y ⎧-=⎪⎪-=⎨⎪+-=⎪⎩解得2,0.x y =⎧⎨=⎩∵点(2,0)在椭圆1C :22143x y +=上, ∴无论点T 运动到何处,圆3C 恒经过椭圆1C 上一定点()2,0.8.已知椭圆: 过点,且离心率.(Ⅰ)求椭圆的方程; (Ⅱ)椭圆长轴两端点分别为,点为椭圆上异于的动点,直线:与直线分别交于两点,又点,过三点的圆是否过轴上不同于点的定点?若经过,求出定点坐标;若不存在,请说明理由.【答案】(Ⅰ) ;(Ⅱ) 存在,定点为.【思路引导】(1)运用椭圆的离心率公式和点代入椭圆方程,由a,b,c的关系,即可得到椭圆方程;(2)设,由椭圆方程和直线的斜率公式,以及两直线垂直的条件,计算即可得证.试题解析:(Ⅰ)由,解得,故椭圆的方程为.(Ⅱ)设点,直线的斜率分别为,则.又:,令得,:,令得,则,过三点的圆的直径为,设圆过定点,则,解得或(舍).故过三点的圆是以为直径的圆过轴上不同于点的定点.【点评】本题考查椭圆的方程和性质,主要考查离心率公式的运用,同时考查直线的斜率公式的运用,圆的直径所对的圆周角为直角,属于中档题涉及定点定直线等问题时,一般先假设存在,然后根据条件推导,注意直线过定点的直线系形式.9.已知抛物线的焦点,为坐标原点,是抛物线上异于的两点,若直线的斜率之积为,求证:直线过轴上一定点.【答案】试题解析:抛物线方程为,当直线斜率不存在时,设,由斜率之积为得,此时直线方程为.当直线斜率存在,设方程为,与联立得,.又解得即,综上所述,直线过定点10.已知椭圆的右焦点为左顶点为(1)求椭圆的方程;(2)过点作两条相互垂直的直线分别与椭圆交于(不同于点的)两点.试判断直线与轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.【思路引导】(1)由已知得椭圆的方程为(2)①当直线与轴垂直时的方程为联立直线与轴的交点为②当直线不垂直于轴时设直线的方程为联立且即由题意知或直线与轴的交点为.【点评】本题的几个关键难点有:利用分类讨论思想确立解题总体思路,即:①直线与轴垂直,②当直线不垂直于轴;利用舍而不求法,结合韦达定理将问题转化为;较为繁杂的计算量.。