第1章 水分生理
植物的水分生理
第四节 植物的蒸腾作用
蒸腾作用 (transpiration) -植物体内的水 分以气态散失到 大气中去的过程。
一、蒸腾作用的生理意义和方式
(一)蒸腾作用的生理意义
1.蒸腾拉力是植物吸水与转运水分的主要动 力 2.促进木质部汁液中物质的运输 3.降低植物体的温度 (夏季,绿化地带的气温比非绿化地带的气温 要低3-5 ℃) 4.有利于CO2的吸收、同化
(二)渗透作用
水分从水势高的系统通过半透膜向水势低的系统移动的现 象
由渗透作用引起的 水分运转
a.烧杯中的纯水和 漏斗内液面相平; b.由于渗透作用使 烧杯内水面降低而
漏斗内液面升高
(通过渗透计可测 定渗透势、溶质势)
(三)植物细胞可以构成一个渗透系统
原生质层:包括 质膜、细胞质 和液泡膜看成 一个半透膜 液泡内的细胞 液含许多溶解 在水中的物质, 具有水势。
➢风干种子中,处于凝 胶状态的原生质的衬 质势常低于-10MPa, 甚至-100MPa,所以吸 胀吸水就很容易发生。
➢未形成液泡的幼嫩细 胞能利用细胞壁的果 胶、纤维素以及细胞 中的蛋白质等亲水胶 体对水的吸附力吸收 水分。
降压吸水
-因ψp的降低而引发的细胞吸水 ➢蒸腾旺盛时,导管和叶肉细胞的细胞
蔓陀萝叶气孔 小麦叶气孔
引起气孔运动的主要 原因是:保卫细胞的 吸水膨胀或失水收缩
细胞的压力势 (press potential)
原生质体、液泡 吸水膨胀,对细胞 壁产生的压力称为 膨压(turgor pressure)。 胞壁在受到膨压 作用的同时会产生 一种与膨压大小相 等、方向相反的壁 压,即压力势。
➢压力势一般为正值,它提高了细胞的水势。 ➢草本植物叶肉细胞的压力势,在温暖天气的午后为
第一章 水分生理习题及答案.
第一章水分生理习题一、名词解释1.自由水2.束缚水3.水势4.压力势5.渗透势6.衬质势7.渗透作用8.水通道蛋白9.根压 10.吐水现象二、填空题1. 植物散失水分的方式有种,即和。
2. 植物细胞吸水的三种方式是、和。
3. 植物根系吸水的两种方式是和。
前者的动力是,后者的动力是。
4. 设甲乙两个相邻细胞,甲细胞的渗透势为- 16 × 10 5 Pa ,压力势为9 × 10 5 Pa ,乙细胞的渗透势为- 13 × 10 5 Pa ,压力势为9 × 10 5 Pa ,水应从细胞流向细胞,因为甲细胞的水势是,乙细胞的水势是。
5. 某种植物每制造10 克干物质需消耗水分5000 克,其蒸腾系数为,蒸腾效率为。
6. 把成熟的植物生活细胞放在高水势溶液中细胞表现,放在低水势溶液中细胞表现,放在等水势溶液中细胞表现。
7. 写出下列吸水过程中水势的组分吸胀吸水,Ψ w = ;渗透吸水,Ψ w = ;干燥种子吸水,Ψ w = ;分生组织细胞吸水,Ψ w =;一个典型细胞水势组分,Ψ w = ;成长植株吸水,Ψ w = 。
8. 当细胞处于初始质壁分离时,Ψ P = ,Ψ w = ;当细胞充分吸水完全膨胀时,Ψ p = ,Ψ w =;在初始质壁分离与细胞充分吸水膨胀之间,随着细胞吸水,Ψ S ,Ψ P ,Ψ w 。
9. 蒸腾作用的途径有、和。
10. 细胞内水分存在状态有和。
三、选择题1. 有一充分饱和细胞,将其放入比细胞浓度低10 倍的溶液中,则细胞体积A.不变B.变小C.变大D.不一定2. 将一个生活细胞放入与其渗透势相等的糖溶液中,则会发生A.细胞吸水B.细胞失水C.细胞既不吸水也不失水D.既可能失水也可能保持动态平衡3. 已形成液泡的成熟细胞,其衬质势通常忽略不计,原因是A.衬质势不存在B.衬质势等于压力势C.衬质势绝对值很大D.衬质势绝对值很小4. 在萌发条件下、苍耳的不休眠种子开始4 小时的吸水是属于A.吸胀吸水B.代谢性吸水C.渗透性吸水D.上述三种吸水都存在5. 水分在根及叶的活细胞间传导的方向决定于A.细胞液的浓度B.相邻活细胞的渗透势大小C.相邻活细胞的水势梯度D.活细胞压力势的高低7. 一般说来,越冬作物细胞中自由水与束缚水的比值A.大于1B.小于1C.等于1D.等于零9. 植物的水分临界期是指A.植物需水量多的时期B.植物对水分利用率最高的时期C.植物对水分缺乏最敏感的时期D.植物对水分的需求由低到高的转折时期10. 用小液流法测定植物组织水势时,观察到小液滴下降观象,这说明A.植物组织水势等于外界溶液水势。
第一章 植物的水分生理
2. 角质层蒸腾:叶片,5 %~10%左右
3. 气孔蒸腾:叶片,可占蒸腾总量的 80%~90%。 (三)蒸腾作用的指标(3种) 1.蒸腾速率(transpiration rate) 植物在单位时间内,单位叶面积通过蒸腾作用所散失水 分的量称为蒸腾速率,也可称为蒸腾强度。一般用每小时每平方米叶面积蒸腾水量的克数表 示(g.m-2.h-1或 mg.dm-2.h-1 )。现在国际上通用 mmol.m-2.s-1来表示蒸腾速率。 2.蒸腾效率(transpiration ratio TR) 指植物在一定生长期内有光合作用所积累的干物质与 蒸腾失水量之比,也就是每蒸腾1kg水所形成干物质的g数。常用 g.kg-1 表示。
ψw=ψS+ψm+ψP+ψg
第二节 植物细胞对水分的吸收
1、纯水的水势(ψ0w) 所谓纯水是指不以任何物理的或者化学的方式与 任何物质结合的水,完全是自由水,纯水的水势为0。
2、溶质势(ψS) 指由于溶质颗粒的存在而引起体系水势降低的数值。 在标准大气压下,溶液的水势就等于其溶质势,溶液的溶质越多,其溶质势 越低,且任何一种溶液的水势均低于纯水的水势而为负值。在渗透体系中, 溶质势表示了溶液中水分子潜在渗透能力的大小,所以,溶质势又可称为渗 透势。
第二节 植物细胞对水分的吸收
二、水的移动 水的移动方式有3种式:扩散、集流和渗透作用。 (一) 扩散 是物质分子(包括气体分子、水分子、溶质分 子)从高浓度(高化学势)区域向低浓度(低化学势)区域 转移,直到均匀分布的现象。 (二)集流 是指液体中成群的原子或者分子(例如组成 水溶液各种物质的分子)在压力梯度(水势梯度)的作用下 共同移动的现象。 (三)渗透作用 是物质依水势梯度移动。指溶液中的溶 剂分子通过半透膜扩散现象。
植物生理学2_植物的水分生理
(2)薄膜型抗蒸腾剂 能在叶面形成薄层,阻碍水分散失,如硅酮、胶 乳、聚乙烯蜡、丁二烯丙烯酸等。
(3)反射型抗蒸腾剂 增加叶面对光的反射,降低叶温,减少蒸腾量, 如高岭土。
Ψw =Ψs + Ψp + Ψm + Ψg
Ψs为渗透势, Ψp为压力势, Ψm为衬质势, Ψg为重力势
2、压力势:由于压力的存在而使体系水势 改变的数值,用ψp表示。
原生质吸水膨胀,对细胞壁产生压力,而
细胞壁对原生质会产生一个反作用力,这就
是细胞的压力势。
一般情况下,压力势为正值
渗透势(Ψπ) 一般叶组织 旱生植物叶片 -1.0~ -2.0 MPa -10.0 MPa
Ψs = - 1.4 Mpa
Ψs = - 1.2 Mpa
Ψp = + 0.8 Mpa
Ψw = - 0.6 Mpa X
Ψp = + 0.4 Mpa
Ψw = - 0.8 Mpa Y
两个相邻的细胞之间的水分移动方向是由二者的水势差 决定;多个细胞相连时,水分从水势高的一端流向水势低 的一端。
第三节根系吸水和水分向上运输
(三)影响气孔运动的因素
1、光照:光照—张开 黑暗—关闭
景天科植物例外
2、温度:上升—气孔开度增大
10℃以下小,30℃最大,35℃以上变小
3、CO2
:低浓度—促进张开
高浓度—迅速关闭 4、水分:水分胁迫—气孔开度减小或关闭 5、植物激素(CTK、ABA)
小结
水势是指每偏摩尔体积水的化学势差。植物细胞的水
Free Water
植物生理学第1章水分生理ppt课件
本章内容
第一节 植物对水分的需要 第二节 植物细胞对水分的吸收 第三节 植物根系对水分的吸收 第四节 蒸腾作用 第五节 植物体内水分的运输 第六节 合理灌溉的生理基础
2019/12/27
§ 1、植物对水分的需要
1、1植物的含水量
⑴不同植物的含水量不同。
• 水生植物90%;旱生地衣6%,一般植物55~85%
本书内容
• 第一篇 植物的物质生产和光能利用
包括水分生理、矿质营养和光合作用
• 第二篇 植物体内物质和能量的转变
包括呼吸作用、有机物代谢(次生代谢)、有 机物运输。
• 第三篇 植物的生长发育
包括信号转导、生长物质、光形态建成、生长生 理、生殖生理、成熟和衰老、抗性生理。
2019/12/27
• 代谢(metablolism):是指维持各种生命活动 (如生长、发育、繁殖和运动)过程中化学变化 (包括物质合成、转化和分解)的总称。
•水分通过水孔蛋白迁移 的速度远远大于通过脂 双分子层的速度。
2019/12/27
水分跨膜运输途径示意图(Buchanan et al. 2000) A.水分子通过水孔蛋白形成的水通道
2019/12/27 B.水分子通过膜脂间隙进人细胞
水孔蛋白的结构(依据Buchanan et al. 2000修改)
三、渗透作用(osmosis) 动力为水势梯度。 水势的概念及水的迁移
1、自由能、化学势、水势
1. )自由能(free energy):体系内可以用于做功的能量。而束缚 能(bound energy)是不能用于做功的能量。
2. )化学势( chemical potential):指一个体系中,在恒温恒压下 1mol某物质的自由能(偏摩尔自由能),用μ表示。它衡量物质 反应或做功的能量。规定纯水的化学势为0焦耳/摩尔(N m/mol)。
第一章植物的水分生理(共54张PPT)
水分通过胞间连丝的吸收。移动速度较慢。
•
由于水势梯度引起水分进入中柱后产生 的压力。
和 现象可以证明根压的存在。
伤流(bleeding)
吐水(guttation)
从受伤或折断的植物组织溢 从未受伤叶片尖端或边缘向
出液体的现象
外溢出液滴的现象
水、无机盐、有机物、植物激素(细胞 分裂素)。
伤流液的数量和成分,可以作为根系活 力强弱的指标。
lower epidermis more than in the upper epidermis.
• In grain plants, those distribution is nearly equal in the lower epidermis to in
the upper epidermis.
• T—absolute temperature
• 植物细胞膜的特点—生物膜(质膜、液泡
膜),半透膜,选择透性,水分子易于通 过,而对溶质则有选择性;而且细胞液与 外界溶液具有Ψw 差。
• 质壁分离(Plasmolysis)和质壁分离复原
( Deplasmolysis)现象可以验证之。
高浓度溶液中, 细胞失水,质壁 分离。
扩散 依浓度梯度进行,短距离运输 集流 依压力梯度进行,长距离运输
A. 单个水分子通过膜 脂双分子层进入细胞
B.多个水分子通过水孔蛋白形成的水
通道进入细胞
水分移动需要能量做功,该动力来自于 渗透作用。
渗透作用:
通过半透膜移动的现象。
发生条件:半透膜,膜两边有浓度差。
1 mol物质的自由能。
每偏摩尔体积水的化学势,用Ψ表示,
0.5
0
-0.5
第1章 植物水分生理
2、水势
水势(water potential):是指在等温等压下,体系
中每偏摩尔体积的水与纯水的化学势差。
ψw=(μw-μwO)/ Vw,m μwO :纯水的化学势。 μw-μwO :表示水的化学势差,单位为J/mol。 Vw,m :表示水的偏摩尔体积,单位为m3/mol。是指在恒温
第一章 植物的水分生理
水是植物的一个重要环境条件。植物一切正常生 命活动只有在细胞含有一定的水分状况下才能进行; 否则,植物的正常生命活动就会受阻,甚至死亡。所 以,在农业生产中,水是决定收成有无的重要因素之 一。农谚说:“有收无收在于水,收多收少在于肥”, 就是这个道理。
植物对水分的吸收、运输、利用和散失的过程, 称为植物的水分代谢(water metabolism)。
植物细胞高含水量及水的不可压缩性,使细胞产生 静水压,维持一定的紧张度,使植物保持固有姿态。 5、水调节植物体温和环境气候
水份可维持体温相对稳定。蒸腾散热,调节体温; 低温时灌水护苗;高温干旱时灌水调节温度和湿度。
早春寒潮降临时,秧田灌水可保温抗寒
第二节 植物细胞对水分的吸收
一、植物细胞的水势
1、自由能与化学势 系统中物质总能量=束缚能+自由能
主要内容
第一节 水分在生命活动中的作用 第二节 植物细胞对水分的吸收 第三节 植物根系对水分的吸收 第四节 植物的蒸腾作用 第五节 植物体内水分向地上部分的运输 第六节 合理灌溉的生理基础
第一节 水分在生命活动中的作用
一、水分子的结构
二、水的物理化学性质 1、高比热容 2、高气化热 3、高溶解热 4、水的密度 5、水的蒸汽压 6、水的内聚力、粘附力和表面张力 7、水的高抗张(拉)力及不可压缩性 8、水的介电常数及溶解性
名词解释00403
名词解释第一章水分生理1.渗透势:也称溶质势,渗透势是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。
2.压力势:是指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力,与此同时引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。
3.质外体:是指植物体中的细胞壁、细胞间隙和木质部导管的连续系统。
4.共质体:是指由胞间连丝将细胞的原生质联系起来的连续系统。
5.质外体途径:是指水分或溶质只通过质外体,即细胞壁、细胞间隙和木质部的导管,为被动运输,速度快。
6. 共质体途径:是指水分或溶质从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成细胞质的连续体,移动速率较慢。
7.跨膜途径:是指水分或溶质从一个细胞,移动到另一个细胞,要两次通过液泡膜,故称之为跨膜途径。
移动速率较慢。
8.细胞途径:共质体途径和跨膜途径同称为细胞途径。
移动速率较慢。
9.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
,称为渗透作用。
渗透作用是水分跨膜运输的动力。
10.蒸腾作用:是指水分以气体状态,通过植物体的表面(主要是叶片),从体内散失到体外的现象。
11.蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。
一般以每小时没平方米叶面积蒸腾水量的质量表示。
12.水分临界期:植物对水分不足特别敏感的时期。
一般为孕穗期和灌浆期。
13.水分生理:水分的吸收、水分在质外体内的运输和水分的排出,称为水分生理。
14. 质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象称为质壁分离。
第二章矿质营养1.矿质营养:植物对矿物质的吸收、转运和同化,称为矿质营养。
2.被动运输:是指离子(或溶质)跨过生物膜不需要能量,是顺电化学势梯度进行运输的方式。
被动运输包括简单扩散和协助扩散。
3. 主动运输:是指离子(或溶质)跨过生物膜需要代谢供给能量,是逆电化学势梯度进行运输的方式。
被动运输包括质子泵和离子泵。
4.离子通道:是细胞膜中有通道蛋白构成的孔道,控制离子通过细胞膜。
植物的水分生理
第一章植物的水分生理第一节植物对水分的需要一、植物的含水量(几-90以上%)主要影响因素:植物种类:水生植物、肉质植物>90%以上,草本植物为70-85%,在干旱环境中生长的低等植物(地衣、藓类)为6%。
生长环境:生长于阴蔽、潮湿环境中的植物较向阳、干燥环境中的高。
器官、组织种类:幼嫩>衰老。
根尖、茎尖、嫩幼苗、绿叶为60-90%,树干为40%,休眠芽为40%,风干种子为10-14%。
二、植物体内水分的存在状态1、束缚水—植物体内距离亲水物质(蛋白质、核酸等)较近而被之吸咐束缚不易自由移动的水分子。
2、自由水—植物体内距离亲水物质(蛋白质、核酸等)较远而不被吸咐束缚易自由移动的水分子。
自由水/束缚水:高,植物代谢旺,抗逆能力弱;低,植物代谢弱,抗逆能力强。
如:越冬植物和休眠的干燥种子,自由水/束缚水低,仅以极弱的代谢维持生命活动,但抗性却明显增强,能度过不良的逆境条件。
松、竹、梅,被称作“岁寒三友”,抗寒能力极强,也与体内束缚水多有关。
三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢过程的反应物质3、水分是植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收吸水方式:扩散集流渗透性吸水(主要方式)三、渗透性吸水(一)概念1、渗透性吸水:细胞通过渗透作用吸水。
2、渗透作用:(广义)—物质由浓度高处向浓度低处扩散移动的现象。
(狭义)—水分子通过半透膜由水势高处向水势低处移动的现象。
3、半透膜:只能让水分子、葡萄糖分子等小分子物质自由通过,而不能让大分子物质自由通过的膜。
种子的种皮、细胞膜、猪膀胱等。
反之称为透性膜,如细胞壁。
4、水势—每偏摩尔体积水的化学势或水的偏摩尔自由能。
符号:ψ国际单位:兆帕(Mpa=106pa),1atm=1.013×103pa重要用途:衡量一个系统中水分子自由扩散能力的强弱,水势高,水分子自由扩散力强,反之则弱。
植物的水分生理
细胞液
上一页
15
洋葱上表皮细胞的质壁分离
刚开始发生质壁分离
明显发生质壁分离
上一页
2.发生质壁分离的条件
(1)外界环境水势低于细胞水势;
(2)原生质层具有选择性; (3)细胞壁与细胞质的收缩能力不同。
3.质壁分离说明以下问题
(1)原生质层具有半透膜的性质; (2)判断细胞的死活; (3)能测定细胞的渗透势(?),进行农作物品种抗旱性鉴定。 (4) 测定物质进入原生质体的速度和难易程度。
17
(二)植物细胞的水势
细胞的水势公式: ψw=ψs+ ψp +ψg + ψm 1 .渗透势(溶质势):由于溶质颗粒的存在而使水势降低
的部分(水的自由能降低),一般为负值。
2 .压力势:由于细胞壁压力的存在而增加的水势,一般 为正值,但质壁分离时为0,剧烈蒸腾时为负。 3 .重力势:水分因重力下移与相反力量相等时的力量。 有液泡的细胞或细胞群 :ψw=ψs+ ψp
水通道蛋白
生物膜上具有通透水分
功能的内在蛋白,亦称水 孔蛋白(aquaporin)。
质膜内在蛋白
液泡膜内在蛋白
6个跨膜螺旋与两个保留的NPA(AsnPro-Ala)残基的水孔蛋白的结构
三、渗透作用
渗透作用:水分从水势高的系统通过半透膜向水势低的系 统移动的现象。
水势:衡量水分反应或作功能量的高低。指每偏摩尔体积 水的化学势差。 纯水 Ψ o w =零 溶液:溶液的水势为负值,浓度越大,水势越低。
(二)根系吸水的方式及动力
1、主动吸水和根压 (1)根压的产生 由于离子的主动吸收,使皮层内外产生水势差,水分向 中柱扩散而产生静水压力(根压)——由于水势梯度引起水 分进入中柱后产生的压力。 (2)伤流 (3)吐水
水分生理
第一章水分生理一、选择题1、每生成1mol 的干物质所需要的水的mol数,称为()。
A. 蒸腾强度B. 相对蒸腾量C. 蒸腾系数D. 蒸腾比率2、风干种子的水势为()。
A . ψW =ψs B. ψW =ψm C. ψW =ψp D. ψW=ψs+ψp3、微风促进蒸腾,主要因为它能()。
A. 使气孔大开B. 降低空气湿度C. 吹散叶面水汽D. 降低叶温4、植物从叶尖、叶缘分泌液滴的现象称为()。
A. 吐水B. 伤流C. 排水D. 流水5、一植物细胞的ψw = - 0.37 MPa,ψp = 0.13 MPa,将其放入ψs = - 0.42 MPa的溶液(体积很大)中,平衡时该细胞的水势为()。
A. -0.5 MPaB. -0.24 MPaC. -0.42 MPaD. -0.33 MPa6、在同一枝条上,上部叶片的水势要比下部叶片的水势()。
A. 高B. 低C. 差不多D. 无一定变化规律7、植物细胞吸水后,体积增大,这时其Ψ s()。
A. 增大B. 减小C. 不变D. 等于零8、当细胞内自由水/束缚水比值低时,这时植物细胞()A 代谢强、抗性弱B 代谢弱、抗性强C代谢、抗性都强D代谢、抗性都弱9、用小液流法测定组织水分状况,当小液滴不浮不沉时,其糖液ψs就等于植物组织的()A .ψw B.ψs C.ψp D.ψm10、植物的水分临界期是指()。
A. 植物需水最多的时期B. 植物水分利用率最高的时期C. 植物对水分缺乏最敏感的时期 D . 植物对水分需求由低到高的转折时期11、在土壤水分充分的条件下,一般植物的叶片的水势为()。
A. - 0.2~ - 0.8 MPaB. - 2 ~ - 8 MPaC. - 0.02 ~ - 0.08 MPaD. 0.2~0.8 MPa12、根据()就可以判断植物组织是活的。
A. 组织能吸水B. 表皮能撕下来C. 细胞能染色D. 能质壁分离二、是非题1、等渗溶液就是摩尔数相等的溶液。
植物生理学
植物生理学第一章水分生理(一)名词解释自由水:远离植物细胞原生质胶体颗粒而可以自由移动的水分。
束缚水:又叫结合水,由于植物细胞原生质胶体颗粒紧密吸附而不易流动和流失的水分。
水势:溶液中每偏摩尔体积水的化学势差。
蒸腾速率:又称蒸腾强度或蒸腾率,是指植物在单位时间、单位叶面积上通过蒸腾作用散失的水量。
蒸腾效率:也称蒸腾比率,是指植物每蒸腾1kg水所形成干物质的克数。
水分临界期:指植物在生命周期中对水分缺乏最敏感,最易受害的时期。
(二)问答题1、植物细胞的水势由哪几部分组成?说明成熟植物细胞从萎蔫到充分膨胀的过程中,各个组分的变化情况。
含水体系的水势主要由四部分组成,即水势(ψw)= 溶质势(ψs)+衬质势(ψm)+压力势(ψp) +重力势(ψg)。
对于一个已形成液泡的成熟细胞来说,其ψw=ψs+ψp。
植物细胞吸水或失水,细胞体积会发生变化,渗透势和压力势因之也会发生改变。
在细胞初始质壁分离时(相对体积=1.0),压力势为零,细胞的水势等于渗透势,两者都呈最小值(约-2.0MPa)。
当细胞吸水,体积增大时,细胞液稀释,渗透势増大,压力势増大,水势也増大。
当细胞吸水达到饱和时(相对体积=1.5),渗透势与压力势的绝对值相等(约1.5MPa),但符号相反,水势为零,不吸水。
蒸腾剧烈时,细胞虽然失水,体积缩小,但并不发生质壁分离,压力势就变为负值,水势低于渗透势。
2、简述气孔运动机理的无机离子泵学说。
无机离子泵学说又称K+泵假说。
在光下,K+由表皮细胞和副卫细胞进入保卫细胞,保卫细胞中K+浓度显著增加,溶质势降低,引起水分进入保卫细胞,气孔就张开;暗中,K+由保卫细胞进入副卫细胞和表皮细胞,使保卫细胞水势升高而失水,造成气孔关闭。
这是因为保卫细胞质膜上存在着H+-ATP 酶,它被光激活后能水解保卫细胞中由氧化磷酸化或光合磷酸化生成的ATP ,并将H+从保卫细胞分泌到周围细胞中,使得保卫细胞的pH 升高,质膜内侧的电势变低,周围细胞的pH 降低,质膜外侧电势升高,膜内外的质子动力势驱动K+从周围细胞经过位于保卫细胞质膜上的内向K+通道进入保卫细胞,引发气孔开张。
植物的水分生理
第一章植物的水分生理名词解释水势:每偏摩尔体积水的化学势差。
渗透压:恰好能够使从半透膜一侧通过到另一侧的水分子数目平衡的在较高浓度溶液的液面上施加的额外压强称为渗透压。
质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。
渗透作用:指两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。
思考题4.水分是如何进入根部导管?水分优势如何运输到叶片?答:进入根部导管有三种途径:①质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。
②跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
③共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
这三条途径共同作用,使根部吸收水分。
根系吸水的动力是根压和蒸腾拉力。
运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。
造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。
5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:气孔运动主要受保卫细胞的液泡水势的调节。
调节保卫细胞水势的渗透调节物有下列几种。
因为光照时保卫细胞内的叶绿体进行光合作用,水势降低,周围的水分流向保卫细胞,气孔就开(1)K+:在保卫细胞质膜上有ATP质子泵,分解由氧化磷酸化或光合磷酸化产生的ATP,将H+分泌到保卫细胞外,使得保卫细胞的pH升高。
质膜内侧的电势变得更负,驱动K+从表皮细胞经过保卫细胞质膜上的钾通道进入保卫细胞,再进入液泡。
在K+进入细胞内时,还伴随着少量氯离子的进入,以保持保卫细胞的电中性。
保卫细胞中积累较多的钾离子和氯离子,水势降低,水分进入保卫细胞,气孔就张开。
(2)苹果酸:照光下,保卫细胞内的二氧化碳用于光合碳循环,pH升高,导致淀粉分解生成PEP与二氧化碳反应,形成草酰乙酸转变成苹果酸,苹果酸和氯离子共同平衡钾离子。
植物生理学植物的水分生理
➢水孔蛋白(AQPs):一种存在于生物膜上的、分子量为28,000 、具有通透水分功能的内在蛋白。也称之为水通道蛋白。 (图)
第一章 植物的水分生理
植物对水分的吸收、运输、利用和散失的过程,
称为植物的水分代谢(water metabolism)。
植物从环境中不断吸取水分,以满足正常生命活动的需要。 但是,植物又不可避免地要丢失大量的水分到环境中去。这样就形 成了植物水分代谢的三个过程:植物通过根系吸收水分、水分在植 物体内的运输、植物通过气孔排出水分。(图)
➢ 导管上部呈开放状态,不产生压力,于是水柱就在指向上方 的压力下向上移动。
这样就形成了根压
有人指出:根压是由于根内外皮层存在水势梯度而产生的一种 现象,它可作为根产生水势差的一个量度,但不是一种动力,因 为水流的真正动力是水势差.
2. 被动吸水
动力――蒸腾拉力
➢ 蒸腾拉力(transpirational pull):指因为叶片蒸腾作用而产 生的使导管中水分上升的力量。(图)
ψw=ψs+ψp
Ⅱ.植物细胞吸水达到紧张状态 ψw=0,ψs = -ψp 体积最大 , 细胞吸水能力最小。
Ⅲ.植物细胞初始质壁分离状态 ψw =ψs,ψp=0 体积最小,细胞吸水能力最大。
Ⅳ.植物细胞水为蒸汽状态 ψp<0, ψw≤ψs+ψp
三、相邻细胞间水分的运转
相邻细胞的水分移动方向决定于两细胞间的水势差异,
或边缘的水孔向外溢 出液滴的现象。
✓吐水现象可作为根 系活动的生理指标, 并能用以判断植物苗 长势的强弱。 ★
第一章 植物的水分生理1
压力势 细胞壁在受到膨压作 草本植物叶肉细胞的ψ p,在温暖天气的 用时会产生与膨压大 午后为0.3~0.5MPa,晚上则达1.5 MPa ψp
小相等、方向相反的 壁压,即压力势, ψ p一般为正值.
特殊情况下ψ p也可为负值或零,初始质 壁分离时,细胞的ψ p为零;剧烈蒸腾时, 细胞壁出现负压,即细胞的ψ p呈负值
细胞渗透吸水的三种情况
Ø 植物细胞置于浓溶液中,由 于细胞壁的伸缩性有限,而 原生质层的伸缩性较大,当 细胞继续失水时,原生质层 便和细胞壁慢慢分离开来, 这种现象被称为质壁分离。
质壁分离
质壁分离复原
Ø 把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中, 外液中的水分又会进入细胞,液泡变大,原生质层很快会恢 复原来的状态,重新与细胞壁相贴,这种现象称为质壁分离 复原。利用细胞质壁分离和质壁分离复原的现象可以判断细 胞死活,同时,也证明植物细胞是一个渗透系统。
2.细胞的压力势 原生质体、液泡吸水膨胀, 对细胞壁产生的压力称为膨压 (turgor pressure)。 细胞壁在受到膨压作用的同时 会产生一种与膨压大小相等、 方向相反的壁压,即压力势。
Ø 压力势一般为正值,它提高了细胞的水势。 Ø 草本植物叶肉细胞的压力势,在温暖天气的午后为0.3~ 0.5MPa,晚上则达1.5MPa。 Ø 在特殊情况下,压力势也可为等于零或负值。 例如初始质壁分离时,细胞的压力势为零; 剧烈蒸腾时,细胞壁出现负压,细胞的压力势呈负值。
(七)植物细胞间的水分移动
相邻两个细胞之间水分移动的方向,取决于两 细胞间的水势差,水分总是顺着水势梯度移动。
Ψπ = -1.5MPa Ψp = 0.7MPa Ψw = -0.8MPa
植物生理学-第一章-植物的水分生理
第一章植物的水分生理一、名词解释1.水分代2.自由水3.束缚水4.扩散5.集流6.渗透作用7.水势8.渗透势9.压力势10.衬质势11.质外体途径12.共质体途径13.根压14.蒸腾拉力15.聚力学说16.蒸腾作用17.蒸腾速率18.蒸腾系数19.蒸腾比率20.水分临界期21.跨膜途径二、缩写符号翻译1. ψw2. ψp3. ψm4. ψs5. ψπ6. MPa7. WUE三、填空题1.植物细胞吸水方式有、和。
2.简单扩散是物质依而移动,集流是物质依而移动,而渗透作用是物质依而移动。
3.植物散失水分的方式有和。
4.植物细胞水分存在的状态有和。
5.细胞质含水较多呈状态,含水较少呈状态。
6.自由水/束缚水比值越大,则代;其比值越小,则植物的抗逆性。
7.一个典型细胞的水势等于;具有液泡的细胞的水势等于;干种子细胞的水势等于。
8.形成液泡后,细胞主要靠吸水。
9.风干种子的萌发吸水主要靠。
10.溶液的水势就是溶液的。
11.溶液的渗透势决定于溶液中。
12.在细胞初始质壁分离时,细胞的水势等于,压力势等于。
13.当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。
14.相邻两细胞间水分的移动方向,决定于两细胞间的。
15.植物根系吸水方式有:和。
16.证明根压存在的证据有和。
17.叶片的蒸腾作用有两种方式:和。
18.某植物制造10克干物质需消耗5公斤水,其蒸腾系数。
19.小麦的第一个水分临界期是,第二个水分临界期是。
20.常用的蒸腾作用的指标有、和。
21.影响气孔开闭的因子主要有、和。
22.影响蒸腾作用的环境因子主要是、、和。
23.田间一次施肥过多,作物变得枯萎发黄,俗称,其原因是土壤溶液水势于作物体的水势,引起水分外渗。
24.可以较灵敏地反映出植物的水分状况的生理指标有、、和。
25.近年来出现的新型的灌溉方式有、和。
四、选择题1.植物的根系结构中,共质体是指()。
A.原生质B.胞间连丝C.细胞壁D.导管和管胞2.一般而言,进入冬季越冬作物组织自由水/束缚水的比值:()A.升高B.降低C.不变D.无规律3.有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:()A.变大B.变小C.不变D.可能变小,也可能不变4.水势单位用帕(Pa)表示,一般用兆帕(MPa),两者关系为()A. 1MPa=l06PaB. 1MPa=105PaC. 1Pa=106MPaD. 1Pa=105Mpa5.已形成液泡的细胞,其衬质势通常省略不计,其原因是:()A.初质势很低B.衬质势不存在C.衬质势很高,绝对值很小D.衬质势很低,绝对值很小6.充分浸泡大豆和水稻子粒,结果大豆种子膨胀的体积比水稻的大,原因主要是大豆种子()。
第一章植物的水分生理
过程。
根压是根系主动吸水的动力
2、蒸腾拉力(transpirational pull)
蒸腾作用(transpiration)是指水分以 气体状态,通过植物体的表面,从体内散 失到体外的现象。
蒸腾拉力是根系被动吸水的动力
根压一般不超过0.2MPa, 只能使水分上升20.4m。
(2)压力势
由于压力的存在而使体系水势改变的数值,用ψp 表示。
原生质吸水膨胀,对细胞壁产生压力,而细胞壁对原生质会 产生一个反作用力,这就是细胞的压力势。细胞压力势一般为正 值,只有在蒸腾过旺时为负值。
(3)重力势
由于重力存在而使体系水势改变的数值,
用ψg表示 。
当体系的两个区域高度相差不大时, 重力势可以忽略不计。
2. 共质体途径(symplast pathway):是指水分从
一个细胞的细胞质经过胞间连丝(plasmodesma)移动 到另一个细胞的细胞质。共质体是细胞质的连续体。
3. 跨膜途径(transmembrane pathway):是指水分从 一个细胞移动到另一个细胞,要通过质膜和液泡膜。
二、根系吸水的动力 1、根压(root pressure):0.05-0.5MPa (1) 伤流(bleeding )现象
途径:气孔
叶面扩散层
大气
蒸腾速率大小的决定因素: 气孔下腔和外界之间的蒸气压差
内部因素
❖ 气孔的频度 ❖ 气孔的大小 ❖ 叶片内部的面积
时间较长,就形成无氧 呼吸,产生和累积较多 酒精,根系中毒受伤, 吸水更少。
(3)土壤温度
低温能降低根系的吸水速率
① 水分本身的黏性增大,扩散速率降低;
② 细胞质黏性增大,水分不易通过细胞质;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水势(water potential):即水溶液的化学势与同温 同压下同一系统的纯水的化学势之差,除以偏摩尔 体积所得的商,即为水势。
µ w- μ Ψw = Vw
0 △µ w w =
Vw
μw :水溶液的化学势(J/mol=N m/mol)
μ0:同温同压同一系统中纯水的化学势
Vw:水的偏摩尔体积(m3/mol)
渗透势osmotic potential/溶质势solute potential
• 由于溶质分子的影响降低了水的自由能而导致水势降
低的部分。
• 溶液渗透势计算公式ψs= -iCRT √ i: 溶质的解离常数,依盐的种类和温度不同而变化 ; C:摩尔浓度,R:气体常数(0 .082大气压/升. 摩尔. 度) ,T:绝对温度(273+t)
集流: 成群的水分子在压力的作用下通过质膜上的水 通道进出细胞的过程。集流是单方向的,长距离 √
集流速度与压力差(梯度)大小有关。
水通道:由膜上的内在蛋白构成的供水分子进出 细胞的通道。该蛋白称为水通道蛋白/水孔蛋白 存在于质膜和液泡膜上
水孔蛋白(aquaporins,AQPS)
分子量为25~30KDa、具有选择性、高效转运 水分子的膜水通道蛋白称为水通道蛋白或水孔 蛋白(aquaporins)。 水孔蛋白只允许水分子通过,不允许离子和代 谢物通过,半径大于水分子(0.15nm),小于 最小溶质分子半径0.2nm。
植物体内主要存在两种类型水孔蛋白:
1. 质膜水孔蛋白(PIP)。 2. 液泡膜水孔蛋白(TIP)。
水孔蛋白的活化依靠磷酸化和脱磷酸化作用调节。 如依赖Ca2+的蛋白激酶可使其丝氨酸残基磷酸化,水 孔蛋白的水通道加宽, 水集流通过量增加。如除去此 磷酸基团,则水通道变窄,水集流通过量减少。
二、植物细胞的吸水方式
1、水的生理作用√
①水分是原生质的主要成分 ②水分是代谢过程的反应物质
③水分是物质吸收和运输的溶剂
④水分能保持植物的固有姿态
2、水的生态作用
①调节植物体温 ②改善田间小气候
第二节 植物细胞对水分的吸收
一、 水分的跨膜移动 扩散 集流 二、 植物细胞的吸水方式 渗透性吸水 吸胀性吸水 代谢性吸水 三、 细胞之间的水分移动 水势高处移向水势低处
和压力势之间的关系
Ψw= Ψp +Ψs
(1)细胞水分饱和,体积最大时,相对体积为1.5 Ψw= 0 Ψp = -Ψs (2)初始质壁分离,相对体积为1.0时 Ψp = 0 Ψw= Ψs (3) 细胞水分不足, 1﹤相对体积﹤1.5 时 Ψw= Ψp +Ψs (4)细胞萎蔫,相对体积﹤1.0,即蒸腾作用剧烈时,细胞 不发生质壁分离,因为此时细胞壁表面蒸发失水多于 原生质失水,所以原生质不会脱离细胞壁,细胞壁随 着原生质的收缩而收缩,压力势就从正值变为负值。 Ψw<Ψs
极地苔藓含水量6% 旱生
一、植物的含水量
2. 同一植株不同器官、组织含水量不同
根 60%-90%
种子 10%-14%
新生旺盛>衰老成熟
3. 同一器官不同生长期,含水量也不同
前期>后期
二、 植物体内水分存在的状态√
• 束缚水(bound water):靠近蛋白质胶粒而被 胶粒吸附不易自由移动的水。√
• 重点:植物细胞及根系对水分的吸收,水 分的运输及散失途径与机制 • 难点:水势的概念; 细胞及根系对水分的吸 收机制
水分的吸收 水分代谢 水分在植物 体内的运输 水分的利用 和排出
第一节 水在植物生命活动 中的重要性
一、植物的含水量
1. 植物不同种类含水量不同
莲
含水量 > 90% 水生
草本植物 含水量70-90% 中生
第三节
植物根系对水分的吸收
一、根系吸水的部位 二、根系吸水的途径 三、根系吸水的机制 四、影响吸水的土壤条件
一、根系吸水的部位(自学)
根系是植物吸水的主要器官
根 毛 区 伸 长 区
分 生 区
根 冠
二、根系吸水的途径
土壤中水分 根毛 皮层 渗透 扩散 根
共质体途径
内皮层的径向迁移
中柱细胞 导管 质外体途径
(一)渗透性吸水 1 概念 渗透系统(Osmotic system):用半透膜将两种 不同浓度溶液分开构成渗透系统。 渗透作用(osmosis):水分从水势高的系统 通过半透性膜向水势低的系统移动的现象。
水势(Water potential) 束缚能,自由能,化学势 化学势:1mol物质具有的自由能就是该物质的化学势。 水的化学势: 1mol水具有的自由能就是水的化学势。 • 纯水的自由能最大,水势最高。 • 纯水的水势规定为0。 • 水中的溶质会增加束缚能,降低水的自由能,所以溶 液的水势均小于零,为负值。 • 溶液越浓,水势越低。
水分状态与抗性的关系※ 这两种状态水存在的数量或比例多少直接 与代谢强度和植物的抗性有关。 比例大:溶胶状态,代谢旺盛, 自由水 束缚水
生长较快,抗性小
比例小:凝胶状态,代谢较弱,
生长迟缓,抗性强
思考: 干旱时,自由水/束缚水高抗旱? 还是自由水/束缚水低抗旱?
三、水分在植物生命活动中的作用 • 1、水的生理作用 • 2、水的生态作用
第一章 植物的水分生理
河北北方学院农林科技学院 植物生理生化教研室
水 是 生 命 之 源 !
有 收 无 收 在 于 水
• 教学目的和要求 1.本章学习植物对水分的吸收运输散失途径 与机制及植物的节水生物学。 2.了解植物体内水分存在的状态及水分在植 物生命活动中的作用。 3.掌握水势的概念,掌握植物细胞对水分的 吸收 4.掌握根系对水分的吸收 5.掌握植物的蒸腾作用及机理 6. 掌握水分在植物体内的运输途径和动力 7.理解掌握植物的节水生物学及其意义
• 0.01MPa
可忽略不计。
有液泡细胞的水势√
y w= y s + y p
cell水势、渗透势、压力势/MPa
1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5
0.9 1.0
压力势
水势 渗透势
1.1 1.2 1.3 1.4 1.5
植物细胞相对体积变化与水势、渗透势、
具有液泡的成熟细胞的相对体积(原 生质体积/细胞体积)
1.共质体途径
(apoplast pathway)
2.质外体途径
(symplast pathway)
是指水分从一个细胞的 细胞质经过胞间连丝, 移动到另一个细胞的细 胞质。移动速度较慢。
质壁分离(plasmolysis):植物细胞由于 液泡失水,原生质收缩而使原生质和细胞壁 分离的现象。 质壁分离复原(deplasmolysis):发生质壁 分离的细胞再度吸水恢复原状的现象。
质壁分离解决的问题
• 说明原生质层是半透膜 • 判断细胞死活,活细胞才有质壁分离及复原 • 测定细胞渗透势 • 利用质壁分离复原速度确定物质进入细胞的速度
(二)植物细胞的吸胀吸水
吸胀作用:指亲水胶体吸水膨胀的现象。 不同物质吸胀力大小不同, 如:蛋白质 > 淀粉 > 纤维素,吸胀力即衬质势。 干燥种子、根尖、茎尖分生细胞、果实和种子 形成过程中靠吸胀吸水,其水势等于其衬质势, 豆类种子胶体的衬质势可小于100Mpa。
细胞吸水饱和时ψm=0
(三)代谢性吸水
• 自由水(free water):距离蛋白质胶粒远而
容易自由移动的水。√
自由水
蛋白质
束缚水
自由水和束缚水分布示意图
自由水:
1. 能自由移动; 2. 随温度的上升或下降气化或结冰; 3. 可以作为溶剂; 4. 参与代谢(光合、呼吸、物质运输),含量越高, 代谢越旺盛。 束缚水: 1. 不能自由移动; 2. 0℃时不结冰; 3. 不能作为溶剂; 4. 不参与代谢,可降低代谢强度,增强植物抵抗不 良环境的能力。
1、一般而言,进入冬季越冬作物组织内自由水/束缚 水的比 值: ( ) 。 A、升高;B、降低;C、不变;D、无规律。 2、有一个充分为水饱和的细胞,将其放入比细胞液浓 度低 10 倍的溶液中,则细胞体积: ( ) A、变大;B、变小;C 、不变;D、可能变小,也可能不 变。 3、已形成液泡的植物细胞吸水靠( ) 。 A、吸涨作用;B 、渗透作用;C、代谢作用;D、扩散作 用。 4、已形成液泡的细胞,其衬质势通常省略不计,其原 因是 : ( ) 。 A、初质势很低;B、衬质势不存在;C、衬质势 很高, 绝对值很小;D、衬质势很低,绝对值很小。 5、植物分生组织的细胞吸水靠( ) 。 A、渗透作用;B、 代谢作用;C、吸涨作用;D、扩散作 用。 6、将一个细胞放入与其渗透势相等的外界溶液中,则 细胞 ( ) 。 A、吸水;B、失水;C、既不吸水也不失水;D、 既可能 失水也可能保持平衡 。
压力势(pressure potential)
• 压力势:由于细胞壁压力的存在使细胞增加的水势。 • 细胞壁对抗细胞质向外膨胀而产生向内挤压原生质体
的压力,即为压力势,压力势使胞内水势升高,是正
值。
• 质壁分离初始阶段:ψp =0;
• 细胞水分饱和状态 ψp 最大,水分不足ψp变小;
剧烈蒸腾(萎蔫) 时:ψp <0
代谢性吸水:利用细胞呼吸释放的能量使水分透过 质膜进入细胞的过程。
二 细胞间的水分移动
相邻两细胞间的水分移动: 水分由高水势细胞流向低水势细胞。 多个细胞间的水分移动: 由高水势一端流向低水势一端。
1、植物细胞吸水方式有 、 和 。 2、 植 物 细 胞 内 水 分 存 在 的 状 态 有 和 。 3、水孔蛋白存在于细胞的 和 上。水孔 蛋白活化依靠 作用调节。 4、细胞质壁分离现象可以解决下列问 题: 、 和 。 5、自由水/束缚水比值越大,则代谢 ;其比值 越小,则植物的抗逆性 。 6、 一个典型细胞的水势等于 ;具有液泡的细胞 ;干种子细胞的水 势等于 . 7、形成液泡后,细胞主要靠 吸水。 8、风干种子的萌发吸水主要靠 。 9、溶液的水势就是溶液的 。 10、溶液的渗透势决定于溶液中 。 11 、 在 细 胞 初 始 质 壁 分 离 时, 细 胞 的 水 势 等 ,压力势等于 。 12 、 当 细 胞 吸 水 达 到 饱 和 时 , 细 胞 的 水 势 等 于 ,渗透势与压力 势绝对值 。 13、将一个 ψp=-ψs 的细胞放入纯水中,则细胞的体 积 。 14、相邻两细胞间水分的移动方向,决定于两细胞间 。