《几种不同增长的函数模型》 教案及说明

合集下载

【原创】高中数学人教A版必修一第三章3.2.1 几类不同增长的函数模型 教学设计

【原创】高中数学人教A版必修一第三章3.2.1 几类不同增长的函数模型 教学设计

“几种不同增长的函数模型”教学设计一、 教材分析(一) 、教学内容本节课的内容是高中数学必修1第三章《函数的应用》的第二节“几种不同增长的函数模型”第一课时,根据课程设置要求,“几种不同增长的函数模型”需用2个课时,因此我把教材中的例题1和例题2作为第一课时。

(二)教材的地位和作用本节课要求学生通过实例分析,体会“直线上升”“指数爆炸”“对数增长”的含义及其在实际生活中的应用。

它既是第二章基本初等函数知识的延续,又为函数模型的应用打下了基础,起着承前起后的作用。

(三)、教学目标和要求1、知识目标:利用计算工具,比较指数函数、对数函数、幂函数间的增长差异,结合实例体会直线上升,指数爆炸,对数增长等不同函数增长的含义。

2、能力目标:通过对几种不同增长的函数模型的分析,体会它们间的差异,培养学生利用图表分析问题的能力和数据处理能力;了解函数模型的广泛应用;培养学习数学的兴趣。

3、情感目标:通过对几种不同增长的函数模型的探究,体验指数函数、对数函数、幂函数与现实世界的密切联系及其在刻划现实生活中的作用。

(四)、教学重难点:重点: 认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸、对数增长;应用函数模型解决简单问题。

难点:学生对指数函数、对数函数、幂函数的增长速度的认识还很少所以让学生比较这几种函数的增长差异会有一定困难;如何选择适当的函数模型分析解决实际问题是另一个困难。

二、教学方法:问题探究和启发式相结合的教学方法. 三、教学工具:电脑多媒体四、教学过程1、复习、引入:在《基本初等函数》中我们学习了哪几种函数? 2、创设问题情境一: (展示细胞生长故事的课件)12222324回顾:某种细胞分裂时,由1个分裂成两个,两个分裂成4个……,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系是。

第一次第二次第三次第四次引导学生观察,思考,回答问题。

3、创设问题情境二:(展示问题情境课件)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元: 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。

高中数学《几类不同增长函数模型》教学设计

高中数学《几类不同增长函数模型》教学设计

《几类不同增长的函数模型》教学设计一.内容和内容解析本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.该课将经历运用和选择函数模型解决实际问题的过程,从而认识在同为增函数的函数模型中,各种函数存在增长的差异;理解直线上升、指数爆炸、对数增长的含义;认识研究函数增长(衰减)差异的方法;感受数学建模的思想.对不同函数模型在增长差异上的研究,教材围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.教材运用自选投资方案和制定奖励方案这两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明不同函数类型增长的含义.在必修1前两章,教材安排了函数的性质以及基本初等函数.本节内容是几类不同增长的函数模型,在此之后是研究函数模型的应用,因此,从内容上看,本节课是对前面所学习的几种基本初等函数以及函数的性质的综合应用,从思想方法上讲,是对研究函数的方法的进一步巩固和深化,同时,也在为后面继续学习各种不同的函数模型的应用举例奠定基础,.因此本节内容,既是第二章基本初等函数知识的延续,又是函数模型应用学习的基础,起着承前启后的作用.本节内容所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;在解决问题过程中函数与方程的思想.二.目标和目标解析本节课的教学任务为:(1)创设一个投资方案的问题情境,让学生通过函数建模、列数据表、研究函数图象和性质,体会直线上升和指数爆炸;(2)创设一个选择奖励模型的问题情境,让学生在观察和探究的过程中,体会对数增长模型的特点;(3)通过建立和运用函数基本模型,让学生初步体验数学建模的基本思想,发展学生的创新意识和数学应用意识.根据内容解析和教学任务,本节课的教学目标确定为:(1)通过实例的解决,运用函数表格、图象,比较一次函数、指数型函数以及对数函数模型等的增长,认识它们的增长差异,体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义;(2)通过恰当地运用函数的三种表示方法(解析法、列表法、图象法),表达实际问题中的函数关系的操作,认识函数问题的研究方法:观察—归纳—猜想—证明;(3)经历建立和运用函数基本模型的过程,初步体验数学建模的基本思想,体会数学的作用与价值,培养分析问题、解决问题的能力.这部分内容教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象,将前面已经学习过的内容以及处理问题的思想方法紧密结合起来,使之成为一个整体.因此教学中应当注意贯彻教材的设计意图,让学生经历函数模型应用的全过程,能在这一过程中认识不同增长的差异,认识知晓函数增长差异的作用,认识研究差异的思想方法.结合以上分析本节课的教学重点为:将实际问题转化为数学模型,在比较常数函数、一次函数、指数函数、对数函数模型增长差异的过程中,体会直线上升、指数爆炸、对数增长等不同类型函数增长的含义.三.教学问题诊断学生在前面已学过函数概念、指数函数、对数函数、幂函数,但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难.因此本节课教学难点确定为:如何结合实际问题让学生体会不同函数模型的增长差异,以及如何利用这种增长差异来解决一些实际问题.为了解决这一难点,教科书分三个步骤,创设问题情境,并通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题解决问题的能力.第一步,教科书先创设了一个选择投资方案的问题情境,在解决问题的过程中给出了解析式、数表和图象三种表示,然后提出了三个思考问题,让学生一方面从中体会直线上升和指数爆炸,另一方面也学会如何选择恰当的表示形式对问题进行分析.第二步,教科书又创设了一个选择公司奖励模型的问题情境,让学生在观察和探究的过程中,体会到对数增长模型的特点.第三步,教科书提出了三种函数存在怎样的增长差异的问题.先让学生从不同角度观察指数函数和幂函数的增长图象,从中体会二者的差异;再通过两个探究问题,让学生对幂函数和对数函数的增长差异,以及三种函数的衰减情况进行自主探究.这样的安排内容上层次分明,可以引导学生从不同的方面积极地开展观察、思考和探究活动,对典型的问题,多视点宽角度地进行了研究.对学生分析问题、解决问题能力的培养将有积极的推动.由于本节内容比较丰富,而且研究问题的方法和途径也比较多,所以本节课我们只能重点解决其中的前两个问题.四.教学支持条件分析要让学生较为全面地体会函数模型的思想,特别是本节例题中用函数模型研究实际问题有许多数据、图象等方面处理上的困难,而利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.这样,就使学生有机会接触到一些过去难以接触到的数学知识和思想方法.因此在本节内容教学的处理上,通过学生收集数据并建立函数模型,利用计算器和计算机,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.五.教学过程设计一、创设情境,引入课题1.介绍第三章章头图,提出问题.问题1:澳大利亚的兔子为什么能在短短的几十年中由5只发展到5亿只?澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.问题2:在生活中,你还能举出其它增长的例子吗?2.在学生回答问题的基础上引出各种不同类型的函数增长模型.3.揭示课题:几类不同增长的函数模型.【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.二、分析问题,建立模型(一)提出问题例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问:你会选择哪种投资方式?(二)分析问题1.引导审题,抓住关键词“回报”问题3:你选择的是什么样的回报?怎样比较回报资金的大小?从解决问题的角度看:(1)比较三种方案的每日回报;(2)比较三种方案在若干天内的累计回报.2.引导分析数量关系,建立函数模型仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.【设计意图】引发学生思考,经历建立函数基本模型的过程.【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.三、组织探究,感性体验1.教师提出问题问题4:你会选择哪种投资方案?请用数学语言呈现你的理由.2.学生分组操作,比较不同增长从解决问题的方式上:(1)用列表方法来比较;(2)画出函数图象来分析.【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法.四、成果交流,阶段小结(一)学生交流让学生交流小组探究的成果(表格、图象、结论)(二)师生互动1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异.2.通过教师多媒体动态演示,让学生进一步体会增长差异.在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.(三)归纳小结1.通过教师的小结,增强学生对增长差异的认识.常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.五、深入探究,理性分析(一)提出问题例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:x y 25.0= 1log 7+=x y x y 002.1=.其中哪个模型能符合公司的要求?(二)引导分析问题5:你能立刻做出选择吗?选择的依据是什么?问题6:公司的要求到底意味着怎样的数学关系?问题7:我们提供的三个增长型函数哪一个符合限制条件?(三)解决问题1.通过多媒体演示,发现增长差异;2.结合限制条件,初步作出选择;3.通过计算,进一步确认,验证所得结论;4.体会对数增长模型的增长特征:当自变量变得很大时平缓增长;5.揭示函数问题的研究方法(观察—归纳—猜想—证明).【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.【备注】对判断模型二7log 1y x =+是否满足限制条件“7log 10.25x x +≤”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).六、拓展延伸,创新设计这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.问题8:我们的奖励方案有什么弊端?问题9:你能否设计出更合理的奖励模型?【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,要求如下:10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.七、归纳总结,提炼升华问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.八、布置作业,巩固提高1.课本98页课后练习1,2;课本107页习题3.2(A组)第1题;2.收集一些社会生活中递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用.【设计意图】进一步体验函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述;培养学生对数学学科的深刻认识,体会数学的应用价值.。

几种不同增长的函数模型教案(2课时)

几种不同增长的函数模型教案(2课时)

几种不同增长的函数模型教案(2课时)Several teaching plans of function models wit h different growth (2 class hours)几种不同增长的函数模型教案(2课时)前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文下载后内容可随意修改调整及打印。

几种不同增长的函数模型(两课时)一、教学目的1、利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;2、结合实例让学生体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义;3、运用函数的三种表示法(解析式、图象、表格)并结合信息技术解决一些实际问题;4、以一些实际例子,让学生了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用。

二、教学重点、难点重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

难点:怎样选择数学模型分析解决实际问题。

三、教学过程第一课时1、复习引入师:在我们的生活中,有没有用到函数的例子?生:细胞分裂;银行储蓄;早晨跑步锻炼时速度与时间的关系;……师:很好,生活中,数学无处不在,用好数学,将会给我们带来很大的方便。

今天,我们就来看一个利用数学为我们服务的例子。

2、新课(用幻灯片展示例题)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:1)每天回报40元;2)第一天回报10元,以后每天比前一天多回报10元;3)第一天回报0.4元,以后每天的回报比前一天翻一番。

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型教案(2课时)课程概述本教案将介绍几种不同的增长函数模型,包括线性增长、指数增长和对数增长。

学生将学习如何识别不同的增长模型,并了解它们在实际生活中的应用。

通过本课程的学习,学生将掌握基本的增长函数的概念,并能够应用它们解决实际问题。

教学目标1.了解线性增长、指数增长和对数增长的基本概念;2.能够识别不同的增长模型,并理解它们的特点;3.理解增长函数模型在实际生活中的应用;4.能够应用增长函数模型解决实际问题。

教学重点1.线性增长、指数增长和对数增长的基本特点;2.增长函数模型在实际生活中的应用。

教学准备1.讲义:包括线性增长、指数增长和对数增长的定义和特点;2.示例问题和解答:提供实际问题的例子和相应的解答;3.板书工具:用于在黑板上记录关键概念和解题思路。

教学过程第一课时导入(5分钟)1.引导学生回顾函数的基本概念和性质;2.提问:你知道什么是增长函数吗?讲解线性增长(15分钟)1.定义:线性增长是指y值随着x值的增长而按固定比例增长的情况;2.特点:线性增长的图像是一条直线,斜率代表了增长的速度;3.示意图:绘制线性增长的示意图,并解释斜率的意义;4.示例问题:给出一个实际问题,让学生判断它符合线性增长还是其他类型的增长。

讲解指数增长(15分钟)1.定义:指数增长是指y值随着x值的增长而按指数倍数增长的情况;2.特点:指数增长的图像是曲线,增长速度会越来越快;3.示意图:绘制指数增长的示意图,观察它与线性增长的区别;4.示例问题:给出一个实际问题,让学生判断它符合指数增长还是其他类型的增长。

讲解对数增长(15分钟)1.定义:对数增长是指y值随着x值的增长而按指数倍数减小的情况;2.特点:对数增长的图像是曲线,增长速度会越来越慢;3.示意图:绘制对数增长的示意图,观察它与线性增长的区别;4.示例问题:给出一个实际问题,让学生判断它符合对数增长还是其他类型的增长。

小结与讨论(10分钟)1.总结线性增长、指数增长和对数增长的特点;2.学生讨论在实际生活中可以找到哪些符合这些增长模型的例子。

可打印高中省优质课评选几类不同增长的函数模型教学设计与说明

可打印高中省优质课评选几类不同增长的函数模型教学设计与说明

《几类不同增长的函数模型》(第一课时)教学设计一、教学目标二、教学重点与难点三、教学方法四、教学设计附1:板书设计附2:教学设计说明1、教学内容解析本节课内容选自《普通高中课程标准实验教科书数学1必修(A版)》第三章第二节“函数模型及其应用”,教学安排为四课时,在这里我们主要研究的是第一课时的内容.学生在本册书的第二章已经学习了指数函数等基本初等函数的概念、图象和性质,本节课是对这些基本初等函数性质的进一步拓展和应用,教材在探求解决实际问题的过程中,体验到几种常见函数模型在描述客观世界变化规律时各自的特点,始终贯穿着函数模型的应用这条主线,从而为下一节继续研究函数的增长性和“函数模型的应用”奠定了基础,拉开高中阶段数学建模活动的帷幕.课程标准中明确指出:数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容.数学建模是数学学习的一种新的方式,它为学生提供了自主学习空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力.2、教学目标分析本节课的内容脉络是:从学生熟悉的两个模拟实验入手,先动画演示摞砖的游戏,继而师生一起动手折纸.通过认真观察、动手操作,学生从不同的角度、层次挖掘其中所蕴含的数学问题,从而获得数学建模的初步体验;然后通过一组导入性问题的处理,使学生体会如何用恰当的函数模型来描述对应的数学问题,为后面的学习做出铺垫;进一步通过对例题的解决,让学生体会如何借助不同的表示方法对函数问题进行探究,弄清几类不同的增长型函数在实际问题中的应用,体会他们的增长差异.①本节课以培养学生挖掘实际背景中所蕴含的数学问题为切入点,突出了数学建模与解应用题的区别,体现了“数学是自然的,数学是有用的”这一新课程理念.②本节课以实际应用问题为主要研究的对象,以数表和图象为研究的主要依据,通过对图象以及数据的观察、分析、探究、归纳和概括得到所对应的结论,进而加强对几类函数的认识.③本节课渗透着函数与方程、数形结合的数学思想,通过将实际问题转化为函数问题,进而解决实际问题的研究经历,让学生体会到数学建模的过程和处理的方式.④通过这节课的学习,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,所采用的小组学习方式,也可以增强学生们的合作意识.3、教学问题诊断分析本节课涉及到的一次函数、二次函数、分段函数、指数函数学生在前面已经学过,基本掌握了它们的概念、图象和性质.另外,学生也熟悉了研究函数性质的一般方法,具有用函数知识解决实际问题的初步体验,这是本节课的知识基础.然而,学生前面的学习主要是针对某一类函数进行研究,很少将其综合在一起,学生没有或者很少有对这几类函数不同变化趋势的理解,让学生比较这几种函数的增长差异会有一定困难.另外,在第二章中,学生主要是从函数的基本模型认识函数,而较少涉及到函数在生活、生产中的实际应用.学生在研究具体问题时,如何选择恰当的模型函数分析和解决实际问题是另一个困难.这节课学习的对象是平顶山市实验高中高一年级的学生.该校是河南省示范性高中,学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.在几个应用问题的理解上不会出现太大的问题.另外,学校一直十分重视新课改的研究,倡导尝试探究,学生已经习惯了小组合作学习的教学模式,参与讨论交流的积极性较高,这也是教学目标顺利实现的又一保证.4、教学策略分析①教法分析本节课选用合作探究与尝试概括相结合的教学方法.在教学中,从精心创设的问题情境出发,为学生提供更多的机会和时间,提问质疑、尝试探究、讨论交流、归纳总结等,促使学生的思维空间充分开放;积极营造出一个有利于人际沟通与合作的环境,使学生学会交流和分享自己的成果,并能把每个人的成果进行有效的整合,增强团队意识;这样做,能够丰富学生对数学与日常生活紧密联系的体验,感受数学的实际价值,增强应用意识,发展创新意识.②学法分析《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,本节课采用小组合作学习的教学组织形式,教师利用问题串来引导学生开展合作探究的学习活动.为了控制好课堂的研究方向,也为了提高小组讨论的效率,本节课设置了学案,引导学生的探究活动.在学案中为学生的讨论和探究设置了一系列的参考问题,在每一个问题之后都留给学生自己发现问题和解决问题的空间,以激发学生的数学学习兴趣,鼓励学生在学习的过程中,养成积极思考、主动交流的学习习惯.③教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,本节课借助信息技术工具,动画演示摞砖的游戏,绘制具体的常函数、一次函数、指数函数等基本初等函数的图象并列出相应的数据表格,通过数形结合开展数学探究活动.综上所述,本节课的设计亮点可以概括为以下三个方面:以问题为纽带;化结果为过程;把知识变成能力.通过体验数学建模的四个环节,引导学生经历知识的探究过程,对培养学生揭示数学关系的能力非常有益.。

高中数学必修一《几类不同增长的函数模型》教案设计

高中数学必修一《几类不同增长的函数模型》教案设计

3.2.1 几类不同增长的函数模型[学习目标] 1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢;理解直线上升,对数增长,指数爆炸的含义.2.会分析具体的实际问题,建模解决实际问题.知识点一 三种函数模型的性质知识点二 三种函数的增长速度比较(1)在区间(0,+∞)上,函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x 的增大,y =a x (a >1)增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢. (3)存在一个x 0,使得当x >x 0时,有log a x <x n <a x .题型一 函数模型的增长差异例1 (1)当x 越来越大时,下列函数中,增长速度最快的应该是( ) A.y =10 000x B.y =log 2x C.y =x 1 000D.y =⎝⎛⎭⎫e 2x(2)四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如下表:答案 (1)D (2)y 2解析 (1)由于指数型函数的增长是爆炸式增长,则当x 越来越大时,函数y =⎝⎛⎭⎫e 2x增长速度最快.(2)以爆炸式增长的变量是呈指数函数变化的.从表格中可以看出,四个变量y 1,y 2,y 3,y 4均是从2开始变化,变量y 1,y 2,y 3,y 4都是越来越大,但是增长速度不同,其中变量y 2的增长速度最快,可知变量y 2关于x 呈指数函数变化.反思与感悟 在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢,因此总会存在一个x 0,当x >x 0时,就有log a x <x n <a x . 跟踪训练1 下列函数中,随x 增大而增大速度最快的是( ) A.2 014ln x B.y =x 2 014 C.y =x2 014D.y =2 014·2x答案 D解析 由于指数函数的增长是爆炸式增长,则当x 越来越大时,函数y =2 014·2x 的增长速度最快.故选D.题型二 几种函数模型的比较例2 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本y (单位:元/102kg)与上市时间x (单位:天)的数据如下表:(1)y 与上市时间x 的变化关系:y =ax +b ,y =ax 2+bx +c , y =a ·b x ,y =a log a x .(2)利用你选取的函数,求西红柿种植成本最低的上市天数及最低种植成本. 解 (1)由表格中数据可知,种植成本不是常函数,∴a ≠0,而此时y =ax +b ,y =a ·b x ,y =a log a x 均为单调函数, 与表中数据不符,因此y =ax 2+bx +c , 将三组数据代入得⎩⎪⎨⎪⎧2 500a +50b +c =150,12 100a +110b +c =108,62 500a +250b +c =150,得⎩⎪⎨⎪⎧a =1200,b =-32,c =4252.∴描述西红柿种植成本y 与上市时间x 的关系为 y =1200x 2-32x +4252. (2)当x =150时,y min =100(元/102kg).反思与感悟 1.此类问题求解的关键是首先利用待定系数法求出相关函数模型,也就是借助数据信息,得到相关方程,进而求出待定参数.2.函数模型的选择与数据的拟合是数学建模中最核心的内容,解题的关键在于通过对已知数据的分析,得出重要信息,根据解题积累的经验,从已有的各类型函数中选择模拟,进行数据的拟合.跟踪训练2 某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:二次函数模型f (x )=ax 2+bx +c (a ≠0),指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),哪个模型能更好地反映该公司年产量y 与年份x 的关系?解 建立年产量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30). (1)构造二次函数模型f (x )=ax 2+bx +c (a ≠0), 将点坐标代入,可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f (x )=x 2+7x , 故f (4)=44,与计划误差为1.(2)构造指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42.则g (x )=1253·⎝⎛⎭⎫65x-42,故g (4)=1253·⎝⎛⎭⎫654-42=44.4,与计划误差为1.4.由(1)(2)可得,f (x )=x 2+7x 模型能更好地反映该公司年产量y 与年份x 的关系.对几种函数的增长趋势把握不准致误例3 甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,其路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1).有以下结论:①当x >1时,甲走在最前面; ②当x >1时,乙走在最前面;③当0<x <1时,丁走在最前面,当x >1时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲. 其中,正确结论的序号为________.解析 四个函数的图象如图所示,根据图象易知,③④⑤正确.答案 ③④⑤纠错心得 解决这类问题可以作出图象,根据图象特征使问题得解.跟踪训练3 下面对函数f (x )=log 21x ,g (x )=(12)x与h (x )=x 21-在区间(0,+∞)上的衰减情况的说法正确的是( )A.f (x )衰减速度越来越慢,g (x )衰减速度越来越快,h (x )衰减速度越来越慢B.f (x )衰减速度越来越快,g (x )衰减速度越来越慢,h (x )衰减速度越来越快C.f (x )衰减速度越来越慢,g (x )衰减速度越来越慢,h (x )衰减速度越来越慢D.f (x )衰减速度越来越快,g (x )衰减速度越来越快,h (x )衰减速度越来越快 答案 C解析 函数f (x )=log 21x ,g (x )=(12)x与h (x )=x 21-在区间(0,+∞)上的大致图象如图所示.观察图象,可知函数f (x )的图象在区间(0,1)上衰减较快,但衰减速度逐渐变慢;在区间(1,+∞)上,衰减较慢,且衰减速度越来越慢.同样,函数g (x )的图象在区间(0,+∞)上,衰减较慢,且衰减速度越来越慢.函数h (x )的图象在区间(0,1)上衰减较快,但衰减速度越来越慢;在区间(1,+∞)上,衰减较慢,且衰减速度越来越慢,故选C.1.当x 越来越大时,下列函数中,增长速度最快的应是( ) A.y =3x B.y =log 3x C.y =x 3 D.y =3x 答案 D解析 几种函数模型中,指数函数增长最快,故选D. 2.当a >1时,有下列结论:①指数函数y =a x ,当a 越大时,其函数值的增长越快; ②指数函数y =a x ,当a 越小时,其函数值的增长越快; ③对数函数y =log a x ,当a 越大时,其函数值的增长越快; ④对数函数y =log a x ,当a 越小时,其函数值的增长越快. 其中正确的结论是( )A.①③B.①④C.②③D.②④ 答案 B3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )答案 D解析 设该林区的森林原有蓄积量为a , 由题意,ax =a (1+0.104)y ,故y =log 1.104x (x ≥1), ∴y =f (x )的图象大致为D 中图象.4.当2<x <4时,2x ,x 2,log 2x 的大小关系是( ) A.2x >x 2>log 2x B.x 2>2x >log 2x C.2x >log 2x >x 2 D.x 2>log 2x >2x答案 B解析 方法一 在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x 在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x .方法二 比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B.5.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为___________________. 答案 y =-14x +50(0<x <200)解析 设解析式为y =kx +b ,由⎩⎪⎨⎪⎧30=k ×80+b ,20=k ×120+b ,解得k =-14,b =50,∴y =-14x +50(0<x <200).三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型. (3)幂函数模型y =x n (n >0),则可以描述增长幅度不同的变化:n 值较小(n ≤1)时,增长较慢;n 值较大(n >1)时,增长较快.一、选择题1.下列函数中,增长速度最慢的是( ) A.y =6x B.y =log 6x C.y =x 6 D.y =6x 答案 B解析 对数函数增长的速度越来越慢,故选B.2.今年小王用7 200元买了一台笔记本电脑,由于电子技术的飞速发展,计算机成本不断降低,每隔一年这种笔记本电脑的价格降低13,则三年后这种笔记本的价格是( )A.7 200×(13)3B.7 200×(23)3C.7 200×(13)2D.7 200×(23)2答案 B解析 由于小王用7 200元买了一台笔记本电脑,每隔一年这种笔记本电脑的价格降低13,故一年后,这种笔记本电脑的价格为7 200-7 200×13=7 200×23,两年后,价格为7 200×23×(1-13)=7 200×(23)2,三年后这种笔记本电脑的价格为7 200×(23)3.3.如图给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y =2tB.对数函数:y =log 2tC.幂函数:y =t 3D.二次函数:y =2t 2答案 A解析 由题中图象可知,该函数模型为指数函数.4.某种动物繁殖数量y (只)与时间x (年)的关系为y =a log 2(x +1),设这种动物第一年有100只,则到第7年它们发展到( ) A.300只 B.400只 C.500只 D.600只答案 A解析 由已知第一年有100只,得a =100.将a =100,x =7代入y =a log 2(x +1), 得y =300.5.向高为H 的水瓶内注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( )答案 B解析 取OH 的中点(如图)E 作h 轴的垂线,由图知当水深h 达到容量一半时,体积V 大于一半.易知B 符合题意.6.若x ∈(1,2),则下列结论正确的是( ) A.2x >x 21>lg x B.2x >lg x >x 21 C.x 21>2x >lg x D.x 21>lg x >2x答案 A解析 ∵x ∈(1,2),∴2x >2.∴x 21∈(1,2),lg x ∈(0,1).∴2x >x 21>lg x . 二、填空题7.三个变量y 1、y 2、y 3随变量x 的变化情况如表:x 1.00 3.00 5.00 7.00 9.00 11.00 y 1 5 135 625 1 715 3 645 6 655 y 2 5 29 245 2 189 19 685 177 149 y 35.006.106.616.957.207.40其中x 呈对数函数型变化的变量是________,呈指数函数型变化的变量是________,呈幂函数型变化的变量是________. 答案 y 3 y 2 y 1解析 根据三种模型的变化特点,观察表中数据可知,y 2随着x 的增大而迅速增加,呈指数函数型变化,y 3随着x 的增大而增大,但变化缓慢,呈对数函数型变化,y 1相对于y 2的变化要慢一些,呈幂函数型变化.8.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料质量M kg 、火箭(除燃料外)质量m kg 的关系是v =2 000ln ⎝⎛⎭⎫1+Mm ,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 答案 e 6-1解析 由题意得2 000ln ⎝⎛⎭⎫1+Mm =12 000. ∴ln ⎝⎛⎭⎫1+M m =6,从而Mm=e 6-1. 9.若a >1,n >0,那么当x 足够大时,a x ,x n ,log a x 中最大的是________. 答案 a x解析 由指数函数、幂函数和对数函数增长快慢的差别易知a x >x n >log a x . 10.如图所示的是某受污染的湖泊在自然净化过程中某种有害物质的残留量y 与净化时间t (月)的近似函数关系:y =a t (t ≥0,a >0且a ≠1)的图象.有以下叙述:①第4个月时,残留量就会低于15;②每月减少的有害物质量都相等;③若残留量为12,14,18时,所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.其中所有正确叙述的序号是________. 答案 ①③解析 根据题意,函数的图象经过点(2,49),故函数为y =(23)t .易知①③正确.三、解答题11.大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v (m/s),鲑鱼的耗氧量的单位数为Q ,研究中发现v 与log 3Q100成正比,且当Q =900时,v =1.(1)求出v 关于Q 的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s 时耗氧量的单位数. 解 (1)设v =k ·log 3Q100,∵当Q =900时,v =1,∴1=k ·log 3900100,∴k =12,∴v 关于Q 的函数解析式为v =12log 3Q100.(2)令v =1.5,则1.5=12log 3Q100,∴Q =2 700,∴一条鲑鱼的游速是1.5 m/s 时耗氧量为2 700个单位.12.现有某种细胞100个,每小时分裂一次,即由1个细胞分裂成2个细胞,且每次只有占总数12的细胞分裂,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 3=0.477,lg 2=0.301)解 现有细胞100个,先考虑经过1,2,3,4个小时后的细胞总数: 1小时后,细胞总数为12×100+12×100×2=32×100(个);2小时后,细胞总数为12×32×100+12×32×100×2=94×100(个);3小时后,细胞总数为12×94×100+12×94×100×2=278×100(个);4小时后,细胞总数为12×278×100+12×278×100×2=8116×100(个).可归纳出,细胞总数y (个)与时间x (小时)之间的函数关系为y =100×(32)x ,x ∈N *.由100×(32)x >1010,得(32)x >108,两边同时取以10为底的对数,得x lg 32>8,∴x >8lg 3-lg 2.∵8lg 3-lg 2=80.477-0.301≈45.45,∴x >45.45.故经过46小时,细胞总数超过1010个.13.我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:(1)树叶沙沙声的强度是1×10-12 W /m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8 W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?解 (1)由题意知:树叶沙沙声的强度水平为L 2=10lg I 2I 0=10lg 1=0(分贝); 耳语的强度水平为L 3=10lg I 3I 0=10lg 102=20(分贝); 恬静的无线电广播的强度水平为L 4=10lg I 4I 0=10lg 104=40(分贝). (2)由题意知0≤L 1<50,即0≤10lg I I 0<50, 所以1≤I I 0<105, 即1×10-12≤I <1×10-7.所以新建的安静小区的声音强度I 的范围为[1×10-12,1×10-7).。

几类不同增长的函数模型 说课稿 教案 教学设计

几类不同增长的函数模型  说课稿  教案 教学设计

几类不同增长的函数模型●三维目标1.知识与技能在掌握好函数基本性质的前提下,使学生探求函数在实际中的应用,并学会利用函数知识建立数学模型解决实际问题.2.过程与方法(1)培养学生应用数学的意识分析问题、解决问题的能力;(2)培养学生的综合实践和自主学习的能力.3.情感、态度与价值观体验函数是描述宏观世界变化规律的基本数学模型,认识事物之间的普遍联系与相互转化,在实践研究中,培养学生的创新精神,团结协作精神,激发学生学习数学的兴趣.二、重点与难点重点:将实际问题转化为函数模型,训练学生通过实践探求函数在实际中的应用.难点:怎样选择适当的数学模型分析解决实际问题.重难点突破:主要利用信息技术从图、表两方面对知识讲解.首先对具体函数y =2x,y=x2,y=log2x的增长的差异性进行比较.在比较函数y=2x,y=x2的增长的差异性时,分别选择了三个不同的步长进行研究,这样就更能反映了这两类函数的增长的特点,在教学时要让学生体会到为什么要选择三种不同的步长加以研究,能让学生在解决具体问题时可以针对不同的情况进行合理的选择.在比较幂函数与对数函数的增长的差异性时可利用类比的方法.然后将结论推广到一般的指数函数y=a x(a>1)、对数函数y=log a x(a>1)、幂函数y=x n(n>0)在区间(0,+∞)的增长的差异性,即存在一个x0,当x>x0时,a x>x n>log a x,充分体现了“指数爆炸”、“直线上升”、“对数增长”的特点.整个过程向学生渗透从具体到一般、数形结合的数学思想方法,培养学生全面分析问题、解决问题的能力.课标解读1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢.(重点) 2.理解直线上升、对数增长、指数爆炸的含义,及三种函数模型的性质的比较.(易混点)3.会分析具体的实际问题,能够建模解决实际问题.(难点)三类函数增长速度的比较【问题导思】函数y=2x,y=log2x及y=x2的图象如图所示.1.当x∈(2,4)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=x2.2.当x∈(4,+∞)时,函数y=x2与y=2x哪一个增长得更快一些?【提示】y=2x.3.是否存在一个x0,使x>x0时恒有2x>x2>log2x成立?【提示】存在.1.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x增大逐渐变陡随x增大逐渐变缓随n值而不同(1)在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有log a x<x n<a x.函数模型的增长差异研究函数y=0.5e-2,y=ln(x+1),y=x-1在[0,+∞)上的增长情况.【思路探究】解答本题的关键是在同一坐标系中画出它们的图象,结合图象说明它们的增长情况.【自主解答】分别在同一个坐标系中画出三个函数的图象,如图,从图象上可以看出函数y=0.5e x-2的图象首先超过了函数y=ln(x+1)的图象,然后又超过了y=x2-1的图象,即存在一个满足0.5e x0-2=x20-1的x0,当x>x0时,ln(x+1)<x2-1<0.5e x-2.1.判断不同函数增长模型的差异有两种方法,一是根据图象判断,二是根据函数的变化量的情况判断.2.三种函数模型的表达形式及其增长特点(1)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增大的速度越来越快,常称之为“指数爆炸”.(2)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,c,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.三个变量y1,y2,y3随着变量x的变化情况如下表:x 1357911y15135625 1 715 3 645 6 655y2529245 2 18919 685177 149y35 6.10 6.61 6.957.27.4 则关于x分别呈对数型函数、指数型函数、幂函数型函数变化的变量依次为() A.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2【解析】通过指数型函数、对数型函数、幂函数型函数的增长规律比较可知,对数型函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数型函数的增长是爆炸式增长,y2随x的变化符合此规律;幂函数型函数的增长速度越来越快,y1随x的变化符合此规律,故选C.【答案】 C根据函数增长差异确定图象并比较大小函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出示意图中曲线C1,C2分别对应哪一个函数;(2)结合函数图象示意图,判断f(6),g(6),f(2012),g(2012)的大小.【思路探究】根据指数函数、幂函数增长差异进行判断.【自主解答】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),∴1<x1<2,9<x2<10.∴x1<6<x2,2012>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),∴f(6)<g(6).当x>x2时,f(x)>g(x),∴f(2012)>g(2012).又∵g(2012)>g(6),∴f(2012)>g(2012)>g(6)>f(6).1.解答此类问题的关键是明确“指数爆炸”、“对数增长”等函数增长差异,需注意幂函数的增长是介于两者之间的.2.体会数形结合思想,明确图形是函数关系的直观反映.本例中若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并说明理由.【解】a=1,b=9.理由如下:令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点,由于φ(x)在[1,13]上为连续函数,φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,所以函数φ(x)=f(x)-g(x)的两个零点x1∈[1,2],x2∈[9,10],因此a=1,b=9.根据函数增长差异选择函数模型某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?【思路探究】作出函数图象→观察图象得到结论【自主解答】借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.不同的函数增长模型描述增长速度的差异:(1)线性函数增长模型适合于描述增长速度不变的变化规律;(2)指数函数增长模型适合于描述增长速度急剧的变化规律;(3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为( )A .B ,A ,CB .A ,C ,B C .A ,B ,CD .C ,A ,B【解析】 A 种债券的收益是每100元收益3元;B 种债券的利率为51.4-5050,所以100元一年到期的本息和为100×⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝ ⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.【答案】 B数形结合思想在函数中的应用(12分)电信局为了配合客户的不同需要,现设计A ,B 两种优惠方案,这两种方案的应付电话费y (元)与通话时间x (分钟)之间的关系如图3-2-2所示(实线部分).(注:图中MN ∥CD )图3-2-2(1)若通话时间为2小时,则按方案A ,B 各付话费多少元?(2)方案B 从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B 才会比方案A 优惠?【思路点拨】 两种方案都是由线性函数组成的分段函数,结合图形可求出函数的解析式,然后再根据题意解题.【规范解答】 由图可知M (60,98),N (500,230),C (500,168),MN ∥CD .1分 设这两种方案的应付话费与通话时间的函数关系分别为f A (x ),f B (x ),则f A (x )=⎩⎨⎧ 98(0≤x ≤60)310x +80(x >60),f B (x )=⎩⎨⎧ 168(0≤x ≤500)310x +18(x >500).3分(1)易知,通话2小时,两种方案的话费分别为116元,168元.4分(2)因为f B (n +1)-f B (n )=310(n +1)+18-310n -18=0.3(n >500),6分所以方案B 从500分钟以后,每分钟收费0.3元.7分(3)由图可知,当0≤x ≤60时,有f A (x )<f B (x ).当x >500时,f A (x )>f B (x ).9分当60<x ≤500时,168=310x +80,解得x =8803.当60<x <8803时,f B (x )>f A (x );当8803≤x ≤500时,f A (x )>f B (x ).11分即当通话时间在⎝ ⎛⎭⎪⎫8803,+∞时,方案B 才会比方案A 优惠.12分1.对于给出图象的应用性问题,首先我们可以根据函数图象用待定系数法求出解析式,然后再用函数解析式来解决问题,最后再转化成具体问题,作出解答.2.对于借助函数图象表达题目信息的问题,读懂图象是解题的关键.小结1.直线上升、指数爆炸、对数增长对于直线y=kx+b(k≥0)、指数函数y=a x(a>1)、对数函数y=log b x(b>1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.2.函数模型选取的择优意识解题过程中究竟选用哪种增长的函数模型,要根据题目的具体要求进行抽象和概括,灵活地选取和建立数学模型.3.要注意化归思想和数形结合思想的运用.。

几类不同增长的函数模型教学设计

几类不同增长的函数模型教学设计

几类不同增长的函数模型教学设计教学设计:几类不同增长的函数模型一、教学目标1.了解不同增长的函数模型,并能够区分它们的特点和应用领域;2.掌握常见的函数模型如线性函数、指数函数、对数函数和幂函数,并能够运用这些模型解决实际问题;3.培养学生对函数模型的理解和应用能力,提高解决实际问题的能力。

二、教学内容1.线性函数的增长特点和应用领域;2.指数函数的增长特点和应用领域;3.对数函数的增长特点和应用领域;4.幂函数的增长特点和应用领域。

三、教学过程1.导入引入(15分钟)以一个实际问题为引导,引导学生思考函数模型的应用场景和重要性。

例如,假设一个旅游公司在地开展了一项旅游活动,目标是每个月增加100名游客,学生应该思考如何建立一个适合这种情况的增长函数模型。

2.线性函数的教学(30分钟)2.1 线性函数的定义和特点:线性函数是自变量的一次函数,通常表示为 y = kx + b,其中 k 和 b 是常数。

讲解线性函数的特点,如斜率和截距的含义。

2.2线性函数的应用:通过实际问题引导学生判断何时可以应用线性函数模型,并举例说明如何建立和使用线性函数模型。

3.指数函数的教学(30分钟)3.1指数函数的定义和特点:指数函数是以常数为底数,自变量为指数的函数,通常表示为y=a^x,其中a>0,且a≠1、讲解指数函数的特点和增长规律。

3.2指数函数的应用:通过实际问题引导学生判断何时可以应用指数函数模型,并举例说明如何建立和使用指数函数模型。

4.对数函数的教学(30分钟)4.1 对数函数的定义和特点:对数函数是指数函数的逆运算,通常表示为 y = logₐ(x),其中 a > 0,且a ≠ 1、讲解对数函数的特点和增长规律。

4.2对数函数的应用:通过实际问题引导学生判断何时可以应用对数函数模型,并举例说明如何建立和使用对数函数模型。

5.幂函数的教学(30分钟)5.1幂函数的定义和特点:幂函数是自变量为底数,指数为常数的函数,通常表示为y=x^a,其中a是常数。

人教版高中数学教学设计案例《几类不同增长的函数模型》

人教版高中数学教学设计案例《几类不同增长的函数模型》

人教版高中数学教学设计案例《几类不同增长的函数模型》一、教学任务分析1.函数是描述客观世界变化规律的重要数学模型,建立实际问题的函数模型是函数教学的一项重要任务.而要建立实际问题的函数模型,不仅就要理解具体函数的概念和性质,还要能区别它们之间的差异.特别是在选择函数模型描述实际问题增长变化的规律时,更要能比较各个函数在不同范围的增长差异.这对进一步理解函数的增减性、增长(减少)快慢、增长(衰减)率等性质,更好地认识函数模型都有促进作用.2.本节内容的教学目就是能利用计算工具,比较指数函数、对数函数以及幂函数增长差异,并结合实例体会直线上升、指数爆炸、对数增长的不同函数类型增长的含义.利用计算工具可以通过函数解析式、图象、表格等多元联系表示来比较函数增长的差异.3.本节内容的教学重点是通过实例比较指数函数、对数函数以及幂函数增长差异,并从中体会直线上升、指数爆炸、对数增长的不同函数类型增长的含义.由于一个函数在不同区间的增长情况会有所不同,所以学生要比较指数函数、对数函数以及幂函数的增长差异,特别是要比较指数函数与幂函数的增长差异,可能会有困难.二、教学基本流程三、教学情景设计1.通过例1体会直线上升和指数爆炸的不同函数类型增长的含义(1)提出问题问题:对于例1的三种投资方案,你觉得哪种方案的回报多?为什么?问题设计意图:先让学生凭直觉做出判断,再建立三种方案的函数模型进行准确地分析.这样,学生便可通过对比,对直线上升和指数爆炸有深刻的体会.师生活动:教师引导学生阅读例1,然后让学生凭直觉尝试回答问题.(2)建立实际问题的函数模型问题:怎样才能较为准确地评价三种投资方案?问题设计意图:引导学生将实际问题转化为数学问题,建立三种投资方案所对应的函数模型.师生活动:教师提出问题,学生交流并回答问题.问题:例1中存在哪些变量?能否分别用函数描述三种方案中变量间的关系?问题设计意图:引导学生分别建立三种投资方案所对应的函数模型.师生活动:学生分析问题中的变量关系,并写出每个方案的函数解析式.在此过程中,当学生在分析变量关系以及求函数解析式遇到困难时,教师适时进行指导.问题:根据所得到的函数解析式,能否合理地选择投资方案?如果不能怎么办?问题设计意图:了解学生对所学函数模型的认知情况,并启发学生对函数进行多元联系表示,从而能直观地进行定性和定量分析.师生活动:学生根据解析式进行分析,并发表对方案选择的观点,教师引导学生将函数由解析式表示为数表和图象.(3)利用计算工具比较三种投资方案所对应的函数模型,并体会它们的增长特点问题:用计算器或计算机作出所得函数的数表和图象,看能否对选择投资方案提供帮助?问题设计意图:利用函数的数表和图象为选择投资方案提供依据,引导学生从局部和整体的角度,对三种方案所对应的函数模型的增长情况进行定量和定性分析.师生活动:学生用计算器或计算机作出三个函数的数表和图象.教师引导学生根据函数的数表和图象分析三种方案的增长情况,并依此对三种方案作出正确的选择.问题:用计算器或计算机求出三种方案每天的增加量和累计量,再对三个函数模型的增长情况作进一步的比较,看对三种函数模型是否有更清楚的认识?问题设计意图:引导学生从本质上对三个函数模型的增长情况作定量分析,为今后进一步研究函数的增长速度和增长率奠定基础.师生活动:教师引导学生利用增加量来刻画三个函数模型的增长速度.问题:对比三个函数模型的增长情况,重新描述一下三种方案的特点?问题设计意图:结合实际问题,让学生通过对比前后的选择方案,体会到直线上升和指数爆炸的不同函数类型增长的含义.师生活动:教师引导学生联系函数的解析式、数表和图象,对三种方案相应的函数模型的增长情况进行描述.2.通过例2体会对数增长的特点,并进一步体会直线上升和指数爆炸的不同函数类型增长的含义(1)提出问题问题:通过对例1的解决,你认为应该如何选择例2的三个函数模型?问题设计意图:让学生认识到,应该从定量和定性的角度对题目所给的三个函数进行对比分析.师生活动:教师引导学生阅读例2,学生在教师的引导下对解决问题的方法作出选择.问题:在例2的解决过程中,应该注意哪些问题?问题设计意图:让学生关注实际问题的条件对函数模型选择的约束,养成分析问题解决问题的良好习惯.师生活动:教师提出问题,学生通过对题目的进一步分析,得出在选择函数模型时应注意:在区间[10,1 000]上分析,y不大于5,y与x的比值不大于25%.(2)利用计算工具选择函数模型,并体会三个函数模型的增长特点问题:例2涉及到哪几类函数模型?对它们进行选择的本质是什么?问题设计意图:让学生认识到,问题的本质就是要比较三个函数的增长情况是否符合题目的要求.师生活动:教师引导学生进行分析,题目所涉及到的奖金是随利润的增加而增加,所以用以刻画这一变化规律的函数模型应该是增长型的.但题目所提供的三个模型都是增长型的,所以问题的本质就是要对它们的增长情况进行比较,从中挑选出符合题目要求的模型.问题:你是如何选择三个函数模型的?问题设计意图:引导学生认识到,虽然利用函数的数表和图象都可为选择投资方案提供依据,但数表利于从局部较为准确地定量反映函数的变化情况,而图象则利于从整体定性地描述函数变化的概貌.所以应结合问题的具体情况,选择从局部或整体的角度,对已知的三个函数模型的增长情况进行定量或定性分析.师生活动:引导学生用计算器或计算机作出已知的三个函数以及y=5的图象,通过对图象的分析,初步选择函数y=log7x+1作为奖励模型.问题:你的选择一定正确吗?是否需要作进一步的说明?问题设计意图:让学生认识到,虽然利用计算工具能简捷地作出图象,并帮助我们直观地进行判断,但对所得出的判断结果,还需要进行严格的证明.以此帮助学生形成良好的思维品质.师生活动:教师引导学生通过计算和证明,说明函数y=0.25x和y=1.002x都不符合奖励模型的要求,而只有函数y=log7x+1符合奖励模型的要求.问题:你对例1和例2所涉及到的函数模型的增长特点有何认识?问题设计意图:让学生通过对具体函数的分析,形成对其所涉及的各类函数模型增长特点的概括性认识,并通过归纳总结,加深对各类函数模型增长含义的体会.师生活动:学生进行交流,并归纳出:一次函数具有直线上升的增长特点,指数函数具有爆炸性上升的增长特点,对数函数具有平缓上升的增长特点.3.通过比较y=2x、y=x2和y=log2x的增长情况,进一步认识指数函数、幂函数、对数函数在不同区间的增长差异问题:作出函数y=2x、y=x2和y=log2x的数表和图象,看它们有何增长差异?问题设计意图:学生通过作函数的数表和图象,在一定区间范围对三个函数的增长差异形成初步的认识.师生活动:先让每个学生独立地用计算器或计算机作出三个函数的数表和图象,然后大家进行交流.对函数y=log2x分别与函数y=2x、y=x2的增长差异形成统一认识.由于不同学生研究的区间范围不同,所以大家对函数y=2x和y=x2增长差异的认识会有所不同.教师组织学生对所得到的不同结论展开讨论.问题:你所作的函数数表和图象是否全面地反映出了这几个函数的增长差异?通过例1知道,函数在不同区间的增长情况会有所不同,这对分析这几个函数的增长差异有何启发?问题设计意图:引导学生在不同的区间范围,多角度地对函数y=2x和y=x2的增长差。

《几种不同增长的函数模型》 教案及说明

《几种不同增长的函数模型》 教案及说明
课题:几类不同增长的函数模型
教学目标: 1.使学生能够借助计算器或计算机制作数据表格和函数图像,对几种常见 的函数类型的增长情况进行比较,在实际应用的背景中理解直线上升、指数爆 炸、对数增长等不同函数类型增长的差异。 2.使学生通过对投资方案的选择,学会利用数据表格和函数图像分析问题 和解决问题;引导学生充分体验将实际问题“数学化”解决的过程, 从而理解 “数学建模”的思想方法解决问题的有效性。 3.鼓励学生收集一些社会生活中普遍使用的函数模型(指数函数、对数函 数、幂函数、分段函数等) ,体验函数是描述宏观世界变化规律的基本数学模型, 从而培养学习数学的兴趣。 教学重、难点: 重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、 对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不 同函数类型增长的含义. 难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。 突破难点的关键 : 1.对例一要从描述函数的三个角度做分析,充分利用计算机辅助教学,为 后续内容做好铺垫。 2.对例二的“构造思想”做重点分析,以利于学生理解并运用。
师:引导学生分析问题使学 生得出:要对每一个奖励模型的 奖金总额是否超出 5 万元,以及 奖励比例是否超过 25% 进行分 析,才能做出正确选择. 生:分析数据特点与作用判 定每一个奖励模型是否符合要 求.
y log7 x 1 y 1.002x .
问:其中哪个模型能符合公司的要求? 探究: ①本例涉及了哪几类函数模型? 本例 的实质是什么? (变量分析,确定模型) ②你能根据问题中的数据,判定所给的 奖励模型是否符合公司要求吗? (分析模型) ③重点分析讲解构造思想的体现 ④通过对三个函数模型增长差异的比 较,写出例 2 的解答. 尝试练习: P 2; 1 P 110练习, 113练习1、 反 馈 巩 固 小 结 反 思 师:引导学生利用解析式, 结合图象,对三个模型的增长情 况进行分析比较,重点写出判断 “奖励比例是否超过 25%”部分 的证明过程,使学生体会函数思 想解决不等式问题的方法. 生:进一步认识三个函数模 型的增长差异,对问题作出具体 解答.

几类不同增长的函数模型教案

几类不同增长的函数模型教案

几类不同增长的函数模型教案不同的增长函数模型可以涵盖各种实际问题和数学概念。

以下是几个常见的函数模型以及它们的教学案例。

一、线性函数模型线性函数模型是最简单也是最容易理解的增长模型之一、在这个模型中,函数的增长率是恒定的,即每单位自变量增加都会导致固定的因变量增加。

这种模型可以用来解释一些日常生活中的现象,例如物体的匀速直线运动。

教学案例:以匀速直线运动为例,教师可以带领学生观察一个滚动的球,并记录下球滚动的时间和球滚动的距离。

通过分析数据,学生可以发现球滚动的距离与时间成正比,即球滚动的距离是时间的线性函数。

教师可以引导学生使用公式来表示这种线性关系,并使用此关系预测未来的球滚动距离。

二、指数函数模型指数函数模型中,增长率是以指数的形式增加或减少的。

这种模型适用于许多和复利相关的问题,如存款利息、细菌繁殖等。

教学案例:以细菌繁殖为例,教师可以给学生一个初始细菌数量,并告诉他们每小时细菌数量翻倍。

学生可以使用指数函数模型来表示细菌数量随时间的增长。

他们可以计算出不同时间点的细菌数量,并观察到数量的指数增长。

通过这个案例,学生可以理解指数函数模型的概念,并应用这个概念解决实际问题。

三、对数函数模型对数函数模型与指数函数模型相反,其增长率是逐渐减少的。

这种模型适用于许多与收益递减相关的问题,如广告效果的衰减、物种灭绝等。

教学案例:以广告效果的衰减为例,教师可以让学生观察一则广告的点击次数随时间的变化。

学生可以发现广告的点击次数一开始会快速增加,但随着时间的推移增长速度逐渐减慢。

通过绘制折线图并使用对数函数模型来拟合数据,学生可以更好地理解对数函数模型的特点,并预测广告点击数的未来情况。

四、多项式函数模型多项式函数模型是基于多项式函数的增长模型,适用于许多实际问题,如多项式曲线拟合、物体的轨迹等。

教学案例:以轨迹为例,教师可以引导学生观察一个投掷物体的轨迹,并记录下物体在不同时间点的位置信息。

学生可以通过数据拟合一条多项式曲线来表示物体的轨迹,并通过这个模型来预测物体下一步的位置。

几种不同增长的函数模型 教案

几种不同增长的函数模型 教案

几种不同增长的函数模型教案一、教学目标1、知识与技能目标学生能够理解一次函数、二次函数、指数函数、对数函数等常见函数的增长特征。

能够根据实际问题,建立相应的函数模型,并比较不同函数模型的增长差异。

2、过程与方法目标通过实例分析和数据对比,培养学生观察、分析和归纳的能力。

引导学生运用数学知识解决实际问题,提高学生的数学应用意识和创新思维能力。

3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣和积极性。

培养学生严谨的科学态度和勇于探索的精神。

二、教学重难点1、教学重点一次函数、二次函数、指数函数、对数函数的增长特征。

不同函数模型在实际问题中的应用及比较。

2、教学难点如何根据实际问题选择合适的函数模型。

理解指数函数爆炸式增长的特点。

三、教学方法讲授法、讨论法、练习法、案例分析法四、教学过程1、导入新课展示一些生活中常见的增长现象,如人口增长、经济增长、细菌繁殖等。

提问学生这些增长现象可以用哪些数学函数来描述,引出本节课的主题——几种不同增长的函数模型。

2、知识讲解一次函数模型:形如 y = kx + b(k、b 为常数,k ≠ 0)的函数,其增长特点是直线式增长,增长速度保持不变。

举例:某工厂生产某种产品,每月的产量与生产时间之间的关系可以用一次函数表示。

二次函数模型:形如 y = ax²+ bx + c(a、b、c 为常数,a ≠ 0)的函数,其增长特点是先增后减或先减后增,存在对称轴。

举例:某商场销售某种商品,销售额与销售价格之间的关系可以用二次函数表示。

指数函数模型:形如 y = a^x(a > 0 且a ≠ 1)的函数,其增长特点是爆炸式增长,增长速度越来越快。

举例:某城市的人口增长情况可以用指数函数表示。

对数函数模型:形如 y =logₐx(a > 0 且a ≠ 1)的函数,其增长特点是增长速度逐渐变慢。

举例:某种药物在人体内的浓度变化可以用对数函数表示。

几类不同增长的函数模型 优秀教案

几类不同增长的函数模型 优秀教案

【板书设计】
一、几类函数模型
二、例题
例1
变式 1
例2
变式 2
【作业布置】
150

写出明年第 n 个月这种商品需求量 g n (万件)与月份 n 的函数关系式。
(万
四、小结
解决应用题的一般程序:
① 审题:弄清题意,分清条件和结论,理顺数量关系;
② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③ 解模:求解数学模型,得出数学结论;
④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义。
教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长 等不同函数类型增长的含义。
教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
【教学过程】
一、预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、情景导入、展示目标。 材料:澳大利亚兔子数“爆炸” 1859 年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天
敌,兔子数量不断增加,不到 100 年,兔子们占领了整个澳大利亚,数量达到ቤተ መጻሕፍቲ ባይዱ75 亿只。可爱 的兔子变得可恶起来,75 亿只兔子吃掉了相当于 75 亿只羊所吃的牧草,草原的载畜率大大 降低,而牛羊是澳大利亚的主要牲口。这使澳大利亚头痛不已,他们采用各种方法消灭这些 兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚 人才算松了一口气。
例 2 某公司为了实现 1000 万元利润的目标,准备制定一个激励销售部门的奖励方案:在 销售利润达到 10 万元时,按销售利润进行奖励,且奖金 y (单位:万元)随销售利润 x (单 位:万元)的增加而增加但奖金不超过 5 万元,同时奖金不超过利润的 25%。现有三个奖励 模型:

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型教案(2课时)几种不同增长的函数模型(两课时)一、教学目的1、利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;2、结合实例让学生体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义;3、运用函数的三种表示法(解析式、图象、表格)并结合信息技术解决一些实际问题;4、以一些实际例子,让学生了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用。

二、教学重点、难点重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

难点:怎样选择数学模型分析解决实际问题。

三、教学过程第一课时1、复习引入师:在我们的生活中,有没有用到函数的例子?生:细胞分裂;银行储蓄;早晨跑步锻炼时速度与时间的关系;……师:很好,生活中,数学无处不在,用好数学,将会给我们带来很大的方便。

今天,我们就来看一个利用数学为我们服务的例子。

2、新课(用幻灯片展示例题)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:1)每天回报40元;2)第一天回报10元,以后每天比前一天多回报10元;3)第一天回报0.4元,以后每天的回报比前一天翻一番。

请问:你会选择哪一种投资方案?(让学生充分讨论)教师提示:1)、考虑回报量,除了要考虑每天的回报量之外,还得考虑什么?(回报的累积值)。

2)、本题中涉及哪些数量关系?如何利用函数描述这些数量关系?教师引导学生分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作适当的指导。

设问:根据所列的表格中提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?教师引导学生观察表格中三个方案的数量变化情况,对“增加量”进行比较,体会“直线增长”、“指数爆炸”等;让学生通过观察,说出自己的发现,并进行交流。

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型 教案(2课时)

几种不同增长的函数模型教案(2课时)一、教学目标1.了解几种不同的增长函数模型,包括线性模型、指数模型和对数模型;2.熟悉不同增长函数模型的特点和应用领域;3.掌握利用增长函数模型进行数据预测和分析的方法。

二、教学内容第一课时:线性模型和指数模型1.线性模型的定义和特点–线性函数的表达形式和一次函数的特点–线性关系的图像表示和示例–线性模型的应用案例2.指数模型的定义和特点–指数函数的表达形式和指数增长的特点–指数关系的图像表示和示例–指数模型的应用案例第二课时:对数模型和应用实践1.对数模型的定义和特点–对数函数的表达形式和对数增长的特点–对数关系的图像表示和示例–对数模型的应用案例2.数据预测和分析实践–利用线性模型进行数据预测和趋势分析–利用指数模型进行数据预测和增长趋势分析–利用对数模型进行数据分析和曲线拟合三、教学方法1.导入法:通过提问和展示实例引入不同增长函数模型的概念和特点;2.归纳法:分析线性模型、指数模型和对数模型的定义和特点,进行比较和归纳总结;3.实践法:结合数据预测和分析的实际问题,进行实践操作和演练;4.讨论法:组织学生进行小组讨论,探究不同增长函数模型在实际问题中的应用。

四、教学资源1.教学投影仪和电脑;2.课堂板书和笔。

五、教学评估1.课堂讨论:观察学生在小组讨论中的表现,评估其对不同增长函数模型的理解和应用能力;2.练习作业:布置相关练习作业,测试学生对增长函数模型的掌握程度;3.课后反馈:与学生进行面对面的交流,了解他们的学习体会和疑惑,及时进行反馈和指导。

六、教学计划第一课时•导入:提出问题,引起学生思考和讨论(10分钟)•线性模型的讲解和示例分析(30分钟)•指数模型的讲解和示例分析(30分钟)•小结和课堂讨论(10分钟)第二课时•教师对对数模型进行讲解和示例分析(30分钟)•数据预测和分析实践活动(40分钟)•小结和课堂讨论(10分钟)七、教学延伸1.学生可自行研究其他增长函数模型,拓宽对函数模型的理解和应用;2.引导学生应用不同增长函数模型进行实际问题的数据预测和分析;3.组织学生参加数学建模和竞赛活动,提升应用数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§3.2.1几类不同增长的函数模型
教学目标:
1.使学生能够借助计算器或计算机制作数据表格和函数图像,对几种常见的函数类型的增长情况进行比较,在实际应用的背景中理解直线上升、指数爆炸、对数增长等不同函数类型增长的差异。

2.使学生通过对投资方案的选择,学会利用数据表格和函数图像分析问题和解决问题;引导学生充分体验将实际问题“数学化”解决的过程,从而理解“数学建模”的思想方法解决问题的有效性。

3.鼓励学生收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),体验函数是描述宏观世界变化规律的基本数学模型,从而培养学习数学的兴趣。

教学重、难点:
重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。

突破难点的关键:
1.对例一要从描述函数的三个角度做分析,充分利用计算机辅助教学,为后续内容做好铺垫。

2.对例二的“构造思想”做重点分析,以利于学生理解并运用。

技术手段:计算机辅助教学
教学方法:启发式自主探究式
教学过程与操作设计:
《几类不同增长的函数模型》的教案设计说明本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章的§3.2.1几种不同增长函数模型的第一课时。

它既是第二章基本初等函数知识的延续,又为函数模型的应用打下了基础,起着承前起后的作用。

本节课我的教学目标定位在通过引领学生体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义,认识事物之间的普遍联系与相互转化,使学生探求函数在实际中的应用,体验函数是描述宏观世界变化规律的基本数学模型,并学会利用函数知识建立数学模型解决实际问题,从而培养学生应用数学的意识分析问题,解决问题的能力;培养学生的综合实践和自主学习的能力;培养学生的创新精神,团结协作精神,激发学生学习数学的兴趣。

为了实现既定的教学目标,我对教法的设计原则是以学生为主体,引导学生在情境中思考,在实践中体验。

教是为了学,学法的指导在每节课都是一种润物无声、潜能无限的环节,容易被忽略。

在本节课教学过程中我会适时地指导学生对实践中发现的问题进行归纳总结,建立函数模型,并进行学习上的交流,使学生真正认识到函数的应用和解决实际问题;我还会注意监督学生对已学过的知识的落实,培养学生“螺旋式上升”搭建自己的数学知识体系的学习方法,使学生的数学学习过程成为在教师引导下的"再创造"过程。

学生在学习本节内容之前已经学习了函数的概念,函数图像的性质等知识,这为几类不同增长的函数模型的确立和作图提供了基础,但不同函数模型的增长差异的比较及其在实际问题中的应用,需要学生具备一定的数学建模能力和图表分析能力,还需要借助图像以获得直观感知和彰显隐处。

因此,在本节课
运用教学手段的设计上,我认为要尽可能利用现代教育技术来呈现教学中难以呈现的课程内容,尽可能利用多媒体教育技术平台,加强数学教学与信息技术的结合。

同时基于学生有一定的计算机操作能力,我鼓励并指导学生亲自动手,运用计算机对问题进行探索、发现和分析。

这种自主探索的课程,与以往的教学方式并不完全相同,学生能够感觉到知识并不一定来源于书本,动手实践一样是获得知识的重要手段和方法,再将所得数据进行再加工提炼得到新知识,这也正符合一切新知的产生过程,说明数学学习与其它学科的学习是相同的,有异曲同工之妙。

在引导学生展开对例1的具体分析时,我安排两组学生分别利用“几何画板”和Excel从不同角度作图分析三中不同投资方案,分工虽然不同但同学们却没有各做各的、互不理睬,而是主动地合作交流起来,很快同学们就发现从获得回报的累计量角度分析三种方案,与从每天获得的回报量角度分析三种方案得到的结论是不同的,课堂气氛很是活跃,学生团结协作的意识明显增强。

还有很多学生自主运用Excel表格分析例1时,根据本道题目自变量的取值范围为正整数的限制,利用Excel表格作出了散点图,更为科学、合理地分析出了不同天数选择不同方案的理由,促进学生形成严谨、科学、缜密的数学学习素养。

再例如分析例2时,我将三个数学模型的图像展现在同学门面前,学生们很快就通过图象排除了两个函数模型,这种效果恐怕脱离开计算机技术的辅助是很难快速实现的。

另外两道例题在解决过程中均充分体现了“数学建模”思想方法,为了引领学生体验这种思想方法的解体过程,我设计了“阶梯状”深入的问题情境,目的是帮助学生读懂题目、挖掘有益条件、从实际问题中抽象出数学函数模型,最终主动寻求答案。

“数学建模”的过程也是培养学生的阅读、理解能力,渗透数学源于实际又应用于实际的思想,体会数学在实际问题中的应用价值。

在例2
的解题过程中,教材中对判断模型二7log 1x y =+是否满足约束条件“7log 10.25x x +≤”
是采用了“构造函数的思想方法”,我认为就高一年级学生而言这种处理方法在理解上会有困难,但它又是一种很重要的思想方法,所以我通过板书详细分析了这一过程,旨在帮助学生对“构造函数的思想方法” 留下一个美好又深刻的第一印象。

为了避免整堂课“虎头蛇尾”,我在结束环节中请一个同学自主设计一个问题来考证全班同学的学习效果,该同学的提问与实际生活相联系,巧妙幽默地发问,同学们也报之以机智地回答,学生的学习活动顿时成为一个轻松快乐的过程。

另外在回顾、梳理和总结本节课学习的知识和掌握的技能之后,我安排研究性学习小组在课下以«关注民生 分析增长»为题撰写一篇研究性学习报告,从而把数学的学术形态转化为为生活服务的教育形态。

总之,这一节课教师就是要很好地“穿针引线”,不要过多地“霸占”学生自主学习的机会,让学生在体验函数模型增长差异、结论逐步形成的过程中,体会到蕴涵在其中的思想方法;让他们觉得数学并不空洞,而是有血有肉的实体;让我们的数学课堂充满生机!路漫漫其修远兮,吾将继续在新课改的实践中探索前行!。

相关文档
最新文档