动能定理的应用及其20个经典例题
动能定理典型分类例题经典题型
动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
动能定理的应用的典型题
动能定理的应用第一类:恒力作用下的直线运动,不涉及加速度与时间例1、在水平的冰面上,以大小为F=20N的水平推力,推着质量m=60kg的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s1=30m后,撤去推力F,冰车又前进了一段距离后停止. 取g = 10m/s2. 求:(1)撤去推力F时的速度大小.(2)冰车运动的总路程s.变式训练:质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求证:hs μ=.f第二类:变力作用下的直线运动,主要是求变力所做的功和速度、位移、路程。
例:在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求: (1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小.变式训练、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离.v vf第三类:曲线运动中求某些变力(如各种阻力)做的功和某个位置的速度和动能。
例1、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .例2、AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
高中物理动能定理的综合应用题20套(带答案)及解析
(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A
到
B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0
,
解得:
=
B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,
动能定理的应用(20个经典例题)
F
L1+L2
h
例8、一个质量为M的物体,从倾角为θ,高为H的粗 糙斜面上端A点,由静止开始下滑,到B点时的速度为 V,然后又在水平面上滑行距离S后停止在C点. 1. 物体从A点开始下滑到B点的过程中克服摩擦力 所做的功为多少? 2. 物体与水平面间的动摩擦系数为多大?
A
θ
B
C
例9、如图所示,质量为m=2kg的小球,从半径R=0.5m的半 圆形槽的边缘A点沿内表面开始下滑,到达最低点B的速度 v=2m/s。求在弧AB段阻力对物体所做的功Wf。(取g=10m/s2)
4.4 动能定理的应用
1、动能
1 2 E K mv 2
物体的动能等于物体质量与物体 速度大小的二次方乘积的一半。 2、动能定理: W E
K 2
E
K 1
W E K 合
合外力所做的功等于物体动能的变化。
对动能表达式的理解:
1 2 E K mv 2
1、国际单位:焦耳 1kg· m2/s2=1N· m=1J 2、动能是标量,且没有负值,动能与物体的质量和速度大小 有关,与速度方向无关。
A.动能 B.速度 C.速率 D.重力所做的功
例4、质量为m的物体放在动摩擦因数为 μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后 撤去外力,物体还能运动多远?
F
例5、如图所示,半径为R的光滑半圆轨 道和光滑水平面相连,一物体以某一 初速度在水平面上向左滑行,那么物 体初速度多大时才能通过半圆轨道最 高点?
解:摩擦力一直做负功,其绝对值等于摩擦力与路 程的乘积,由动能定理得 解得
例16、如图所示质量为m的物体置于光滑水平面,一根 绳子跨过定滑轮一端固定在物体上,另一端在力F作用下, 以恒定速率v0竖直向下运动,物体由静止开始运动到绳与水 平方向夹角α =45°的过程中,绳中张力对物体做的功为 ________。
动能定理应用及典型例题
动能定理及应用动能及动能定理 1 动能表达式:221υm E K =2 动能定理(即合外力做功与动能关系):12K K E E W -=3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。
②动能定理揭示了合外力的功与动能变化的关系。
4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。
5应用动能定理解题步骤:a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功情况c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。
例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。
人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。
基础练习1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。
2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。
3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。
汽车受到的摩擦阻力时车重的0.05倍。
求汽车的牵引力。
4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经1003 s,前进了425m ,这时它达图 6-3-1到最大速度15m/s ,设阻力不变,求机车的功率。
5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h 的最小值?6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力. (2)物体从C 到A 的过程中,摩擦力做的功.7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2=1m 时飞出平台,求木块落地时速度的大小?(空气阻力不计,g=10m/s 2)拓展提升1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
高考物理动能定理的综合应用题20套(带答案)含解析(1)
高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。
【物理】物理动能与动能定理题20套(带答案)
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
动能定理经典例题含答案
h H 2-7-2 动能和动能定理经典例题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为多少?例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5某同学从高为h 处水平地投出一个质量为m 的铅球,测得成绩为s ,求该同学投球时所做的功.例6 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例7 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-3 θ F O PQ l例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
【物理】物理动能定理的综合应用题20套(带答案)及解析
⑵滑块要能通过最高点C,则在C点所受圆轨道的弹力N需满足:N≥0 ①
在C点时,根据牛顿第二定律有:mg+N= ②
在滑块由A运动至C的过程中,根据动能定理有:-μmgcos37° = - ③
由①②③式联立解得滑块从A点沿斜面滑下时的初速度v0需满足:v0≥ = m/s
即v0的最小值为:v0min= m/s
(1)人和车到达顶部平台的速度v;
(2)从平台飞出到A点,人和车运动的水平距离x;
(3)圆弧对应圆心角 ;
(4)人和车运动到圆弧轨道最低点O时对轨道的压力.
【答案】(1)3m/s(2)1.2m(3)106°(4)7.74×103N
【解析】
【分析】
【详解】
(1)由动能定理可知:
v=3m/s
(2)由 可得:
(3)摩托车落至A点时,其竖直方向的分速度
设摩托车落地时速度方向与水平方向的夹角为α,则
,即α=53°
所以θ=2α=106°
(4)在摩托车由最高点飞出落至O点的过程中,由机械能守恒定律可得:
在O点:
所以N=7740N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N
2.如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10m/s2,sin37°=0.6,cos37°=0.8.求:
⑶滑块从C点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x=vt ④
在竖直方向的位移为:y= ⑤
根据图中几何关系有:tan37°= ⑥
物理动能定理的综合应用题20套(带答案)
(2)在2~10 s内小车牵引力的功率P是多大?
(3)小车在加速运动过程中的总位移x是多少?
【答案】(1)2 N;(2)12W (3)28.5 m;
【解析】
(1)在10s撤去牵引力后,小车只在阻力 作用下做匀减速运动,
设加速度大小为a,则 ,根据 ,
由图像可知 ,解得 ;
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
(1)小球通过C点时的速度 ;
(2)小球从A点运动到C点的过程中,损失的机械能
【答案】(1) (2)1.5mgR
【解析】
【详解】
(1)小球恰能通过C点时,由重力提供向心力,由牛顿第二定律得:
则得:
(2)小球从A点运动到C点的过程中,根据动能定理得:
解得:
Wf=1.5mgR
则小球从A点运动到C点的过程中,损失的机械能
(2)小车的匀速阶段即7s~10s内,设牵引力为F,则
由图像可知 ,且 ;
(3)小车的加速运动过程可以分为0~1.5s和1.5s~7s两段,
设对应的位移分别为 和 ,在0~2s内的加速度大小为 ,
则由图像可得 , ,
在1.5s~7s内由动能定理可得 , ,
解得 ,
由
9.如图所示,半圆轨道的半径为R=10m,AB的距离为S=40m,滑块质量m=1kg,滑块在恒定外力F的作用下从光滑水平轨道上的A点由静止开始运动到B点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C后又刚好落到原出发点A;g=滑块B从传送带右端滑出时的速度大小;
(3)滑块B落至P点距传送带右端的水平距离.
动能定理典型分类例题(经典题型)
动能定理典型分类例题模型一 水平面问题1、两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是( ). A .乙大 B .甲大 C .一样大 D .无法比较2.两个材料相同的物体,甲的质量大于乙的质量,以相同的初速度在同一水平面上滑动,最后都静止,它们滑行的距离是( ).A .乙大B .甲大C .一样大D .无法比较3、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )4.一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现外力F=2N ,斜向上与水平面成37度拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )4.用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的动摩擦因数为μ,木箱获得的速度(如图)。
5.一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。
5、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?模型二 斜面问题 基础1质量为2kg 的物体在沿斜面方向拉力F 为40N 的作用下从静止出发沿倾角为37o的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m 时的速度。
基础2质量为2kg 的物体在水平力F 为40N 的作用下从静止出发沿倾角为37o 的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m 时的速度。
物理动能定理的综合应用题20套(带答案)
(1)设小物块在C点的速度为 ,则在D点有:
设弹簧最初具有的弹性势能为 ,则:
代入数据联立解得: ;
设小物块在E点的速度为 ,则从D到E的过程中有:
设在E点,圆轨道对小物块的支持力为N,则有:
代入数据解得: ,
由牛顿第三定律可知,小物块到达圆轨道的E点时对圆轨道的压力为30
设小物体沿斜面FG上滑的最大距离为x,从E到最大距离的过程中有:
小物块第一次到达圆弧轨道的E点时对圆弧轨道的压力大小是30 N;
小物块沿斜面FG第一次返回圆弧轨道后不能回到圆弧轨道的D点 经过足够长的时间后小物块通过圆弧轨道最低点E的速度大小为2 .
【点睛】
(1)物块离开C点后做平抛运动,由D点沿圆轨道切线方向进入圆轨道,知道了到达D点的速度方向,将D点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;
⑴求物块由A点运动到C点的时间;
⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;
⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.
【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m
【解析】
试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1
所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动
s=v0t0,H=
解得s=6m.
(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有vC=v0
①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:
,
解得h3=1.8m
动能和动能定理机械能守恒典型例题和练习
学习目标1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E2,则:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料相同的两个物体的质量分别为m1和m2,且m m 124=,当它们以相同的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?(两物体与水平面的动摩擦因数相同)类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
高中物理动能与动能定理题20套(带答案)
高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
动能定理典型例题
动能定理典型例题【例题】1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力。
2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。
拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度静止在水平面上,求物体在水平面上滑动的位移。
4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端的速度。
拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少?拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。
类型题题型一:应用动能定理求解变力做功1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为()A.mgLcos0 B.FLsinθC.FLθ∙D.(1cos).-mgLθ2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面上以速度V向右匀速运动的人拉着,设人从地面上由平台的边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少?3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R过程中拉力对小球做的功多大?4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C 点刚好停止。
(物理)物理动能定理的综合应用练习题20篇及解析
(物理)物理动能定理的综合应用练习题20篇及解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。
【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
高中物理动能定理的综合应用题20套(带答案)含解析
高中物理动能定理的综合应用题20套(带答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;2.如图所示,在粗糙水平面上有一质量为M 、高为h 的斜面体,斜面体的左侧有一固定障碍物Q,斜面体的左端与障碍物的距离为d .将一质量为m 的小物块置于斜面体的顶端,小物块恰好能在斜面体上与斜面体一起保持静止;现给斜面体施加一个水平向左的推力,使斜面体和小物块一起向左匀加速运动,当斜面体到达障碍物与其碰撞后,斜面体立即停止运动,小物块水平抛出,最后落在障碍物的左侧P 处(图中未画出),已知斜面体与地面间的动摩擦因数为μ1,斜面倾角为θ,重力加速度为g,滑动摩擦力等于最大静摩擦力,求:(1)小物块与斜面间的动摩擦因数μ2;(2)要使物块在地面上的落点P 距障碍物Q 最远,水平推力F 为多大; (3)小物块在地面上的落点P 距障碍物Q 的最远距离. 【答案】(1)2tan μθ= (2)()()1sin cos tan M m g F M m g sin θμθθθ+=++-(3)2sin cos tan tan hd hsin θθθθθ- 【解析】 【分析】对m 受力分析,由共点力平衡条件可以求出动摩擦因数;以m 为研究对象,求出最大加速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速度,然后由平抛运动规律求出最大水平位移. 【详解】(1)对m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ(2)对m 设其最大加速度为a m ,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=ma m 竖直方向:Ncosθ-μ2Nsinθ-mg =0 解得:2sin cos tan sin g a θθθθ=-对M 、m 整体由牛顿第二定律得:F -μ1(M +m )g =(M +m )a m 解得:()()12sin cos tan sin M m g F M m g θμθθθ+=++- (3)对M 、m 整体由动能定理得:()()2112Fd M m gd M m v μ-+=+ 解得:sin cos tan sin dg v θθθθ=-对m 由平抛运动规律得: 水平方向:tan p hx vt θ+= 竖直方向:212h gt =解得:2sin 2cos tan sin tan p hd hx θθθθθ=-- 【点睛】本题主要考查了应用平衡条件、牛顿第二定律、动能定理、平抛运动规律即可正确解题.3.如图所示,固定斜面的倾角α=30°,用一沿斜面向上的拉力将质量m =1kg 的物块从斜面底端由静止开始拉动,t =2s 后撤去该拉力,整个过程中物块上升的最大高度h =2.5m ,物块与斜面间的动摩擦因数μ=36.重力加速度g =10m/s 2.求:(1)拉力所做的功; (2)拉力的大小.【答案】(1)40J F W = (2)F =10N 【解析】 【详解】(1)物块从斜面底端到最高点的过程,根据动能定理有:cos 0sin F hW mg mgh μαα-⋅-= 解得拉力所做的功40F W J = (2)F W Fx =由位移公式有212x at = 由牛顿第二定律有cos sin F mg mg ma μαα--=解得拉力的大小F=10N.4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。
动能定理的应用20个例题共38页文档
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下Байду номын сангаас不要学很多。——洛克
动能定理的应用20个例题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)物块落地时的速度(g=10m/s)
F
L1+L2
h
16
例8、一个质量为M的物体,从倾角为θ,高为H的粗
糙斜面上端A点,由静止开始下滑,到B点时的速度为
V,然后又在水平面上滑行距离S后停止在C点.
1. 物体从A点开始下滑到B点的过程中克服摩擦力 所做的功为多少?
2. 物体与水平面间的动摩擦系数为多大?
A.动能 B.速度 C.速率 D.重力所做的功
9
例4、质量为m的物体放在动摩擦因数为 μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后 撤去外力,物体还能运动多远?
F
10
例5、如图所示,半径为R的光滑半圆轨 道和光滑水平面相连,一物体以某一 初速度在水平面上向左滑行,那么物 体初速度多大时才能通过半圆轨道最 高点?
A
θ
B
C 17
例9、如图所示,质量为m=2kg的小球,从半径R=0.5m的半 圆形槽的边缘A点沿内表面开始下滑,到达最低点B的速度 v=2m/s。求在弧AB段阻力对物体所做的功Wf。(取g=10m/s2)
v v02 2gh
7
温馨提示:请摘抄笔记!
应用动能定理解题一般步骤: (1)明确对象和过程(通常是单个物体) (2)做两方面的分析;
①受力分析,求各力的功及其正负,写出总功。 ②确定初、末状态,写出初、末态的动能。
(3)由动能定理列方程;
8
例3、同一物体分别从高度相同,倾角 不同的光滑斜面的顶端滑到底端时,相 同的物理量是:
物体在动力F和阻力f作用下运动时,G和N不做功,F做正功, f做负功,因此,也可以用动能定理求解.
12
解法一:用牛顿定律和匀变速运动规律,对撤去F推力前、后
物体运动的加速度分别为
a1
Ff m
F μmg m
9 0.2×3×10 m / s2 3
1m / s2
a2
0f m
0 0.2×3×10 m / s2 3
R
11
例6、质量为m=3kg的物体与水平地面之间的动摩擦 因数μ=0.2,在水平恒力F=9N作用下起动,如图所 示(g取。1当0mm/位s2移) s1=8m时撤去推力F,试问:还能滑多远?
分析:物体m所受重力G、支持力N、推力F、滑动摩擦力f均 为恒力,因此物体做匀加速直线运动;撤去F后,物体做匀减速 直线运动.因此,可用牛顿定律和匀变速直线运动规律求解.
2m / s2
m在匀加速运动阶段的末速度为
v1 2a1s1 2×1×8m / s2 4m / s
撤去F后,滑行
s
而停住,
2
v
t
=
0,则
s2
v
2 t
v12
2a 2
0 16
2× 2 m 4m
13
解法二:对物体运动的前后两段分别用动能定理W合
=△E
,则有
k
Fs1
-
fs1
=
1 2
mv12
-
0
①
- fs2
3、动能具有瞬时性,是状态量,v是瞬时速度(注意:v为合
速度或实际速度,一般都以地面为参考系)。
3
我们对动能定理的理解
1、动能定理的普适性:对任何过程的恒力、变力;匀变速、非匀变速; 直线运动、曲线运动;运动全程、运动过程某一阶段或瞬间过程都能运 用;(只要不涉及加速度和时间,就可考虑用动能定理解决动力学问题)
4.4 动能定理的应用
1
1、动能
EK
1 mv2 2
物体的动能等于物体质量与物体 速度大小的二次方乘积的一半。
2、动能定理: W EK 2 EK1
W合 EK
合外力所做的功等于物体动能的变化。
2
对动能表达式的理解:
EK
1 mv2 2
1、国际单位:焦耳 1kg·m2/s2=1N·m=1J
2、动能是标量,且没有负值,动能与物体的质量和速度大小 有关,与速度方向无关。
(
-
f)·(s1
+
s2 )
=
mv
2 t
/
2
-
mv
2 0
/
2
Fs1 - f(s1 + sБайду номын сангаас ) = 0 - 0
s2
=
Fs1
f
fs1
=
4m
15
例7、质量m=2kg的物块位于高h=0.7m的水平桌 面上,物块与桌面之间的动摩擦因数μ=0.2,现用
F=20N的水平推力使物块从静止开始滑动L1=0.5m 后 撤去推力,物块又在桌面上滑动了L2=1.5m后离开桌 面做平抛运动。求:
=
0-
1 2
mv12
②
将上两式相加,得
Fs1 - fs1 - fs2 = 0
③
fs2 = (F - f)s1
s2
=
Ff
f
s1
9 0.02.×2×3×3×1010×8m
4m
答:撤去动力F后,物体m还能滑4m远
14
可否对全程运用动能定理?
W合 =△Ek
WF + Wf = E kt - E k0
Fs1
+
5
解(1)由
Ek
1 2
mv2
得
在A点时的动能为:Ek1
1 2
2
102
J
100J
在B点时的动能为: Ek2
1 2
2
202
J
400J
(2)从A到B动能的变化量为:
ΔEk Ek2 Ek1 300J
(3)由 W F S 得, AB过程重力做功为:
W FS Gh 210 15J 300J
2、动能定理的研究对象一般是一个物体,也可以是几个物体组成的系统;
3、动能定理的计算式是标量式,遵循代数运算,v为相对地面的速度; 4、对状态与过程关系的理解:
a.功是过程量,动能是状态量。 b.动能定理表示了过程量等于状态量的改变量的关系。(涉及一个过程 两个状态) c.动能定理反应做功的过程是能量转化的过程。等式的左边为合外力所 做的功(或各个分力做功的代数和),等式右边动能的变化,指末动能 EK2=1/2mv22与初能EK1=1/2mv12之差;
(4)相等。即 W Ek2 Ek1 300J
6
例2、某同学从高为h 处以速度v0 水平投 出一个质量为m 的铅球,求铅球落地时速度
大小。
解:铅球在空中运动时只有重力做功,动能增
加。设铅球的末速度为v,根据动能定理有
v0 mg
mgh
1 2
mv2
1 2
mv02
v
化简得 2 g h= v 2-v02
5、当外力做正功时,W>0,故 △Ek>0,即Ek2>Ek1,动能增加;当外力做负 功时,W<0,故△Ek<0 , 即Ek2<Ek1,动能减少。
4
例1、一质为2kg的物体做自由落体运动,经过A 点时的速度为10m/s,到达B点时的速度是 20m/s,求: (1) 经过A、B两点时的动能分别是多少? (2) 从A到B动能变化了多少? (3) 从A到B的过程中重力做了多少功? (4) 从A到B的过程中重力做功与动能的变化 关系如何?