高中物理汽车的启动问题析与练
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R'≥(1分)小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.3.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m =由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.4.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .5.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
高中物理高考物理机械运动及其描述答题技巧及练习题(含答案)
高中物理高考物理机械运动及其描述答题技巧及练习题(含答案)一、高中物理精讲专题测试机械运动及其描述1.我国ETC联网正式启动运行,ETC是电子不停车收费系统的简称.汽车分别通过ETC通道和人工收费通道的流程如图所示.假设汽车以v0=15m/s朝收费站正常沿直线行驶,如果过ETC通道,需要在收费线中心线前10m处正好匀减速至v=5m/s,匀速通过中心线后,再匀加速至v0正常行驶;如果过人工收费通道,需要恰好在中心线处匀减速至零,经过20s缴费成功后,再启动汽车匀加速至v0正常行驶.设汽车加速和减速过程中的加速度大小均为1m/s2,求:(1)汽车过ETC通道时,从开始减速到恢复正常行驶过程中的位移大小;(2)汽车过ETC通道比过人工收费通道节省的时间是多少.【答案】(1)210m(2)27s【解析】试题分析:(1)汽车过ETC通道:减速过程有:,解得加速过程与减速过程位移相等,则有:解得:(2)汽车过ETC通道的减速过程有:得总时间为:汽车过人工收费通道有:,x2=225m所以二者的位移差为:△=x2﹣x1=225m﹣210m=15m.(1分)则有:27s考点:考查了匀变速直线运动规律的应用【名师点睛】在分析匀变速直线运动问题时,由于这一块的公式较多,涉及的物理量较多,并且有时候涉及的过程也非常多,所以一定要注意对所研究的过程的运动性质清晰,对给出的物理量所表示的含义明确,然后选择正确的公式分析解题2.一列队伍长100m,正以某一恒定的速度前进.因有紧急情况通知排头战士,通讯员跑步从队尾赶到队头,又从队头跑至队队尾,在这一过程中队伍前进了100m.设通讯员速率恒定,战士在队头耽搁的时间不计,求他往返过程中跑过的位移和路程的大小.(学有余力的同学可以挑战路程的计算)【答案】100m,(100+1002)m【解析】【详解】设通讯员的速度为v1,队伍的速度为v2,通讯员从队尾到队头的时间为t1,从队头到队尾的时间为t2,队伍前进用时间为t.由通讯员往返总时间与队伍运动时间相等可得如下方程:t=t1+t2,即:21212100100100v v v v v+-+=整理上式得:v12-2v1v2-v22=0解得:v1=(2+1)v2;将上式等号两边同乘总时间t,即v1t=(2+1)v2tv1t即为通讯员走过的路程s1,v2t即为队伍前进距离s2,则有s1=(2+1)s2=(2+1)100m.通讯员从队尾出发最后又回到队尾,所以通讯员的位移大小等于队伍前进的距离,即为100m.【点睛】本题考查路程的计算,关键是计算向前的距离和向后的距离,难点是知道向前的时候人和队伍前进方向相同,向后的时候人和队伍前进方向相反,解决此类问题常常用到相对运动的知识,而位移是指从初位置到末位置的有向线段,位移的大小只与初末的位置有关. 3.某兴趣小组对一辆自制遥控小车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v—t图象,图象如图所示(除2s~10s时间段图象为曲线外,其余时间段图象均为直线).已知在小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末通过遥控使发动机停止工作而让小车自由滑行,小车的质量m=2.0kg ,可认为在整个运动过程中小车所受到的阻力大小不变,取g=10m/s2.求:(1)14s~18s时间段小车的加速度大小a;(2)小车匀速行驶阶段的功率P ; (3)小车在2s~10s 内位移的大小s 2. 【答案】(1)2.0m/s 2;(2)32W ;(3)52m【解析】试题分析:(1)在14s —18s 时间段,由图象可得1418v v a t-=∆(2分)代入数据得 a=2.0m/s 2(2分)(2)在14s —18s ,小车在阻力f 作用下做匀减速运动,则 f =" ma" (1分) 在10s —14s , 小车作匀速直线运动,牵引力 F =" f" =4.0N (1分) 小车匀速行驶阶段的功率 P=Fv (1分) 代入数据得 P =32W (2分) (3)2s —10s ,根据动能定理得22221122Pt fs mv mv -=-(2分) 其中 v="8m/s" ,v 2=4m/s 解得 s 2 = 52m (2分) 考点:动能定理、功率4.汽车在平直的公路上以10/m s 作匀速直线运动,发现前面有情况而刹车,获得的加速度大小为22/m s ,则:()1汽车经3s 的速度大小是多少?()2经5s 、10s 汽车的速度大小各是多少?【答案】4; 0; 0; 【解析】 【分析】一定先算出刹车时间,作为一个隐含的已知量判断车是否已停下. 【详解】 (1)刹车时间0105s 2v t a ===,则3 s 末汽车还未停下,由速度公式得v 3=v 0+at =10 m/s +(-2)×3 m/s =4 m/s(2)5 s 末、10 s 末均大于刹车时间,汽车已经停下,则瞬时速度均为0. 【点睛】本题注意汽车减速运动问题要注意判断汽车减速到零所用的时间,减速到零后汽车就不再继续运动.5.一物体从O 点出发,沿东偏北30°的方向运动10 m 至A 点,然后又向正南方向运动5 m 至B 点.(sin30°=0.5)(1)建立适当坐标系,描述出该物体的运动轨迹; (2)依据建立的坐标系,分别求出A 、B 两点的坐标【答案】(1)如图:;(2)A (53,5)B (53,0) 【解析】 【分析】 【详解】(1)以出发点为坐标原点,向东为x 轴正方向,向北为y 轴正方向,建立直角坐标系,如图所示:物体先沿OA 方向运动10m ,后沿AB 方向运动5m ,到达B 点, (2)根据几何关系得:1sin 301052A y OA m =⋅︒=⨯=, 3cos301053A x OA m =⋅︒=⨯=, 而AB 的距离恰好为5m ,所以B 点在x 轴上,则A 点的坐标为()535m m ,,B 点坐标为()530m ,.6.如图所示,一根长0.8 m 的杆,竖直放置,今有一内径略大于杆直径的环,从杆的顶点A 向下滑动,向下为正方向,OB 间的距离为0.2 m .(1)取杆的下端O 为坐标原点,图中A 、B 两点的坐标各是多少?环从A 到B 的过程中,位置变化了多少?(2)取A 端为坐标原点,A 、B 点的坐标又是多少?环从A 到B 的过程中位置变化了多少? (3)由以上两问可以看出,坐标原点的不同对位置坐标有影响还是对位置变化有影响? 【答案】(1)-0.8 m -0.2 m 0.6 m (2)0 0.6 m 0.6 m(3)对位置坐标有影响,对位置变化无影响 【解析】(1)取下端O 为原点,则A 点坐标为:0.8m -,B 点坐标为0.2m -;位置变化量为:0.20.80.6AB x m m m ∆=---=(); (2)取A 端为原点,则A 点坐标为0;B 点坐标为:0.80.20.6m m m -=, 坐标的变化量为0.6m ;(3)由以上结果可知,坐标原点的不同位置对位置变化没有影响;点睛:根据坐标轴的原点的不同,可以确定物体位置的坐标;再由坐标的变化可确定出位置变化量.7.一辆汽车沿直线公路以速度v 1行驶了的路程,接着以速度v 2=20km/h 跑完了其余的的路程,如果汽车全程的平均速度v =27km/h ,则v 1的值为多少km/h ? 【答案】90km/h 【解析】设全程为s ,前路程的速度为v 1 前路程所用时间为 后路程所用时间为全程平均速度,t=t1+t2解得:v1=90km/h.【点睛】此题考查的是平均速度计算公式的应用,需要清楚的是:平均速度等于总路程除以总时间,不等于速度的平均.8.一客车正以20m/s的速度在平直轨道上运行时,发现前面180m处有一货车正以6m/s速度匀速同向行驶,客车立即合上制动器,做匀减速直线运动,需经40s才能停止,求:(1)客车刹车加速度大小。
机车启动问题高中物理
机车启动问题高中物理
机车启动涉及到一些高中物理的知识,主要涉及到牛顿运动定律和摩擦力等概念。
当机车启动时,首先需要克服静摩擦力,这是由于两个物体之间的接触面存在微小的不规则,需要克服这种不规则才能开始运动。
根据牛顿第一定律,物体要改变其状态(包括静止状态)需要施加一个力。
当驾驶员给机车施加一定的油门后,引擎产生的动力会通过传动系统传递到车轮,车轮与地面之间的摩擦力将克服静摩擦力,使得机车开始运动。
从牛顿第二定律的角度来看,机车启动时所受的净合外力将导致机车产生加速度,加速度的大小与所施加的力成正比,与机车的质量成反比。
因此,启动时需要施加足够的力以克服摩擦力,并使机车产生足够的加速度,才能启动。
此外,机车启动还涉及到动能和功的转化。
当机车启动时,引擎产生的动能通过传动系统传递到车轮,车轮与地面之间的摩擦力做功,将动能转化为机械能,推动机车运动。
总的来说,机车启动涉及到克服静摩擦力、施加足够的力以产
生加速度、动能和功的转化等多个物理概念。
希望以上回答能够满足你的需求。
高中物理(机械能守恒定律)习题训练与答案解析
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
高中物理_实验:探究小车速度随时间变化的规律教学设计学情分析教材分析课后反思
教学过程课外学习活动1、观察汽车在启动过程中的速度变化,并设法记录汽车的速度变化。
2、完成课前测评练习。
课堂教学环节教师活动教师活动设计意图时间复习上一章学习了描述物体运动的物理量,还学习了用打点计时器、纸带测量速度的方法,下面请看复习(大屏幕依次展示复习的三个问题):1、使用打点计时器时,释放纸带与开启电源的先后顺序是什么?强调:等打点稳定后再释放纸带2、下图是实验中打出的一条纸带,如何选计时起点和计数点?如何测速度?(对比两位学生的回答情况,选择性的强调)(1)为计算方便,一般每5个点选一个计数点。
其他计数点具体在哪些点上?强调:为了尽量多的获取测量数据,要尽量多的选取计数点相邻计数点的时间间隔是多少?各点的时刻分别是多少?(2)如何测位移?学生一起回答:先开启电源,后释放纸带(1)两位学生回答(如何选点):舍去开始密集的部分,把某一个清晰的作为计时起点。
一般每5个点选一个计数点。
学生找计数点。
学生回答:0.1s学生回答。
两位学生回答:如何测位移?1、复习巩固2、为本节课学生自主操作实验打基础。
复习打点计时器的使用。
复习利用纸带计算速度的方法,其中测量刻度容易出现误差累积,强调必须一次性测量各点的刻度。
6分钟交流点评图像找出学生做图中出现的典型问题分别展示,并分析、交流:(1)折线(重点交流):合理吗?请大家参照学案温馨提示(6)(稍等)初中时,减小实验误差的方法是多次测量取平均值。
现在,图像法是减小实验误差更高级的办法。
描点后,观察数据点的分布趋向(若趋向是曲线,就画一条平滑的曲线;若趋向直线,就用透明直尺、细铅笔画一条直线)使尽量多的点在线上,不在线上的均匀分布在线的两侧,离线较远的点,误差太大,舍去。
这6各实验数据点大致落在一条直线上,应该画直线。
(2)点粗、线粗:不能精确确定数据点的位置,做出的图像误差太大。
(3)标度太小的,误差太大(4)过原点的:请大家想,零时刻小车的速度是零吗?看纸带,你选的零时刻,小车的速度是零吗?图像能过原点吗?(5)直线做的标准(但不与纵轴相交):大家看这张,直线做的很好。
高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案)
高中物理闭合电路的欧姆定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路,电源电动势为1.5V,内阻为0.12Ω,外电路的电阻为1.38Ω,求电路中的电流和路端电压.【答案】1A; 1.38V【解析】【分析】【详解】闭合开关S后,由闭合电路欧姆定律得:电路中的电流I为:I==A=1A路端电压为:U=IR=1×1.38=1.38(V)2.小明坐在汽车的副驾驶位上看到一个现象:当汽车的电动机启动时,汽车的车灯会瞬时变暗。
汽车的电源、电流表、车灯、电动机连接的简化电路如图所示,已知汽车电源电动势为12.5V,电源与电流表的内阻之和为0.05Ω。
车灯接通电动机未起动时,电流表示数为10A;电动机启动的瞬间,电流表示数达到70A。
求:(1)电动机未启动时车灯的功率。
(2)电动机启动瞬间车灯的功率并说明其功率减小的原因。
(忽略电动机启动瞬间灯泡的电阻变化)【答案】(1)120W;(2)67.5W【解析】【分析】【详解】(1) 电动机未启动时U E Ir=-=12V==P UI120W(2)电动机启动瞬间车灯两端电压'9 V U E I r =-'=车灯的电阻' 1.2U R I ==Ω267.5W RU P ''==电源电动势不变,电动机启动瞬间由于外电路等效总电阻减小,回路电流增大,内电路分得电压增大,外电路电压减小,所以车灯电功率减小。
3.在如图所示的电路中,电阻箱的阻值R 是可变的,电源的电动势为E ,电源的内阻为r ,其余部分的电阻均可忽略不计。
(1)闭合开关S ,写出电路中的电流I 和电阻箱的电阻R 的关系表达式;(2)若电源的电动势E 为3V ,电源的内阻r 为1Ω,闭合开关S ,当把电阻箱R 的阻值调节为14Ω时,电路中的电流I 为多大?此时电源两端的电压(路端电压)U 为多大?【答案】(1) EI R r=+ (2)0.2A 2.8V 【解析】 【详解】(1)由闭合电路的欧姆定律,得关系表达式:EI R r=+ (2)将E =3V ,r =1Ω,R =14Ω,代入上式得: 电流表的示数I =3A 141+=0.2A 电源两端的电压U=IR =2.8V4.如图所示,金属导轨平面动摩擦因数µ=0.2,与水平方向成θ=37°角,其一端接有电动势E =4.5V ,内阻r =0.5Ω的直流电源。
专题5机车恒定功率启动模型-2023年高考物理机械能常用模型最新模拟题精练(解析版)
高考物理《机械能》常用模型最新模拟题精练专题5.机车的恒定功率启动模型一、选择题1.(2023河南四市二模)汽车生产时都要进行一系列测试,其中一项为加速性能的测试,测试方法为:将汽车停在水平平直试验路段起点,实验开始时,司机立即将油门踩到底(保持汽车以额定功率运动),记录汽车速度从0加速到100km/h所用时间,该时间是衡量汽车动力水平的一个重要参考指标。
某国产汽车的额定功率为100kW,在某次测试时,汽车从静止开始以额定功率运动,假设运动过程中所受阻力恒定,汽车最终做匀速直线运动。
通过传感器测得汽车运动速度的倒数与加速度a的关系如图所示。
下列说法正确的是A.汽车所受阻力大小为1000NB.汽车运动的最大速度为50m/sC.汽车的质量为4000kgD.当汽车的速度为25m/s时,其加速度为2m/s2【参考答案】B【命题意图】本题考查汽车运动速度的倒数与加速度a的关系图像的理解+汽车恒定功率启动+牛顿第二定律+P=Fv【名师解析】【知识拓展】(1)机车以恒定功率启动的功率图像和速度图像:(2)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F 阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移、速度或时间。
(3)恒定功率启动的a ——1v图像由F -F f =ma ,P =F v 可得:a =P m ·1v -F f m ,则①斜率k =P m ;②纵截距b =-F f m ;③横截距1v m =F f P。
2.(2022四川遂宁二模)“碳中和”、“低碳化”、“绿色奥运”是北京冬奥会的几个标签。
本次冬奥会运行的超1000辆氢能源汽车,是全球最大的一次燃料电池汽车示范。
某款质量为M 的氢能源汽车(如图所示)在一次测试中,沿平直公路以恒定功率P 从静止启动做匀速直线运动,行使路程x ,恰好达到最大速度vm 。
已知该汽车所受阻力恒定。
下列判定正确的是A.启动过程中,车做匀加速直线运动B.启动过程中,牵引力对汽车做的功为212m Mv C.车速从0增大到vm 的加速时间为22m Mv P +mxvD.车速为2m v 时,汽车的加速度大小为2mP Mv 【参考答案】C 【名师解析】汽车启动过程中,由P=Fv 可知,功率P 恒定条件下,速度v 增大时,牵引力F 减小,阻力f 恒定,由牛顿第二定律,F-f=Ma ,可知加速度a 减小,所以汽车做加速度逐渐减小的加速运动,选项A 错误;启动过程中,设牵引力做功为WF ,克服阻力做功Wf ,由动能定理,WF-Wf=212mMv ,故WF >212mMv ,选项B 错误;当汽车速度达到vm 后,汽车做匀速运动,F=f ,由P=Fvm=fvm ,可得f=P/vm ,车速从0增大到vm 的过程中,由动能定理,Pt-fx=212m Mv ,解得加速时间为t=22m Mv P +m x v ,选项C 正确;当车速为2m v 时,牵引力F’=2P/vm ,由F’-f=Ma ,解得汽车的加速度大小为a=m PMv ,选项D 错误。
高中物理车辆启动问题教案
高中物理车辆启动问题教案
学科:物理
年级:高中
教学目标:了解车辆启动的物理原理,掌握车辆启动的影响因素,培养学生解决实际问题的能力。
教学重点:车辆启动的物理原理和影响因素。
教学难点:如何应用物理知识解决车辆启动问题。
教学内容:
一、车辆启动的物理原理
1. 车辆启动的前提条件是发动机产生足够的动力,使轮胎可以克服摩擦力将车辆推动。
2. 车辆启动的主要原理是牛顿第二定律,即物体受到的合力为质量乘以加速度。
二、车辆启动的影响因素
1. 车辆的质量:车辆的质量越大,启动时的惯性力也越大。
2. 发动机的动力输出:发动机的功率和转速决定了车辆启动时能提供的动力大小。
3. 轮胎与地面的摩擦系数:摩擦系数越大,车辆启动所需的摩擦力也越大。
教学步骤:
一、导入
教师通过简单的实例引入车辆启动问题,引起学生对问题的思考。
二、讲解车辆启动的物理原理和影响因素
1. 教师讲解车辆启动的物理原理和影响因素,引导学生理解并掌握相关知识。
2. 带领学生分析实际示例,让学生应用物理知识解决问题。
三、课堂练习
教师根据教学内容设计相关练习题,让学生进行小组讨论并分享解题思路。
四、总结
教师对本节课的核心内容进行总结,并提出问题引导学生思考。
五、作业布置
布置相关作业,让学生巩固所学内容并拓展思考。
教学反馈:
教师通过课堂练习和作业检查学生对教学内容的掌握程度,及时纠正错误,鼓励学生思考解决问题的能力。
高中物理-专题练习-汽车启动中的功率问题
汽车启动中的功率问题汽车的启动分为两种方式:一是以额定的功率启动最后达到匀速直线运动;二是以恒定的加速度启动最后达到匀速直线运动。
①汽车以额定的功率P启动当汽车以额定的功率P开动后,根据可知,汽车由开启,速度V越来越快,所以汽车的牵引力F牵就越来越小,但是在汽车达到匀速直线运动之前,汽车的牵引力虽然在减小,但还是比汽车所受到的摩擦力要大,所以汽车以额定功率开启是在做加速度越来越小的变加速运动,最后达到匀速直线运动的。
汽车的V-t图像如图所示:②汽车以恒定的加速度a启动当汽车以恒定的加速度a开动后,根据牛顿第二定律可知汽车的牵引力是不变的,汽车在做匀加速直线运动。
但根据公式,又可以看出,汽车的速度在增大,但牵引力却不变,所以汽车的功率要跟着增大。
当汽车的速度增大到一定的时候,汽车的功率已经达到额定的功率,功率不能再增大了,所以此时,汽车就以额定功率继续做加速度越来越小的加速运动,直到汽车做匀速直线运动。
在这个过程中,汽车达到额定功率时的速度,而汽车做匀速直线运动时的速度。
汽车的V-t图像如图所示:课后练习:4、汽车在水平公路上直线行驶,假设所受到的阻力恒定,汽车达到额定功率做匀速运动的速度为v m,以下说法中正确的是()A.汽车启动时的加速度与它受到的牵引力成正比B.汽车以恒定功率启动,可能做匀加速运动C.汽车以最大速度行驶后,若要减小行驶速度,可减少牵引功率D.若汽车匀加速启动,则匀加速的末速度可达到v m5、汽车发动机的额定功率为60 kW,汽车的质量为5 t,汽车在水平路面上行驶时,阻力是车重的0.1倍,重力加速度取10 m/s2。
(1)汽车所能达到的最大速度是多少?(2)汽车保持额定功率不变从静止起动后,当汽车的加速度为2 m/s2时速度多大?(3)若汽车从静止开始,保持以0.5 m/s2的加速度做匀加速直线运动,这一过程能维持多长时间?(4)在10s 末汽车的瞬时功率多大?20s末汽车的瞬时功率又是多少呢?。
高中物理(新人教版)必修第二册同步习题:功与功率——功率(同步习题)【含答案及解析】
第八章机械能守恒定律1 功与功率第2课时功率基础过关练题组一功率的理解和计算1.关于功率,下列说法正确的是( )A.功率是描述力对物体做功多少的物理量B.力做功时间越长,力的功率一定越小C.力对物体做功越快,力的功率一定越大D.力对物体做功越多,力的功率一定越大2.汽车上坡时,保持汽车发动机输出功率一定,降低速度,这样做的目的是( )A.增大牵引力B.减小牵引力C.增大阻力D.减小惯性3.假设列车从静止开始做匀加速直线运动,经过500 m后,速度达到最大,为360 km/h。
整列列车的质量为1×105 kg,如果不计阻力,在匀加速阶段,牵引力的最大功率是( )A.4.67×106 kWB.1×105 kWC.1×108 kWD.4.67×109 kW题组二平均功率与瞬时功率4.(多选)质量为3 kg的物体,从高45 m处自由落下(g取10 m/s2),那么在下落的过程中( )A.前2 s内重力做功的功率为300 WB.前2 s内重力做功的功率为675 WC.第2 s末重力做功的功率为600 WD.第2 s末重力做功的功率为900 W5.飞行员进行素质训练时,抓住秋千杆由水平状态开始下摆,如图所示,到达竖直状态的过程中,飞行员所受重力的瞬时功率变化情况是( )A.一直增大B.一直减小C.先增大后减小D.先减小后增大6.(多选)如图甲所示,物体受到水平推力F的作用在粗糙水平面上做直线运动,推力F、物体速度v随时间t变化的规律如图乙、丙所示。
取g=10 m/s2,则( )A.第1 s内推力做功为1 JB.第2 s内物体克服摩擦力做的功为2 JC.t=1.5 s时推力F的功率为2 WD.第2 s内推力F做功的平均功率为3 W7.在F=6 N的水平力作用下,质量m=3 kg的物体在光滑水平面上由静止开始运动,运动时间t=3 s。
求:(1)力F在前3 s内对物体做的功;(2)力F在前3 s内对物体做功的平均功率;(3)在3 s末力F对物体做功的瞬时功率。
高中物理机车启动的两种方式分析
高中物理机车启动的两种方式分析高中物理机车启动的两种方式分析方洁(浙江省温州市龙湾中学)机动车启动问题在高中物理中是一个非常重要的难点问题,它涉及力与运动的关系、能量与功的关系。
分析这类问题能培养学生解决实际问题的能力。
上述分析过程中忽略了力、速度与加速度的关系。
物体所受的合外力F合决定了加速度a,而加速度a又决定了速度v的变化。
题目中并没有告诉我们合力的情况,相应的我们也无法得到速度v 的变化情况。
因此,分析功率P、力F和速度v的关系时必须知道合力的变化情况。
此道练习题为我们分析机动车启动问题作了很好的铺垫。
机动车发动机功率P=Fv中的F指的是牵引力,而不是机动车所受到的合力,v指的是机动车的瞬时速率。
高中物理中出现的机动车启动方式一般有两种,并且为了简化问题,认为阻力f恒定不变。
而具体分析如下:(2)以恒定牵引力匀加速启动:由F-Ff=ma知,a恒定,汽车做匀加速运动,由公式P=Fv知随着v的增大,P也将不断增大,直到P达到额定功率Pm,接下来分析过程与以恒定功率启动过程分析方法相同。
因为加速过程中发动机的牵引力F恒定、P变化,使得加速过程发动机做的功只能用W=FL计算,不能用W=Pt。
机车启动问题一般跟实际问题联系较为紧密,在具体分析问题时常常需要考查学生审题能力及物理知识组合能力,因此,这类问题能够较好地考查学生应用物理知识解决实际问题的能力。
下面我们就一个例子来说明:例,动车已然成为近年来城际间高效的交通重要工具。
动车组就是由几节自带动力的车厢与几节不带动力的车厢编成的列车组。
假设有一动车组由五节车厢连接而成,每节车厢的质量为8×104 kg,其中第一节和第五节车厢带动力,额定功率均为2×104kw。
已知在动车组行驶全程中阻力恒为重力的0.1倍,启动时的最大加速度为1 m/s2,行至2 km时速度达到最大值,试求该动车组达到最大行驶速度所需的最短时间(g取10m/s2)。
高中物理必修1匀变速直线运动与汽车行使安全 练习与解析
第3章《匀变速直线运动的研究》单元测试981.物体沿一条直线运动,在t 时间内通过的路程为S ,它在中间位置S/2处的速度为V 1,在中间时刻t/2时的速度为V 2,则V 1和V 2的关系为( )A 、当物体作匀加速直线运动时,V 1>V 2B 、当物体作匀减速直线运动时,V 1>V 2C 、当物体作匀速直线运动时,V 1=V 2D 、当物体作匀减速直线运动时,V 1<V 22.汽车以20 m/s 的速度做匀速直线运动,刹车后的加速度为5m/s 2,那么开始刹车后2 s 与开始刹车后6 s 汽车通过的位移之比为A .1∶4 B.3∶5 C.3∶4 D.5∶93.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1秒,分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2m ,在第3次、第4次闪光时间间隔内移动了8m ,由此可求( )A 、第1次闪光时质点的速度B 、质点运动的加速度C 、从第2次闪光到第3次闪光的这段时间内质点的位移D 、质点运动的初速度4.物体从静止开始沿斜面匀加速下滑,它通过斜面的下一半的时间是通过上一半时间的n 倍,则n 为:( )A.21 B. 12 C. 1 D. 25.骑自行车的人沿着直线从静止开始运动,运动后,在第1 s 、2 s 、3 s 、4 s 内,通过的路程分别为1 m 、2 m 、3 m 、4 m ,有关其运动的描述正确的是A .4 s 内的平均速度是2.5 m/sB .在第3 、4 s 内平均速度是3.5 m/sC .第3 s 末的瞬时速度一定是3 m/sD .该运动一定是匀加速直线运动6. 两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木块每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知A .在时刻t 2以及时刻t 5两木块速度相同B .在时刻t 1两木块速度相同C .在时刻t 3和时刻t 4之间某瞬间两木块速度相同D .在时刻t 4和时刻t 5之间某瞬时两木块速度相同1234 5677.有一列火车,每节车厢的长度为L,车厢间的间隙宽度不计,挨着车头的第一节车厢前沿站台上站着一人,当火车从静止开始以加速度a作匀变速直线运动时,第n节车厢经过人的时间为___________________。
教科版高中物理必修二第二章第3节圆周运动的实例分析2汽车过桥(过山车)中动力学问题同步练习(含解析)
(答题时间:30分钟)1. 质量为m 的汽车,额定功率为P ,与水平地面间的摩擦数为μ,以额定功率匀速前进一段时间后驶过一圆弧形半径为R 的凹桥,汽车在凹桥最低点的速度与匀速行驶时相同,则汽车对桥面的压力N 的大小为( )A. N=mgB. 2()m P N R mgμ=C. 21[()]P N m g R mg μ=+D.21[()]P N m g R mg μ=- 2. 当汽车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应( ) A. 以尽可能小的速度通过桥顶 B. 增大速度通过桥顶 C. 使通过桥顶的向心加速度尽可能小 D. 和通过桥顶的速度无关3. 在云南省某些地方到现在还要依靠滑铁索过江,若把这滑铁索过江简化成如图所示的模型,铁索的两个固定点A 、B 在同一水平面内,AB 间的距离为L=80m ,绳索的最低点离AB 间的垂直距离为H=8m ,若把绳索看做是圆弧,已知一质量m=52kg 的人借助滑轮(滑轮质量不计)滑到最低点的速度为10m/s ,那么( )A. 人在整个绳索上运动可看成是匀速圆周运动B. 可求得绳索的圆弧半径为100mC. 人在滑到最低点时,滑轮对绳索的压力为570ND. 在滑到最低点时人处于失重状态4. 乘坐游乐园的翻滚过山车时,质量为m 的人随车一起在竖直平面内旋转,下列说法正确..的是( ) A. 车的加速度方向时刻在变化,但总是指向圆心B. 人在最高点时对座位仍可能产生压力,但是速度可以为零C. 车的线速度方向时刻在变化,但总在圆周切线方向上D. 人在最低点时对座位的压力大于mg5. 如图所示,过山车的轨道可视为竖直平面内半径为R 的圆轨道。
质量为m 的游客随过山车一起运动,当游客以速度v 经过圆轨道的最高点时( )A. 处于超重状态B. 向心加速度方向竖直向下C. 速度vD. 座位对游客的作用力为2 v mR6. 如图,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,已知皮带轮半径为r,传送带与皮带轮之间不打滑,则要使小物体被水平抛出,A轮转动()A. B.C. D. 周期越小越好,最大值为2T=7. 如图所示,拱桥的外半径为40m。
高中物理汽车启动方式教案
高中物理汽车启动方式教案
教学目标:
1. 了解汽车的启动方式及其原理;
2. 掌握汽车启动时的注意事项。
教学重点:
1. 内燃机汽车启动方式;
2. 电动汽车启动方式。
教学难点:
1. 内燃机汽车启动原理;
2. 电动汽车启动原理。
教学准备:
1. PPT课件;
2. 真实汽车启动演示;
3. 汽车启动原理模型。
教学过程:
一、导入新课(5分钟)
教师通过引入相关话题,激发学生对汽车启动方式的兴趣,引导学生思考汽车启动的原理。
二、内燃机汽车启动方式(15分钟)
1. 教师简要介绍内燃机汽车的工作原理;
2. 结合PPT课件,讲解内燃机汽车的启动方式;
3. 演示内燃机汽车的启动过程,让学生亲身体验。
三、电动汽车启动方式(15分钟)
1. 教师简要介绍电动汽车的工作原理;
2. 结合PPT课件,讲解电动汽车的启动方式;
3. 演示电动汽车的启动过程,让学生对其启动方式有更深入的了解。
四、注意事项及讨论(10分钟)
1. 教师总结汽车启动时需要注意的事项,如检查电池、检查发动机等;
2. 学生讨论汽车启动过程中可能遇到的问题,并提出解决方法。
五、课堂小结(5分钟)
教师对本节课的内容进行小结,强调汽车启动方式的重要性,并鼓励学生在日常生活中注意汽车的启动方式。
教学延伸:
可以鼓励学生自行查阅更多汽车启动方式的资料,以及利用模型等工具进行实际操作,加深对汽车启动方式的理解。
高中物理汽车启动速度教案
高中物理汽车启动速度教案教学目标:1. 了解汽车启动速度的定义和影响因素。
2. 掌握计算汽车启动速度的方法。
3. 能够分析汽车启动速度的应用场景。
教学重点:1. 启动速度的概念和意义。
2. 启动速度的计算方法。
3. 启动速度和动能的关系。
教学难点:1. 理解启动速度和动能之间的逻辑关系。
2. 能够通过计算求解实际问题中的汽车启动速度。
教学准备:1. PowerPoint课件。
2. 实验室器材:测量汽车速度的仪器。
3. 实验室实验材料:模拟汽车启动的场景。
教学过程:一、导入新知识(5分钟)1. 展示一辆汽车从静止到匀速运动的视频,引导学生思考汽车启动速度的概念。
2. 让学生讨论汽车启动速度的影响因素,并提出自己的看法。
二、讲解启动速度的定义和计算方法(10分钟)1. 通过示意图和公式,介绍汽车启动速度的定义。
2. 引导学生学习如何计算汽车启动速度,包括速度的计算公式和相关参数的测量方法。
三、实验操作(15分钟)1. 学生分组进行实验,测量汽车的启动速度。
2. 让学生用实验数据计算汽车的启动速度,并比较不同车辆的启动速度差异。
四、启动速度应用场景分析(10分钟)1. 引导学生思考汽车启动速度在实际生活中的应用,如何通过控制启动速度提高汽车的性能和安全性。
2. 让学生展示他们的分析结果,并就启动速度对汽车运动的影响进行讨论。
五、小结与作业布置(5分钟)1. 总结本节课的重点内容,强调汽车启动速度的重要性和计算方法。
2. 布置作业:完成课后习题,加深对汽车启动速度的理解。
教学反思:通过本节课的教学,学生应该能够掌握汽车启动速度的概念和计算方法,了解启动速度在实际应用中的重要性。
同时,通过实验操作和讨论,学生的实践能力和思维能力也得到了提升。
在以后的教学中,应该注重培养学生的实践能力和创新能力,让他们能够运用所学知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理汽车的启动问题析与练
汽车由静止开始启动的实际过程较为复杂,在高中阶段我们可以把它简化成以下两种方式:一种是以恒定功率起动;另一种是以匀加速起动。
恒功率启动:
当汽车以恒定功率P e 起动时,由Fv P e =知,v 增大,F 减小;由m f F a -=
知a 减小,汽车做变加速直线运动。
当a =0,即F=f 时,汽车达到最大速度f P v e m =
,此后汽车做匀速直线运动。
恒牵引力启动:
当汽车匀加速起动时,加速度m
f F a -=恒定,但v 逐渐增大,由P=FV 可知P 增大,汽车做匀加速直线。
当P=P e 时,匀加速运动结束,由Fv P e =知V 增大,F 减小;由m
f F a -=知a 减小,汽车做加速度逐渐减小的直线运动。
当a =0,即F=f 时,汽车达到最大速度f P v e m =
,此后汽车做匀速直线运动。
【例】 汽车发动机的额定功率为60kW ,汽车质量为5t ,汽车在水平路面上行驶时,阻力是车重的0.1倍,求:
(1)汽车以额定功率从静止起动后能达到的最大速度是多少?
(2)汽车从静止开始,保持以0.5m/s 2的加速度做匀加速运动这一过程能维持多长时间? 解析:(1)汽车以额定功率起动,先做加速度减小\速度增加的变加速运动,当a=0时做匀速直线运动,此时速度最大V m ,则有kmg f F == m e Fv P =
所以 s m kmg
P v e m /12== (2)汽车以恒定加速度起动,加速度m
kmg F a -=,功率随速度增大而增大,V 在达最大值之前,经历了2个过程:先是匀加速,然后是变加速运动。
当功率达到额定功率时,P e =FV 1,设保持匀加速运动的时间为t ,匀加速能达到最大的速度为V 1。
根据牛顿第二定律和运动规律得
ma kmg F =- at v =1 1Fv P P e ==
代入数据解得s t 16=
对于汽车起动问题,首先要搞清楚是以什么方式起动,然后分析运动过程中各物理量的变化情况,最后根据试题的具体情况进行求解。
【练习】
1。
一艘轮船发动机的额定功率为1.8×105kW ,当它的输出功率等于额定功率时达到最大速
度,此时它所受的阻力为1.2×107N ,轮船航行的最大速度是_________m/s 。
答案:15
2。
汽车发动机的额定功率为80kW ,它以额定功率在平直公路上行驶的最大速度为20m/s ,那么汽车在以最大速度匀速行驶时所受的阻力是( )
A .8000N
B .4000N
C .2500N
D .1600N
答案:B
3。
汽车在平直公路上行驶,它受到的阻力大小不变,若发动机的功率保持恒定,汽车在加速行驶的过程中,它的牵引力F 和加速度a 的变化情况是( )
A .F 逐渐减小,a 也逐渐减小
B .F 逐渐增大,a 逐渐减小
C .F 逐渐减小,a 逐渐增大
D .F 逐渐增大,a 也逐渐增大
答案:A
4质量为5⨯103 kg 的汽车在t =0时刻速度v 0=10m/s ,随后以P =6⨯104 W 的额定功率沿平直公路继续前进,经72s 达到最大速度,设汽车受恒定阻力,其大小为2.5⨯103N 。
求:(1)汽车的最大速度v m ;(2)汽车在72s 内经过的路程s 。
答案:(1)v m =24m/s ; (2)s =1252m
5质量是2000kg 、额定功率为80kW 的汽车,在平直公路上行驶中的最大速度为20m/s 。
若汽车从静止开始做匀加速直线运动,加速度大小为2m/s 2,运动中的阻力不变。
求:①汽车所受阻力的大小。
②3s 末汽车的瞬时功率。
③汽车做匀加速运动的时间。
④汽车在匀加速运动中牵引力所做的功。
答案:①f =4000N ②P = Fv =4.8×104W ③t =5s ④W = 2×105J.
6。
汽车发动机的功率为60kW ,汽车的质量为4t ,当它行驶在坡度为0.02的长直公路上时,所受阻力为车重的0.1倍(g 取10m/s 2),问:
(1)汽车所能达到的最大速度v max 多大?
(2)汽车从静止开始以0.6m/s 2的加速度作匀加速直线运动,此过程能维持多长时间?
(3)当汽车匀加速行驶的速度达到最大值时,汽车做功多少?
(4)在10s 末汽车的即时功率为多大?
答案:(1)12.5m/s (2)14s (3)4.2×105J (4)43.2kW
7。
如下左图所示,某同学用轻绳通过定滑轮提升一重物,运用传感器(未在图中画出)测
得此过程中不同时刻被提升重物的速度v 与对轻绳的拉力F ,并描绘出v -F -1图象。
假设某
次实验所得的图象如下右图所示,其中线段AB 与v 轴平行,它反映了被提升重物在第一个
时间段内v 和F -1的关系;线段BC 的延长线过原点,它反映了被提升重物在第二个时间段
内v 和F -1的关系;第三个时间段内拉力F 和速度v 均为C 点所对应的大小保持不变,因此图象上没有反映。
实验中还测得重物由静止开始经过t =1.4s ,速度增加到v C =3.0m/s ,此后物体做匀速运动。
取重力加速度g =10m/s 2,绳重及一切摩擦和阻力均可忽略不计。
(1)在提升重物的过程中,除了重物的质量和所受重力保持不变以外,在第一个时间段内和第二个时间段内还各有一些物理量的值保持不变。
请分别指出第一个时间段内和第二个时间段内所有其他保持不变的物理
量,并求出它们的大小;
(2)求被提升重物在第一个时间段内和第二个时间段内通过的总路程。
答案:(1)F 1=6.0N ,G =F 2
=4.0N ,a =5.0m/s 2 ;拉力的功率保持不变12W P Fv ==。
16.0 14.0 /N -1 1 F
(2)x= x1+ x2=3.15m。